Distortion in Lattice Actions on Surfaces

John Franks Northwestern University Evanston, IL john@math.northwestern.edu

January, 2005

A Motivating Conjecture

Conjecture. [*R. Zimmer*] Any C^{∞} volume preserving action of $SL(n, \mathbb{Z})$ on a compact manifold with dimension less than n, factors through an action of a finite group.

We are really interested in results valid for all finite index subgroups of $SL(n, \mathbb{Z})$.

Theorem. [D. Witte] Let \mathcal{G} be a finite index subgroup of $SL(n, \mathbb{Z})$ with $n \geq 3$. Any homomorphism

 $\phi: \mathcal{G} \to \operatorname{Homeo}(S^1)$

has a finite image.

Example. The group $SL(3, \mathbb{Z})$ acts analytically on S^2 by projectivizing the standard action on \mathbb{R}^3 .

 S^2 is the set of unit vectors in ${\bf R}^3.$ If $x\in S^2$ and $g\in SL(3,{\bf Z}),$ we can define $\phi(g):S^2\to S^2$ by

$$\phi(g)(x) = \frac{gx}{|gx|}.$$

Question. Let \mathcal{G} be a finite index subgroup of $SL(4, \mathbb{Z})$. Does every homomorphism from \mathcal{G} to $\mathrm{Diff}(S^2)$ or $\mathrm{Homeo}(S^2)$ have a finite image? What about other surfaces?

Distortion in Groups

Definition. [Gromov] An element g in a finitely generated group G is called a distorted if it has infinite order and

$$\liminf_{n \to \infty} \frac{|g^n|}{n} = 0,$$

where |g| denotes the minmal word length of g in some set of generators. If G is not finitely generated then gis distorted if it is distorted in some finitely generated subgroup.

Example. The subgroup G of $SL(2, \mathbb{R})$ generated by

$$A = \begin{pmatrix} 1/2 & 0 \\ 0 & 2 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

satisfies

$$A^{-1}BA = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} = B^4 \text{ and } A^{-n}BA^n = B^{4^n}$$

so B is distorted.

Example. The group of integer matrices of the form

$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$$

is called the Heisenberg group.

lf

$$g = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } h = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

then their commutator $f = [g, h] := g^{-1}h^{-1}gh$ is

$$f = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } f \text{ commutes with } g \text{ and } h.$$

This implies

$$[g^n, h^n] = f^{n^2}$$

so f is distorted.

Example. [G. Mess] Consider the subgroup of $Diff_{\omega}(T^2)$ generated by the automorphism given by

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

and a translation T(x) = x + w where $w \neq 0$ is parallel to the unstable manifold of A. The element T is distorted.

Proof:

Let λ be the expanding eigenvalue of A. The element $h_n = A^n T A^{-n}$ satisfies $h_n(x) = x + \lambda^n w$ and $g_n = A^{-n} T A^n$ satisfies $g_n(x) = x + \lambda^{-n} w$. Hence $g_n h_n(x) = x + (\lambda^n + \lambda^{-n}) w$. Since $tr A^n = \lambda^n + \lambda^{-n}$ is an integer we conclude $T^{tr A^n} = g_n h_n$, so $|T^{tr A^n}| \leq 4n + 2$. Thus

$$\lim_{n \to \infty} \frac{|T^{trA^n}|}{trA^n} = 0,$$

so T is distorted.

Question. Is an irrational rotation of S^1 distorted in $\text{Diff}(S^1)$ or $\text{Homeo}(S^1)$? Is an irrational rotation of S^2 distorted in $\text{Diff}(S^2)$ or in area preserving diffeomorphisms of S^2 ?

Example. [D. Calegari] An irrational rotation of S^2 is distorted in Homeo(S^2). In fact there is a C^0 action of the Heisenberg group on S^2 whose center generated by an irrational rotation.

Remark [F. Le Roux] There is no action of the Heisenberg group \mathcal{H} on S^2 which is C^1 and has a central element which is an irrational rotatation. (The example of Calegari cannot be made C^1 .)

