
The classical Andronov-Hopf bifurcation

(Ref.: Y.A. Kuznetsov, Elements of Applied Bifurcation Theory,

Springer Verlag)

Model equation for the supercritical case: ẋ1 = αx1 − x2 − x1(x2
1 + x2

2),

ẋ2 = x1 + αx2 − x2(x2
1 + x2

2).

α is a real parameter. For all α, x1 = x2 = 0 is an equilibrium
point. The Jacobian at this point is

Aα =

 α −1

1 α

 .

The eigenvalues are λ1,2 = α± i .
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Using polar coordinates, we obtain ρ̇ = ρ(α− ρ2),

ϕ̇ = 1.

The dynamics for the different values of α is quite clear:

• α < 0: the origin is attracting.

• α = 0: the origin is nonlinearly attracting.

• α > 0: the origin is repelling, there is an attracting periodic
orbit.
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Model equations for the subcritical case: ẋ1 = αx1 − x2 + x1(x2
1 + x2

2),

ẋ2 = x1 + αx2 + x2(x2
1 + x2

2).

Taking polar coordinates, we get: ρ̇ = ρ(α + ρ2),

ϕ̇ = 1.

The dynamics for the different values of α is also clear:

• α < 0: the origin is attracting, there is a repelling per. orbit.

• α = 0: the origin is nonlinearly repelling.

• α > 0: the origin is repelling.
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The Hamiltonian-Hopf bifurcation

• À. Jorba and M. Ollé. Invariant curves near Hamiltonian-Hopf
bifurcations of four-dimensional symplectic maps.
Nonlinearity, 17:691–710, 2004.

Goal: to describe the dynamics in an extended neighbourhood of a
fixed point of a 4-D symplectic map undergoing a Hamiltonian-Hopf
bifurcation. We wand to compute the main invariant objects
(invariant curves and their stable/unstable manifolds) and to use
them to derive a qualitative description of the dynamics in an
extended neighbourhood of the bifurcation point.

We will use numerical methods that only require to be able to
evaluate the map and its Jacobian. In this way, these techniques
can be applied to Poincaré sections of flows.

4



This bifurcation can be briefly described as follows.

On one side of the bifurcation the fixed point is linearly stable, this
is, all the eigenvalues of the Jacobian matrix at the point have
modulus one.

Due to the conditions imposed by the symplectic structure, these
eigenvalues come in two couples of conjugate complex numbers,
that move on the unit circle when we move along the family.
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When we approach the bifurcation, the two pairs come close in
such a way that, at the bifurcation point, they collapse in a single
pair of complex eigenvalues (the collapse occurs on the unit circle
but outside the real line).

After that, the four eigenvalues separate and move off the unit
circle (two move outside and two move inside the unit disc) and the
point becomes unstable. As none of the eigenvalues is real, the real
stable and unstable manifolds are two-dimensional and, near the
fixed point, the orbits inside them spiral in and out respectively.
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We will focus on two maps, which can be seen as generalisations of
the well-known standard map. They are defined by

Ts


x1

x2

x3

x4

 =


x1 − sin(x1 + x2) + L sin(x1 + x2 + x3 + x4)

x1 + x2

x3 − L sin(x1 + x2 + x3 + x4)

x3 + x4



Tt


x1

x2

x3

x4

 =


x1 − sin(x1 + x2) + L tan(x1 + x2 + x3 + x4)

x1 + x2

x3 − L tan(x1 + x2 + x3 + x4)

x3 + x4


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The two maps have the same Jacobian at x = 0, but different
nonlinear behaviour.

It is easy to check that we have a transition from (linear) stability
to complex instability at L = Lc = 0.25

Although these maps have many extra properties (like symmetries),
we will not take advantage of them.

Let us focus first on the map Ts.

For L < Lc = 0.25, the eigenvalues of the Jacobian are given by
exp(±iω1) and exp(±iω2). Therefore, the linear dynamics around
the origin is described by the product of two harmonic oscillators.
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Under generic conditions, it can be proved that each linear
oscillation gives rise to a Cantorian 1-parametric family of invariant
curves with a rotation number that tends to ωi, i = 1, 2 when the
invariant curves tend to the fixed point.

The parametrisation is only defined on a set of values of the
parameter of positive Lebesgue measure and empty interior. If the
frequencies of the linearization around the origin are Diophantine
and the map is analytic, the size of the “holes” of the Cantor
structure are exponentially small with the distance to the origin.

