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• À. Jorba. Numerical computation of the normal behaviour of
invariant curves of n-dimensional maps. Nonlinearity,
14(5):943–976, 2001.

1



We will focus now on the computation of lower dimensional tori
and related issues. We will discuss first numerical methods and
then methods based on normalizing transformations. In both cases
we will see some applications to Celestial Mechanics.

There are several reasons to justify the need for the computation of
invariant tori.

For instance, think of a non-automomous system that depends on
time in a periodic or quasi-periodic way.

Another situation is the globalization of a center manifold.
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Let f be a diffeomorphism of an open domain of Rn into itself, and
consider the dynamical system

x̄ = f(x).

Assume that this system has an invariant curve with rotation
number ω, this is, we assume that there exists a (continuous) map
x : T1 → Rn such that

f(x(θ)) = x(θ + ω), for all θ ∈ T1.

We are not assuming that f is neither close to integrable, nor it
preserves any structure (measure, symplectic form, etc.).
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We can also consider the non-autonomous case

x̄ = f(x, θ)

θ̄ = θ + ω

 ,

where θ ∈ Tr.

Both cases are similar, so for the moment I’ll focus on the
autonomous one.
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Suppose that this map has an invariant curve with rotation number
ω. The curve is given (in parametric form) by a map x : T1 → Rn.
The invariance condition is then,

F (θ) ≡ f(x(θ))− x(θ + ω) = 0, ∀ θ ∈ T1.

To start the discussion, assume that we know the rotation number
of the curve we are looking for. So we only want to determine the
function x(θ). Let us write x(θ) as a real Fourier series,

x(θ) = a0 +
∑
k>0

ak cos(kθ) + bk sin(kθ),

where ak, bk ∈ Rn, k ∈ N. As it is usual in numerical methods, we
will look for a truncation of this series. So, let us fix in advance a
truncation value N (the selection of N will be discussed later on),
and let us try to determine an approximation to the 2N + 1
unknown coefficients a0, ak and bk, 0 < k ≤ N .

5



The main idea is to apply a Newton method to find x(θ) such that
F (x(θ)) ≡ 0. We note that F acts on a space of periodic functions.

First, let us define a mesh of 2N + 1 points on T1,

θj =
2πj

2N + 1
, 0 ≤ j ≤ 2N.

Then, it is not difficult to compute x(θj), f(θj), f(θj + ω) and,
hence, F (x(θj)). From these values, we can easily derive the
Fourier coefficents of F (x(θ)).

Therefore, we have a procedure to compute the map F .

As this procedure can be easily differentiated, we can also obtain
DF .

Then, a Newton method can be applied.
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A natural question is about the size of the error of the obtained
curve.

To measure such error we use

E(x, ω) = max
θ∈T1

|f(x(θ))− x(θ + ω)|.

We estimate E(x, ω) using a much finer mesh than the one used in
the previous computations.

If this error is too big (for instance, bigger than 10−12), we increase
N and we apply the Newton process again.
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Linear normal behaviour

Let f be a diffeomorphism of an open domain of Rn into itself, and
consider the dynamical system

x̄ = f(x).

Assume that this system has an invariant curve with rotation
number ω, this is, we assume that there exists a (continuous) map
x : T1 → Rn such that

f(x(θ)) = x(θ + ω), for all θ ∈ T1.

We are not assuming that f is neither close to integrable, nor it
preserves any structure (measure, symplectic form, etc.).
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Let h represent a small displacement with respect to an arbitrary
point x(θ) on the invariant curve. Then,

f(x(θ) + h) = f(x(θ)) +Dxf(x(θ))h+O(‖h‖2).

As f(x(θ)) = x(θ + ω), it follows that the linear normal behaviour
is described by the following dynamical system,

x̄ = A(θ)x

θ̄ = θ + ω

 , (1)

where A(θ) = Dxf(x(θ)). This kind of system is sometimes known
as linear quasi-periodic skew-product.
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Definition 1 The system (1) is called reducible iff there exists a
(may be complex) change of variables x = C(θ)y such that (1)
becomes

ȳ = By

θ̄ = θ + ω

 , (2)

where the matrix B ≡ C−1(θ + ω)A(θ)C(θ) does not depend on θ.
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We define the operator

Tω : ψ(θ) ∈ C(T1,Cn) 7→ ψ(θ + ω) ∈ C(T1,Cn),

and let us consider now the following generalized eigenvalue
problem: to look for couples (λ, ψ) ∈ C× C(T1,Cn) such that

A(θ)ψ(θ) = λTωψ(θ). (3)

In what follows we will assume, without explicit mention, that
ω /∈ 2πQ (the case ω ∈ 2πQ can be reduced to constant coefficients
by iterating the system a suitable number of times).