Many Lattices have Distortion

Theorem. [Lubotzky-Mozes-Ragnunathan] Suppose Γ is a non-uniform irreducible lattice in a semi-simple Lie group \mathcal{G} with R-rank ≥ 2 . Suppose further that \mathcal{G} is connected, with finite center and no nontrivial compact factors. Then Γ has distortion elements, in fact, elements whose word length growth is at most logarithmic.

Margulis' normal subgroup theorem

Definition. A group is called almost simple if every normal subgroup is finite or has finite index.

Theorem. [Margulis] Assume Γ is an irreducible lattice in a semi-simple Lie group with R-rank ≥ 2 , e.g. any finite index subgroup of $SL(n, \mathbb{Z})$ with $n \geq 3$. Then Γ is almost simple.

Proposition. If \mathcal{G} is a finitely generated almost simple group which contains a distortion element and $\mathcal{H} \subset \mathcal{G}$ is a normal subgroup, then the only homomorphism from \mathcal{H} to R is the trivial one.

Thurston's stability theorem

Theorem. [Thurston] Suppose G is a finitely generated group,

$$\phi: G \to \mathrm{Diff}^1(M^n)$$

is a homomorphism and there is $x_0 \in M$ such that for all $g \in \mathcal{G}$

$$\phi(g)(x_0) = x_0$$
 and $D\phi(g)(x_0) = I$.

Then either ϕ is trivial or there is a non-trivial homomorphism from \mathcal{G} to R.

N.B.: For definitive results on C^1 actions on S^1 see E. Ghys, *"Actions de réseaux sur le cercle."*

Theorem. [Toy Theorem] Suppose \mathcal{G} is a finitely generated almost simple group and has a distortion element and suppose μ is a finite probability measure on S^1 . If

 $\phi: \mathcal{G} \to Diff_{\mu}(S^1)$

is a homomorphism then $\phi(\mathcal{G})$ is finite.

Proof:

• The rotation number $\rho : Diff_{\mu}(S^1) \to R/Z$ is a homomorphism.

 \bullet If f is distorted $\rho(f^n)=0$ for some n>0 so $\operatorname{Fix}(f^n)$ is non-empty.

• $supp(\mu) \subset Fix(f^n)$

• $\mathcal{G}_0 := \{g \in \mathcal{G} \mid \phi(g) \text{ pointwise fixes } supp(\mu)\}$ is infinite and normal, and hence finite index.

• $\phi(\mathcal{G}_0)$ is trivial by Thurston stability.

Theorem. [F-Handel] Suppose S is a closed oriented surface of genus at least one and μ is a Borel probability measure on S with infinite support. Suppose G is finitely generated, almost simple and has a distortion element. Then any homomorphism

$$\phi: \mathcal{G} \to \mathrm{Diff}_{\mu}(S)$$

has finite image.

This result was previously known in the special case of symplectic diffeomorphisms by a result of L. Polterovich.

The result above also holds with $supp(\mu)$ finite if \mathcal{G} is a Kazhdan group (aka \mathcal{G} has property T).

Distortion and Measure

Theorem. [F-Handel] Suppose that S is a closed oriented surface, that f is a distortion element in $\text{Diff}(S)_0$ and that μ is an f-invariant Borel probability measure.

- 1. If S has genus at least two then Per(f) = Fix(f)and $supp(\mu) \subset Fix(f)$.
- 2. If S = T² then for some Per(f) ≠ Ø. All points of Per(f) have the same period, say n, and supp(µ) ⊂ Fix(fⁿ)
- 3. If $S = S^2$ and if f^n has at least three fixed points for some smallest n > 0, then $Per(f) = Fix(f^n)$ and $supp(\mu) \subset Fix(f^n)$.

Heisenberg again

Theorem. [F-Handel] Suppose S is a closed oriented surface with Borel probability measure μ and \mathcal{G} is a finitely generated, almost simple group with a subgroup isomorphic to the Heisenberg group. Then any homomorphism

$\phi: \mathcal{G} \to \mathrm{Diff}_{\mu}(S)$

has finite image.