Due to the similarities with the periodic orbits of the well-known
Lyapunov’s centre theorem , we will refer to these families as
Lyapunov families of invariant curves.

Note: The 2-D invariant tori (KAM tori) near the origin can be
seen as the nonlinear continuation of the direct product of the two
linear oscillations at x = 0.
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Lyapunov families of invariant curves (rotation number ω versus
x̃2) of the mapping Ts. We plot both families (from the outer to
the inner ones) for L = 0.24, 0.245 and 0.249.

10



For L > Lc = 0.25, the origin is complex unstable: the eigenvalues
of the Jacobian are of the form λ exp(±iω) and 1

λ exp(±iω).

They span a 2-D unstable manifold (and a 2-D stable manifold).
The dynamics on them is, at least near x = 0, a combination of a
rotation with an expansion (or a contraction).
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Manifolds of a complex unstable fixed point

Assume that there is a couple of eigenvalues of the form
r1,2 exp(±iω), 0 < r1 < 1, r2 > 1 and ω /∈ πZ.

For the stable manifold, we select the eigenvalue r2 exp(iω) and we
denote by u + i v (u and v are unitary vectors in R4) the
corresponding eigenvector.

The vectors u and v span the linear approximation to the (2D)
unstable manifold, that is a good approximation to the real
manifold in a small neighbourhood of the point. To follow the
manifold outside this small neighbourhood, we consider the closed
curve on the linear approximation to the manifold defined by

σ(s) = h
σ̃(s)
‖σ̃(s)‖

, where σ̃(s) = cos(s) · u + sin(s) · v, s ∈ [0, 2π],

where h is a small quantity.
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To check the smallness of h to guarantee that the tangent plane is a
good enough approximation of the unstable invariant manifold, we
carry out the following test: given a = αu + βv, α, β ∈ R, with
‖a‖ = 1, we have

Ti(ha) = h [(αa + βb)u + (βa− αb)v] + O(h2), i ∈ {s, t},

The difference (the term O(h2)) can be computed explicitly and
measures how far is the value Ti(ha) from the plane generated by u

and v. We have done such computation considering as a the points
in the curve σ(s), s ∈ [0, 2π], and it turns out that, in our
examples, if h ≤ 10−5 the term O(h2) is less than 10−15. Then, we
can use these values as starting points for trajectories on the
unstable manifold.
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L = 0.26. Intersection between the invariant manifold and x1 = 0.
Top: Wu, (x2, x3) and (x2, x4) projections; bottom: W s.
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L = 0.28. Intersection between the invariant manifold and x1 = 0.
First row: Wu, (x2, x3) and (x2, x4) projections; second row: W s.
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Detachment of the Lyapunov families of invariant curves of the
mapping Ts (rotation number ω versus x̃2), when L crosses Lcrit.
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For L < Lcrit, there are plenty of 2D invariant tori around the
origin. When L crosses Lcrit, the origin becomes hyperbolic and
the (2D) unstable and stable manifolds are almost coincident so
that they look like a small “loop”, its size depending on the size of
L− Lcrit > 0.

Therefore, although the origin is unstable, the nearby trajectories
are trapped∗ in a small neighbourhood.

When L gets bigger, the “loop” of the manifolds can grow up and,
eventually, can allow the trajectories to escape. At the same time
that the point becomes complex unstable, there is a family of
invariant curves that detach from the origin.
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Let us now focus on the map Tt.

As before, for L < Lcrit, we compute the two Lyapunov families of
invariant curves that are born at the origin. The continuation
process shows that these two families meet at some distance from
the origin. In other words, for each L < Lcrit we have one global
family which begins and ends at the origin. When L approaches
Lcrit, this “connecting loop” collapses to the origin.
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The global family of invariant curves for L = 0.24, L = 0.245 and
L = 0.249 (outer to inner ones); rotation number versus x̃2. The
marked points correspond to transition invariant curves.
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Next plots show the (x2, x3) projections for the slice x1 = 0 of the
stable and unstable invariant manifolds of an invariant curve (top
plots) and the origin (bottom plots), when the invariant curve
collapses at x = 0.
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Top left: L = 0.24; top right: L = 0.249; bottom left: L = 0.2501;
bottom right: L = 0.251.
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We can compare with the classical 2D (and dissipative) Hopf
bifurcation.

This corresponds to the case in which there is an unstable periodic
orbit that approaches to the (stable) origin. The orbit merges the
fixed point that becomes unstable too.

This means that the dynamics after the bifurcation is “trivial”, in
the sense that all the trajectories escape.
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