Distortion in Lattice Actions on Surfaces

John Franks
Northwestern University
Evanston, IL
john@math.northwestern.edu
January, 2005

- Castellon - January, 2005

A Motivating Conjecture

Conjecture. [R. Zimmer] Any C^{∞} volume preserving action of $S L(n, \mathrm{Z})$ on a compact manifold with dimension less than n, factors through an action of a finite group.

We are really interested in results valid for all finite index subgroups of $S L(n, \mathrm{Z})$.

Theorem. [D. Witte] Let \mathcal{G} be a finite index subgroup of $S L(n, Z)$ with $n \geq 3$. Any homomorphism

$$
\phi: \mathcal{G} \rightarrow \operatorname{Homeo}\left(S^{1}\right)
$$

has a finite image.

Example. The group $S L(3, \mathrm{Z})$ acts analytically on S^{2} by projectivizing the standard action on R^{3}.
S^{2} is the set of unit vectors in R^{3}. If $x \in S^{2}$ and $g \in S L(3, \mathrm{Z})$, we can define $\phi(g): S^{2} \rightarrow S^{2}$ by

$$
\phi(g)(x)=\frac{g x}{|g x|}
$$

Question. Let \mathcal{G} be a finite index subgroup of $S L(4, \mathrm{Z})$. Does every homomorphism from \mathcal{G} to $\operatorname{Diff}\left(S^{2}\right)$ or Homeo $\left(S^{2}\right)$ have a finite image? What about other surfaces?

Distortion in Groups

Definition. [Gromov] An element g in a finitely generated group G is called a distorted if it has infinite order and

$$
\liminf _{n \rightarrow \infty} \frac{\left|g^{n}\right|}{n}=0
$$

where $|g|$ denotes the minmal word length of g in some set of generators. If \mathcal{G} is not finitely generated then g is distorted if it is distorted in some finitely generated subgroup.

Example. The subgroup G of $S L(2, \mathrm{R})$ generated by

$$
A=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 2
\end{array}\right) \text { and } B=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

satisfies

$$
A^{-1} B A=\left(\begin{array}{ll}
1 & 4 \\
0 & 1
\end{array}\right)=B^{4} \text { and } A^{-n} B A^{n}=B^{4^{n}}
$$

so B is distorted.

Example. The group of integer matrices of the form

$$
\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)
$$

is called the Heisenberg group.

If

$$
g=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { and } h=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

then their commutator $f=[g, h]:=g^{-1} h^{-1} g h$ is

$$
f=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { and } f \text { commutes with } g \text { and } h .
$$

This implies

$$
\left[g^{n}, h^{n}\right]=f^{n^{2}}
$$

so f is distorted.

Example. [G. Mess] Consider the subgroup of $\operatorname{Diff}_{\omega}\left(\mathrm{T}^{2}\right)$ generated by the automorphism given by

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

and a translation $T(x)=x+w$ where $w \neq 0$ is parallel to the unstable manifold of A. The element T is distorted.

Proof:

Let λ be the expanding eigenvalue of A. The element $h_{n}=A^{n} T A^{-n}$ satisfies $h_{n}(x)=x+\lambda^{n} w$ and $g_{n}=A^{-n} T A^{n}$ satisfies $g_{n}(x)=x+\lambda^{-n} w$. Hence $g_{n} h_{n}(x)=x+\left(\lambda^{n}+\lambda^{-n}\right) w$. Since $\operatorname{tr} A^{n}=\lambda^{n}+\lambda^{-n}$ is an integer we conclude $T^{\operatorname{tr} A^{n}}=g_{n} h_{n}$, so $\left|T^{\operatorname{tr} A^{n}}\right| \leq$ $4 n+2$. Thus

$$
\lim _{n \rightarrow \infty} \frac{\left|T^{\operatorname{tr} A^{n}}\right|}{\operatorname{tr} A^{n}}=0
$$

so T is distorted.

Question. Is an irrational rotation of S^{1} distorted in $\operatorname{Diff}\left(S^{1}\right)$ or Homeo $\left(S^{1}\right)$? Is an irrational rotation of S^{2} distorted in $\operatorname{Diff}\left(S^{2}\right)$ or in area preserving diffeomorphisms of S^{2} ?

Example. [D. Calegari] An irrational rotation of S^{2} is distorted in $\operatorname{Homeo}\left(S^{2}\right)$. In fact there is a C^{0} action of the Heisenberg group on S^{2} whose center generated by an irrational rotation.

Remark [F. Le Roux] There is no action of the Heisenberg group \mathcal{H} on S^{2} which is C^{1} and has a central element which is an irrational rotatation. (The example of Calegari cannot be made C^{1}.)

