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We focus on the existence of nonconstant (w.r.t. “space” variables)
equilibrium solutions for the following diffusion equations with
nonlinear reactions on the boundary,

ut −∆u = 0, in Ω , t > 0,

uν = k f(u) , on ∂Ω , t > 0,

u(0, x) = ψ(x) ∈ H1(Ω).

Here Ω = [0, 1]2, k is a real positive parameter, and uν denotes the
outer normal derivate. The boundary nonlinearity is given by a
cubic reaction f(u) = −u(u+ 1)(u− 1).
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It can be proved analytically that, for all k > 0,

• u = 0 is a constant unstable equilibrium

• u = ±1 are constant stable equilibria

Question: Is there any pattern in this problem?

A pattern is a stable and nonconstant equilibria.
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The variational formulation of is

〈ut, v〉+ a(u, v) = k 〈f(u), v〉∂Ω ,

for any v in the space of test functions V . Here, 〈·, ·〉 and 〈·, ·〉∂Ω

denote the scalar products in L2(Ω) and L2(∂Ω), respectively and

a(u, v) =
∫

Ω

∇u · ∇v dx.

We will use the standard finite element formulation, based on linear
triangular elements. Therefore, we have a linear space of piecewise
linear polynomials, of dimension N .
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Using the usual approximation in this space and the Galerkin
method, we obtain a set of nonlinear ordinary differential equations
for the N coefficients ui, 1 ≤ i ≤ N , of the approximations of u.
The system can be expressed in the matrix form,

Au̇+Bu = k F (u), (1)

with u = (u1, . . . , uN )T and

A = (〈ϕi, ϕj〉)i,j ,

B = (a(ϕi, ϕj))i,j ,

F (u) =

(〈
f

(
N∑

i=1

uiϕi

)
, ϕj

〉
∂Ω

)
j

,

where 1 ≤ i, j ≤ N , and {ϕi}1≤i≤N is the usual basis in the space
of N -piecewise linear polynomials.
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In the finite element discretization, we have used three meshes (of
8321, 33025 and 131585 nodes) combined with two steps of
extrapolation.

This allows a significant increase of accuracy.
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The equilibrium solutions of (1) satisfy

Bu− k F (u) = 0. (2)

We will solve this equation by means of the Newton method. The
advantage of this approach is that the equilibria are found
regardless of their stability.

The continuation procedure is very standard; it is based on
including the parameter k as an ordinary unknown.
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Assume that p(0)
∗ = (u(0)

∗ , k
(0)
∗ ) is an approximation to an

equilibrium.

Then, the Newton method requires to solve a linear system with an
extra unknown (k).

This implies that, generically, we have a 1-D affine space of
solutions. Among them, we select the one of minimum L2−norm;
this implies that we are looking for the point on the manifold (in
the (u, k) space) of solutions closest to the initial condition.
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Once the Newton method has converged to some p(0) = (u(0), k(0)),
the kernel of the linearization at p(0) of the operator
(u, k) 7→ Bu− k F (u) gives the unitary tangent vector τ (0) to the
curve of solutions at this point.

Then, we can predict an approximation p(1)
∗ = p(0) + hτ (0) to a new

point of the curve. If the value of h is too large, the Newton
method starting at p(1)

∗ will not converge to a point on the curve,
and if it is too small we will need to compute a lot of points to
advance a fixed distance on the curve.

The adjustement of the value of h is done automatically: if the
Newton method needs more than 3 iterates to converge, h is
halved; if it needs only 1, it is doubled.
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The stability is found by rewritting (1) as

u̇ = A−1 (−Bu+ k F (u)) .

If u0 is a solution, the linearization around u0 is given by the
operator L : H1 → H1,

Lv = A−1 (−B + kDF (u0)) v.

It can be shown that the spectrum of L only consists of real
eigenvalues. Therefore we look for couples (λ, v) ∈ R×H1 such that

(−B + kDF (u0)) v = λAv.

The equilibrium u0 is asymptotically stable iff the first eigenvalue is
strictly positive. The dominant part of the spectra (including the
eigenfunctions) has been obtained by means of an inverse power
method with a suitable shift.
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We will look for families branching off from the constant equilibria.

We know that the constant solutions u = −1 and u = 1 are both
asymptotically stable for all k and, therefore, nothing can bifurcate
from them.

It is known that, for k sufficiently small, all the equilibrium
solutions are constant and, therefore, they must coincide with the
zeroes of f .

We will look for nonconstant equilibrium solutions as bifurcations
of the unstable solution u = 0. Hence, the first step must be to
compute the spectrum of the linearization of the equation at u = 0
to detect eigenvalues that cross 0.
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Continuation of the first three eigenvalues of the linearization
around u = 0. The value of k is shown in the horizontal axis.
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The critical values of k are k1 ≈ 1.37650548469797 and
k2 ≈ 2.00000000015288.

These values can be obtained analytically, and are
k1 = 1.376505484672535 . . . and k2 = 2.

The bifurcation of u = 0 for k = k1 corresponds to a double
eigenvalue, for which the corresponding eigenspace is also of
dimension 2. To study the neigbourhood of this singular point, we
have computed two linearly independent eigenfunctions v1 and v2.
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Eigenfunctions for k = k1. Horizontal plane: (x, y) coordinates.
Vertical axis: value of u. The colour goes from blue for u = −1 to
red for u = 1. The intersection between the plane u = 0 and the
box containing the figures is marked with a square.
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We have considered the “circle” of values v1 cos θ + v2 sin θ for
θ ∈ S1 as initial conditions for a Newton method (we recall that k
is also an unknown)

We have used these initial conditions for a mesh of 1000 equispaced
values of θ, and we have only found 8 branches going out from the
singular point (in other words, we have only found 4 curves going
through the bifurcation point). If we take into account the
symmetries of the problem, the 8 branches can be reduced to 2.
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Eigenfunction for k = k2 = 2.
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The bifurcation of u = 0 for k = k2 = 2 corresponds to a single null
eigenvalue, whose eigenspace is also of dimension 1.

Therefore, in both cases we have obtained the corresponding
eigenfunction v and we have used the values u± hv, for h small, as
initial values for the Newton method.

As before, the initial value for k is the value at the bifurcation
point, but the Newton method handles k as a variable.
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(1b)

(1c)

(2)

Schematic representation of the branches that bifurcate from the
origin. The value of k is shown in the horizontal axis.
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A computation of the eigenvalues of the solutions along the
branches shows that the first branch ((1a) in the previous figure) is
unstable and changes its stability at k = ks

1 ≈ 2.84083164 becoming
stable.

The second branch ((1b) in the previous figure) is always unstable.
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Change of stability on the branch (1a). Left: Critical equilibrium
at k = ks

1. Right: Kernel of the linearization around this
equilibrium; u = 0 corresponds to the lower side of the box. The
colour goes from blue for u = −1 to red for u = 1.
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