Parallels between $Diff(S^1)_0$ and $Diff_{\mu}(S)_0$

In general there seem to be strong parallels between results about $\text{Diff}(S^1)_0$ and $\text{Diff}_{\mu}(S)_0$. For example, Witte's theorem and our results above. Also we have

Theorem. [Hölder] Suppose \mathcal{G} is a subgroup of $\operatorname{Diff}(S^1)_0$ which acts freely (no non-trivial element has a fixed point). Then \mathcal{G} is Abelian.

Theorem. [Arnold Conjecture: Conley-Zehnder] Suppose

 $f \in \operatorname{Diff}_{\omega}(\mathrm{T}^2)_0$

is a commutator (ω is Lebesgue measure). Then f has (at least three) fixed points.

Corollary. Suppose \mathcal{G} is a subgroup of $\text{Diff}_{\omega}(T^2)_0$ which acts freely. Then \mathcal{G} is Abelian.

Nilpotent Groups

Definition. A group \mathcal{N} is called nilpotent provided when we define

$$\mathcal{N}_0 = \mathcal{N}, \ \mathcal{N}_i = [\mathcal{N}, \mathcal{N}_{i-1}],$$

there is an $n \ge 1$ such that $\mathcal{N}_n = \{e\}$. Note if n = 1 it is Abelian.

Theorem. [Plante - Thurston] Let N be a nilpotent subgroup of $\text{Diff}^2(S^1)_0$. Then N must be Abelian.

Theorem. [Farb - F] Every finitely-generated, torsion-free nilpotent group is isomorphic to a subgroup of $\text{Diff}^1(S^1)_0$. An Analogue of the Plante - Thurston Theorem

Theorem. [*F* - Handel] Let \mathcal{N} be a nilpotent subgroup of $\operatorname{Diff}_{\mu}^{1}(S)_{0}$ with μ a probability measure with $supp(\mu) = S$. If $S \neq S^{2}$ then \mathcal{N} is Abelian, if $S = S^{2}$ then \mathcal{N} is Abelian or has an index 2 Abelian subgroup.

Proof: (For the case genus(S) > 1) Suppose

$$\mathcal{N} = \mathcal{N}_1 \supset \cdots \supset \mathcal{N}_m \supset \{1\}$$

is the lower central series of \mathcal{N} . then \mathcal{N}_m is in the center of \mathcal{N} . If m > 1 there is a non-trivial $f \in \mathcal{N}_m$ and elements g, h with f = [g, h]. No non-trivial element of $\mathrm{Diff}^1(S)_0$ has finite order since S has genus > 1. So g, h generate a Heisenberg group and f is distorted. Our theorem says $\mathrm{supp}(\mu) \subset \mathrm{Fix}(f)$, but $\mathrm{supp}(\mu) = S$ so f = id. This is a contradition unless m = 1 and \mathcal{N} is abelian.

Detecting Non-Distortion

Properties which imply non-distortion:

- exponential growth of length of a curve
- linear displacement in the universal cover
- positive *spread*

Exponential Growth

Definition. If the surface S is provided with a Riemannian metric a smooth closed curve $\tau \subset S$ has a well defined length $l_S(\tau)$. Define the exponential growth rate by

$$\operatorname{egr}(f,\tau) = \liminf_{n \to \infty} \frac{\log(l_S(f^n(\tau)))}{n}.$$

This is easily seen to be independent of the choice of metric.

Exponential Growth

Proposition. If G is a finitely generated subgroup of $\text{Diff}(S)_0$ and $f \in G$ is distorted in G then $\text{egr}(f, \tau) = 0$ for all closed curves τ .

Proof: Choose generators g_1, \ldots, g_j of G. There exists C > 0 such that $||Dg_i|| < C$ for all i. Thus $l_S(g_i(\tau)) \leq Cl_S(\tau)$ for all τ and all i. It follows that

$$\liminf_{n \to \infty} \frac{\log(l_S(f^n(\tau)))}{n} \le \liminf_{n \to \infty} \frac{\log(l_S(\tau)) + \log(C)|f^n|}{n} = 0.$$

Linear Displacement

Definition. Assume that $f \in \text{Homeo}(S)_0$ and that $S \neq S^2$. A metric d on S lifts to an equivariant metric \tilde{d} on the universal cover \tilde{S} . We say that f has linear displacement if either of the following conditions hold.