Many Lattices have Distortion

Theorem. [Lubotzky-Mozes-Ragnunathan] Suppose Γ is a non-uniform irreducible lattice in a semi-simple Lie group \mathcal{G} with R -rank ≥ 2. Suppose further that \mathcal{G} is connected, with finite center and no nontrivial compact factors. Then Γ has distortion elements, in fact, elements whose word length growth is at most logarithmic.

Margulis' normal subgroup theorem

Definition. A group is called almost simple if every normal subgroup is finite or has finite index.

Theorem. [Margulis] Assume Γ is an irreducible lattice in a semi-simple Lie group with $\mathrm{R}-$ rank ≥ 2, e.g. any finite index subgroup of $S L(n, Z)$ with $n \geq 3$. Then Γ is almost simple.

Proposition. If \mathcal{G} is a finitely generated almost simple group which contains a distortion element and $\mathcal{H} \subset \mathcal{G}$ is a normal subgroup, then the only homomorphism from \mathcal{H} to R is the trivial one.

Thurston's stability theorem

Theorem. [Thurston] Suppose \mathcal{G} is a finitely generated group,

$$
\phi: G \rightarrow \operatorname{Diff}^{1}\left(M^{n}\right)
$$

is a homomorphism and there is $x_{0} \in M$ such that for all $g \in \mathcal{G}$

$$
\phi(g)\left(x_{0}\right)=x_{0} \text { and } D \phi(g)\left(x_{0}\right)=I
$$

Then either ϕ is trivial or there is a non-trivial homomorphism from \mathcal{G} to R .
N.B.: For definitive results on C^{1} actions on S^{1} see E. Ghys, "Actions de réseaux sur le cercle."

Theorem. [Toy Theorem] Suppose \mathcal{G} is a finitely generated almost simple group and has a distortion element and suppose μ is a finite probability measure on S^{1}. If

$$
\phi: \mathcal{G} \rightarrow \operatorname{Diff}_{\mu}\left(S^{1}\right)
$$

is a homomorphism then $\phi(\mathcal{G})$ is finite.

Proof:

- The rotation number $\rho: \operatorname{Dif} f_{\mu}\left(S^{1}\right) \rightarrow \mathrm{R} / \mathrm{Z}$ is a homomorphism.
- If f is distorted $\rho\left(f^{n}\right)=0$ for some $n>0$ so $\operatorname{Fix}\left(f^{n}\right)$ is non-empty.
- $\operatorname{supp}(\mu) \subset \operatorname{Fix}\left(f^{n}\right)$
- $\mathcal{G}_{0}:=\{g \in \mathcal{G} \mid \phi(g)$ pointwise fixes $\operatorname{supp}(\mu)\}$ is infinite and normal, and hence finite index.
- $\phi\left(\mathcal{G}_{0}\right)$ is trivial by Thurston stability.

Theorem. [F-Handel] Suppose S is a closed oriented surface of genus at least one and μ is a Borel probabilty measure on S with infinite support. Suppose \mathcal{G} is finitely generated, almost simple and has a distortion element. Then any homomorphism

$$
\phi: \mathcal{G} \rightarrow \operatorname{Diff}_{\mu}(S)
$$

has finite image.

This result was previously known in the special case of symplectic diffeomorphisms by a result of L. Polterovich.

The result above also holds with $\operatorname{supp}(\mu)$ finite if \mathcal{G} is a Kazhdan group (aka \mathcal{G} has property T).

Distortion and Measure

Theorem. [F-Handel] Suppose that S is a closed oriented surface, that f is a distortion element in $\operatorname{Diff}(S)_{0}$ and that μ is an f-invariant Borel probability measure.

1. If S has genus at least two then $\operatorname{Per}(f)=\operatorname{Fix}(f)$ and $\operatorname{supp}(\mu) \subset \operatorname{Fix}(f)$.
2. If $S=T^{2}$ then for some $\operatorname{Per}(f) \neq \emptyset$. All points of $\operatorname{Per}(f)$ have the same period, say n, and $\operatorname{supp}(\mu) \subset$ $\operatorname{Fix}\left(f^{n}\right)$
3. If $S=S^{2}$ and if f^{n} has at least three fixed points for some smallest $n>0$, then $\operatorname{Per}(f)=\operatorname{Fix}\left(f^{n}\right)$ and $\operatorname{supp}(\mu) \subset \operatorname{Fix}\left(f^{n}\right)$.

Heisenberg again

Theorem. [F-Handel] Suppose S is a closed oriented surface with Borel probabilty measure μ and \mathcal{G} is a finitely generated, almost simple group with a subgroup isomorphic to the Heisenberg group. Then any homomorphism

$$
\phi: \mathcal{G} \rightarrow \operatorname{Diff}_{\mu}(S)
$$

has finite image.