Proposition 1 Consider the generalized eigenvalue problem (3)
for a given invariant curve x(θ). Then, if f does not depend on θ,
1 is an eigenvalue of (3). The corresponding eigenfunction is x′(θ).
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Proposition 2 Let λ be an eigenvalue of (3). Then, for any
k ∈ Z, λ exp(i kω) is also an eigenvalue of (3).

Proof: We denote by ψ ∈ C(T1,Rn) the eigenfunction
corresponding to the eigenvalue λ. Then, check that
ψ̂(θ) = exp(−i kθ)ψ(θ) is an eigenfunction of eigenvalue λ exp(i kω).

Remark 1 This shows that the closure of the set of eigenvalues of
(3) can be written as a union of circles with centre at the origin. If
the system is autonomous, we have shown that the closure of the
eigenvalues must contain the unit circle.
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Proposition 3 Let us assume that the initial system can be
reduced to constant coefficients, by means of a transformation
x = C(θ)y. Let B be the reduced matrix. In this situation, one has

1. If λ is an eigenvalue of B, then λ is an eigenvalue of (3).

2. If λ is an eigenvalue of (3), then there exists k ∈ Z such that
λ exp(i kω) is an eigenvalue of B.

In particular we have shown that, in the reducible case, the set of
eigenvalues is not empty.
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Definition 2 Two eigenvalues λ1 and λ2 are said to be unrelated
iff λ1 6= exp(i kω)λ2, ∀k ∈ Z. Otherwise, we will refer to them as
related.

Proposition 4 Assume that there exist n unrelated eigenvalues
λ1, . . . , λn for the eigenproblem (3). Then, (1) can be reduced to
(2), where B = diag(λ1, . . . , λn).

Corollary 1 The generalized eigenvalue problem (3) cannot have
more than n unrelated eigenvalues.
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NUMERICAL APPROXIMATION

We consider the (standard) eigenvalue problem for the operator

ψ(θ) 7→ (T−ω ◦A(θ))ψ(θ),

in the space C(T1,Rn).

To discretize it, we truncate the Fourier series of the elements of
C(T1,Rn) for a given value.

Once the operator is written in matrix form, we apply a standard
numerical method to look for the eigenvalues and eigenvectors.
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ACCURACY

To simplify the discussion, let us assume that the system is
reducible, and let µ0 be one of the eigenvalues of the reduced
matrix B. Then, the operator T−ω ◦A(θ) must have all the values
µk ≡ µ0 exp(i kω) (k ∈ Z) as eigenvalues. Of course, the discretized
version of the operator only contains a finite number of those
values and, as is usual in these situations, their accuracy depends
on the size of |k|.
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Can we detect the most accurate eigenvalues?

Idea: Consider the “norm”

‖ψ‖(p) =
∑
j∈Z

|ψj ||j|p.

If it is well-defined, the truncation error is

TE(ψ,N) =
∑
|j|>N

|ψj ||j|p.

If we consider an eigenfunction like exp(−i kθ)ψ(θ), the previous
expression can only be small for a reduced set of values of |k|.