1. $S \neq T^2$, \tilde{f} is the identity lift and there exists $\tilde{x} \in \tilde{S} = H$ such that

$$\liminf_{n \to \infty} \frac{\tilde{d}(\tilde{f}^n(\tilde{x}), \tilde{x})}{n} > 0.$$

2. $S = T^2$ and there exist \tilde{f} and $\tilde{x}_1, \tilde{x}_2 \in \tilde{S} = \mathbb{R}^2$ such that $\tilde{I}(\tilde{c}n(\tilde{z}_1) - \tilde{c}n(\tilde{z}_1))$

$$\liminf_{n \to \infty} \frac{d(f^n(\tilde{x}_1), f^n(\tilde{x}_2))}{n} > 0.$$

Linear Displacement

Proposition. If G is a finitely generated subgroup of $Homeo(S)_0$ and $f \in G$ is distorted in G then f does not have linear displacement.

Proof: We present only the case that S has genus > 1. In this case the identity lifts $\{\tilde{g} : g \in G\}$ form a subgroup \tilde{G} and \tilde{f} is a distortion element in \tilde{G} . Let d be the distance function of a Riemannian metric on S and let \tilde{d} be its lift to \tilde{S} . For generators g_1, \ldots, g_j of G there exists C > 0 such that $\tilde{d}(\tilde{g}_i(\tilde{x}), \tilde{x}) < C$ for all $\tilde{x} \in \tilde{S}$ and all i. It follows that

$$\liminf_{n \to \infty} \frac{\tilde{d}(\tilde{f}^n(\tilde{x}), \tilde{x})}{n} \le \liminf_{n \to \infty} C \frac{|f^n|}{n} = 0.$$

Spread

Given curves α, β, γ with β closed then $L_{\beta,\gamma}(\alpha)$ is roughly the number of times α crosses γ while following along β .

Definition. Define the spread of α with respect to f, β and γ to be

$$\sigma_{f,\beta,\gamma}(\alpha) = \liminf_{n \to \infty} \frac{L_{\beta,\gamma}(f^n(\alpha))}{n}.$$

Proposition. If G is a finitely generated subgroup of $\text{Diff}(S)_0$ and $f \in G$ is distorted in G then $\sigma_{f,\beta,\gamma}(\alpha) = 0$ for all α, β, γ .

Lemma. Suppose that $g_i \in \text{Diff}(S)_0$, $1 \leq i \leq k$, that f is in the group they generate and that $|f^n|$ is the word length of f^n in the generators $\{g_i\}$. Then there is a constant C > 0 such that

 $L_{\beta,\gamma}(f^n(\alpha)) \le L_{\beta,\gamma}(\alpha) + C|f^n|$

for all α, β, γ and all n > 0.

Spread

Proposition. If G is a finitely generated subgroup of $\text{Diff}(S)_0$ and $f \in G$ is distorted in G then $\sigma_{f,\beta,\gamma}(\alpha) = 0$ for all α, β, γ .

Proof: Since f is distorted in G

 $n \rightarrow \infty$

$$\liminf_{n \to \infty} \frac{|f^n|}{n} = 0.$$

According to the definition of spread and the lemma we then have

$$\sigma_{f,\beta,\gamma}(\alpha) = \liminf_{n \to \infty} \frac{L_{\beta,\gamma}(f^n(\alpha))}{n}$$
$$< \liminf \frac{L_{\beta,\gamma}(\alpha) + C|f^n|}{n} = 0.$$

n

Proposition. If *S* has genus > 1, $f \in \text{Diff}_{\mu}(S)_0$ has infinite order and $\mu(S \setminus \text{Fix}(f)) > 0$ then one of the following holds:

1. There exists a closed curve τ such that

$$\operatorname{egr}(f,\tau) > 0.$$

- 2. f has linear displacement.
- 3. After replacing f with some iterate $g = f^k$ and perhaps passing to a two-fold covering $g: S \to S$ is isotopic to the identity and there exist α, β, γ such that the spread $\sigma_{g,\beta,\gamma}(\alpha) > 0$.