Parallels between $\operatorname{Diff}\left(S^{1}\right)_{0}$ and $\operatorname{Diff}_{\mu}(S)_{0}$

In general there seem to be strong parallels between results about $\operatorname{Diff}\left(S^{1}\right)_{0}$ and $\operatorname{Diff} \mu(S)_{0}$. For example, Witte's theorem and our results above. Also we have

Theorem. [Hölder] Suppose \mathcal{G} is a subgroup of $\operatorname{Diff}\left(S^{1}\right)_{0}$ which acts freely (no non-trivial element has a fixed point). Then \mathcal{G} is Abelian.

Theorem. [Arnold Conjecture: Conley-Zehnder] Suppose

$$
f \in \operatorname{Diff}_{\omega}\left(\mathrm{T}^{2}\right)_{0}
$$

is a commutator (ω is Lebesgue measure). Then f has (at least three) fixed points.

Corollary. Suppose \mathcal{G} is a subgroup of $\operatorname{Diff}_{\omega}\left(\mathrm{T}^{2}\right)_{0}$ which acts freely. Then \mathcal{G} is Abelian.

Nilpotent Groups

Definition. A group \mathcal{N} is called nilpotent provided when we define

$$
\mathcal{N}_{0}=\mathcal{N}, \mathcal{N}_{i}=\left[\mathcal{N}, \mathcal{N}_{i-1}\right]
$$

there is an $n \geq 1$ such that $\mathcal{N}_{n}=\{e\}$. Note if $n=1$ it is Abelian.

Theorem. [Plante - Thurston] Let N be a nilpotent subgroup of $\operatorname{Diff}^{2}\left(S^{1}\right)_{0}$. Then N must be Abelian.

Theorem. [Farb - F] Every finitely-generated, torsion-free nilpotent group is isomorphic to a subgroup of Diff ${ }^{1}\left(S^{1}\right)_{0}$.

An Analogue of the Plante - Thurston Theorem

Theorem. [F - Handel] Let \mathcal{N} be a nilpotent subgroup of $\operatorname{Diff}_{\mu}^{1}(S)_{0}$ with μ a probability measure with $\operatorname{supp}(\mu)=S$. If $S \neq S^{2}$ then \mathcal{N} is Abelian, if $S=S^{2}$ then \mathcal{N} is Abelian or has an index 2 Abelian subgroup.

Proof: (For the case $\operatorname{genus}(S)>1$) Suppose

$$
\mathcal{N}=\mathcal{N}_{1} \supset \cdots \supset \mathcal{N}_{m} \supset\{1\}
$$

is the lower central series of \mathcal{N}. then \mathcal{N}_{m} is in the center of \mathcal{N}. If $m>1$ there is a non-trivial $f \in$ \mathcal{N}_{m} and elements g, h with $f=[g, h]$. No non-trivial element of $\operatorname{Diff}^{1}(S)_{0}$ has finite order since S has genus >1. So g, h generate a Heisenberg group and f is distorted. Our theorem says $\operatorname{supp}(\mu) \subset \operatorname{Fix}(f)$, but $\operatorname{supp}(\mu)=S$ so $f=i d$. This is a contradition unless $m=1$ and \mathcal{N} is abelian.

Detecting Non-Distortion

Properties which imply non-distortion:

- exponential growth of length of a curve
- linear displacement in the universal cover
- positive spread

Exponential Growth

Definition. If the surface S is provided with a Riemannian metric a smooth closed curve $\tau \subset S$ has a well defined length $l_{S}(\tau)$. Define the exponential growth rate by

$$
\operatorname{egr}(f, \tau)=\liminf _{n \rightarrow \infty} \frac{\log \left(l_{S}\left(f^{n}(\tau)\right)\right.}{n}
$$

This is easily seen to be independent of the choice of metric.

Exponential Growth

Proposition. If G is a finitely generated subgroup of $\operatorname{Diff}(S)_{0}$ and $f \in G$ is distorted in G then $\operatorname{egr}(f, \tau)=0$ for all closed curves τ.

Proof: Choose generators g_{1}, \ldots, g_{j} of G. There exists $C>0$ such that $\left\|D g_{i}\right\|<C$ for all i. Thus $l_{S}\left(g_{i}(\tau)\right) \leq C l_{S}(\tau)$ for all τ and all i. It follows that

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \frac{\log \left(l_{S}\left(f^{n}(\tau)\right)\right.}{n} & \leq \liminf _{n \rightarrow \infty} \frac{\log \left(l_{S}(\tau)\right)+\log (C)\left|f^{n}\right|}{n} \\
& =0 .
\end{aligned}
$$

Linear Displacement

Definition. Assume that $f \in \operatorname{Homeo}(S)_{0}$ and that $S \neq S^{2}$. A metric d on S lifts to an equivariant metric \tilde{d} on the universal cover \tilde{S}. We say that f has linear displacement if either of the following conditions hold.