Key idea : TE(ψ,N) is small when ‖ψ‖(p) is small.
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Example: The quasi-periodic Hill equation

ẋ = y

ẏ = −(a2 + bp(θ1, θ2))x

θ̇1 = ω1

θ̇2 = ω2


where p(θ1, θ2) = cos(θ1) + cos(θ2), (x, y) ∈ R2, (θ1, θ2) ∈ T2 and
ω1,2 are the forcing frequencies.
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We use the Poincaré section θ1 = 0. We denote by Φθ2(t) the 2× 2
fundamental matrix for the (x, y) variables, obtained by taking
Φθ2(0) = Id, θ1 = 0 and θ2 ∈ T1. Let A(θ2) = Φθ2(2π) (note that
for t = 2π

ω1
, θ1 is again on the Poincaré section). Then, the

dynamics can also be described by the following linear
quasi-periodic skew-flow:

z̄ = A(θ2)z

θ̄2 = θ2 +
2π
ω1
ω2

 ,

where z ∈ R2 and θ2 ∈ T1.
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We take the values ω1 = 1 and ω2 ≡ γ = 1
2 (1 +

√
5). So, the

frequency for the cocycle is ω = 4π
1+

√
5
≈ 3.8832220774509332.

We select the values b = 0.2 and a2 = 0.7. The program starts with
a value N = 8, to find that the estimation of the error for the
eigenvectors is 5.6× 10−12. As this is greater than the prescribed
accuracy (10−12), the program repeats again the calculation with
N = 10, to reach an estimated accuracy of 1.3× 10−14.
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Modulus Argument Norm Error

1.421399533740337 1.199981614864327 1.069409e+01 1.334772e-14

0.703531960059501 1.199981614864327 1.069409e+01 1.326585e-14

1.421399533740339 2.683240462586607 2.360600e+01 3.917410e-13

0.703531960059501 2.683240462586607 2.360600e+01 3.928163e-13

0.703531960059501 0.283277232857952 3.291719e+01 5.593418e-12

1.421399533740338 0.283277232857953 3.291719e+01 5.594009e-12

0.689449522457020 0.000000000000000 3.939715e+01 2.489513e+00

1.450432508004731 0.000000000000000 4.203193e+01 2.638401e+00

0.703531960059501 2.116685996870700 4.216431e+01 6.078403e-10

1.421399533740338 2.116685996870700 4.216431e+01 6.078433e-10

0.703531960059500 1.766536080580232 5.141098e+01 1.776935e-08

1.421399533740338 1.766536080580234 5.141098e+01 1.777005e-08

1.421399533740338 0.633427149148420 5.954887e+01 5.827280e-07
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The bicircular problem (BCP)

It is a model for the study of the dynamics of a small particle in
the Earth-Moon-Sun system.
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The BCP can be described by the Hamiltonian system,

HBCP =
1
2

(
p2

x + p2
y + p2

z

)
+ ypx − xpy −

1− µ

rPE
− µ

rPM
− mS

rPS
−

mS

a2
S

(y sin θ − x cos θ) ,

where r2PE = (x− µ)2 + y2 + z2, r2PM = (x− µ+ 1)2 + y2 + z2,
r2PS = (x− xS)2 + (y − yS)2 + z2, xS = aS cos θ, yS = −aS sin θ,
and θ = ωSt.
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N = 16 (total dimension: 198).
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Modulus Argument

λ1 1.091942641437887 0.000000000000000

λ2 0.915799019152856 0.000000000000000

λ3 0.999999999999985 2.035517841801725

λ4 0.999999999999985 -2.035517841801725

Normal eigenvalues around an unstable invariant curve of the
family VF1. The rotation number is ω = 0.535033339385478, and
the value of the ż coordinate when z = 0 is ż = 0.080508698608030.

We can check that |λ1λ2 − 1| ≈ 4× 10−15.
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Growing the stable manifold

We call ψj the eigenfunction corresponding to λj , j = 1, . . . , 4, and
we focus on the couple (λ1, ψ1) ∈ R× C(T1,Rn).

The linearized unstable manifold is given by x(θ) + hψ1(θ). To
estimate a suitable value for h, we note that

f(x(θ) + hψ1(θ)) = f(x(θ)) + hDxf(x(θ))ψ1(θ) +O(h2)

= x(θ + ω) + hλ1ψ1(θ + ω) +O(h2).

The size of the term O(h2) can be estimated by

E(h) = max
θ∈T1

‖f(x(θ) + hψ1(θ))− x(θ + ω)− hλ1ψ1(θ + ω)‖2.

It follows that h = 10−7 is enough to have E(h) < 10−13.

We define the curve C1 ⊂ Rn as the image of the map
θ 7→ x(θ) + hψ1(θ) and, for j > 1, Cj = f(Cj−1).
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