1. $S \neq T^{2}, \tilde{f}$ is the identity lift and there exists $\tilde{x} \in \tilde{S}=H$ such that

$$
\liminf _{n \rightarrow \infty} \frac{\tilde{d}\left(\tilde{f}^{n}(\tilde{x}), \tilde{x}\right)}{n}>0 .
$$

2. $S=T^{2}$ and there exist \tilde{f} and $\tilde{x}_{1}, \tilde{x}_{2} \in \tilde{S}=\mathrm{R}^{2}$ such that

$$
\liminf _{n \rightarrow \infty} \frac{\tilde{d}\left(\tilde{f}^{n}\left(\tilde{x}_{1}\right), \tilde{f}^{n}\left(\tilde{x}_{2}\right)\right)}{n}>0 .
$$

Linear Displacement

Proposition. If G is a finitely generated subgroup of $\operatorname{Homeo}(S)_{0}$ and $f \in G$ is distorted in G then f does not have linear displacement.

Proof: We present only the case that S has genus >1. In this case the identity lifts $\{\tilde{g}: g \in G\}$ form a subgroup \tilde{G} and \tilde{f} is a distortion element in \tilde{G}. Let d be the distance function of a Riemannian metric on S and let \tilde{d} be its lift to \tilde{S}. For generators g_{1}, \ldots, g_{j} of G there exists $C>0$ such that $\tilde{d}\left(\tilde{g}_{i}(\tilde{x}), \tilde{x}\right)<C$ for all $\tilde{x} \in \tilde{S}$ and all i. It follows that

$$
\liminf _{n \rightarrow \infty} \frac{\tilde{d}\left(\tilde{f}^{n}(\tilde{x}), \tilde{x}\right)}{n} \leq \liminf _{n \rightarrow \infty} C \frac{\left|f^{n}\right|}{n}=0
$$

Spread

Given curves α, β, γ with β closed then $L_{\beta, \gamma}(\alpha)$ is roughly the number of times α crosses γ while following along β.

Definition. Define the spread of α with respect to f, β and γ to be

$$
\sigma_{f, \beta, \gamma}(\alpha)=\liminf _{n \rightarrow \infty} \frac{L_{\beta, \gamma}\left(f^{n}(\alpha)\right)}{n}
$$

Proposition. If G is a finitely generated subgroup of $\operatorname{Diff}(S)_{0}$ and $f \in G$ is distorted in G then $\sigma_{f, \beta, \gamma}(\alpha)=$ 0 for all α, β, γ.

Lemma. Suppose that $g_{i} \in \operatorname{Diff}(S)_{0}, \quad 1 \leq i \leq k$, that f is in the group they generate and that $\left|f^{n}\right|$ is the word length of f^{n} in the generators $\left\{g_{i}\right\}$. Then there is a constant $C>0$ such that

$$
L_{\beta, \gamma}\left(f^{n}(\alpha)\right) \leq L_{\beta, \gamma}(\alpha)+C\left|f^{n}\right|
$$

for all α, β, γ and all $n>0$.

Spread

Proposition. If G is a finitely generated subgroup of $\operatorname{Diff}(S)_{0}$ and $f \in G$ is distorted in G then $\sigma_{f, \beta, \gamma}(\alpha)=$ 0 for all α, β, γ.

Proof: Since f is distorted in G

$$
\liminf _{n \rightarrow \infty} \frac{\left|f^{n}\right|}{n}=0
$$

According to the definition of spread and the lemma we then have

$$
\begin{aligned}
& \sigma_{f, \beta, \gamma}(\alpha)=\liminf _{n \rightarrow \infty} \frac{L_{\beta, \gamma}\left(f^{n}(\alpha)\right)}{n} \\
& \leq \liminf _{n \rightarrow \infty} \frac{L_{\beta, \gamma}(\alpha)+C\left|f^{n}\right|}{n}=0
\end{aligned}
$$

Proposition. If S has genus $>1, f \in \operatorname{Diff}_{\mu}(S)_{0}$ has infinite order and $\mu(S \backslash \operatorname{Fix}(f))>0$ then one of the following holds:

1. There exists a closed curve τ such that

$$
\operatorname{egr}(f, \tau)>0
$$

2. f has linear displacement.
3. After replacing f with some iterate $g=f^{k}$ and perhaps passing to a two-fold covering $g: S \rightarrow S$ is isotopic to the identity and there exist α, β, γ such that the spread $\sigma_{g, \beta, \gamma}(\alpha)>0$.
