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BASIC ELEMENTS OF THE THEORY OF
NONAUTONOMOUS DYNAMICAL SYSTEMS
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UNIVERSITY OF FIRENZE

1. Topological dynamics

Let us recall some concepts from topological dynamics.

Definition 1.1. Let X be a metric space. For each t ∈ R, let τt : X → X be a homeomorphism.
The pair (X, {τt}) is called a flow or dynamical system if the following conditions hold:

- τ0(x) = x for all x ∈ X;
- τt ◦ τs = τt+s for all t, s ∈ R;
- τ : X × R→ X, (x, t) 7→ τt(x) is continuous.

We write (X, {τt}) or (X,R) to denote a flow.
Sometimes we write τt(x) = x · t. The second of the above conditions is called the group

property. If x ∈ X, the orbit or trajectory through x is by definition {τt(x) : t ∈ R} = O(x).
The terms positive semiorbit and negative semiorbit have the natural meanings. A subset

X1 ⊆ X is called invariant if, whenever x ∈ X1 and t ∈ R, we have x · t ∈ X1. One defines
positive invariance and negative invariance in the natural way.

Definition 1.2. Let (X, {τt}) be a flow. If x ∈ X, then we define the ω-limit set as ω(x) =
{y ∈ X : there is a sequence tn →∞ such that y = lim

n→∞
x · tn}. The α-limit set α(x) is defined

similarly using sequences tn → −∞.

Definition 1.3. Let (X, {τt}) be a flow and let M ⊆ X be a nonempty compact {τt}-invariant
set. The flow (M, {τt}) is called minimal if M contains no nonempty proper closed {τt}-invariant
subset. One abuses language and says that M is a minimal subset of X.
The flow (X,R) is minimal if X itself is minimal.

Proposition 1.4. Let (X, {τt}) be a flow on a compact metric space. The following statements
are equivalent:

(1) X is a minimal flow;
(2) all trajectories lying in X are dense in X.

Proof. Exercise. �

Proposition 1.5. If X is a compact (nonempty) metric space and (X, {τt}) is a flow, then X
contains a minimal subset.

Proof. Consider M = {M ⊆ X : M is compact, {τt}-invariant and nonempty}. If M1,M2 ∈
M, then say that M1 ≤M2 if and only if M1 ⊆M2.
Consider a totally ordered subset {Mα : α ∈ A} ofM. Then, by the finite intersection property,⋂
α∈A

Mα is nonempty and so belongs to M.
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By Zorn’s lemma, there is a minimal element M∗ of M. It is easy to check that M∗ is indeed a
minimal subset of X. �

Exercise 1.6. If X is a metric space, (X, {τt}) is a flow, and if x ∈ X is a point whose positive
semiorbit is contained in a compact subset of X, then ω(x) is a nonempty compact {τt}-invariant
connected subset of X.

Definition 1.7. Let X and Y be a metric space, and let (X,R) and (Y,R) be topological flows.
A continuous map π : X → Y is called a flow homomorphism if π(x · t) = π(x) · t for all
x ∈ X, t ∈ R. A flow homomorphism π : X → Y is called a flow isomorphism if it is also a
homeomorphism onto Y .

Example 1.8. (a) Let X = Tn = Rn/Zn be the standard n-torus. Let γ1, . . . , γn ∈ R be

numbers which are independent over Q in the sense that, if
n∑
i=1

qiγi = 0 for rationals

q1, . . . , qn, then q1 = q2 = . . . = qn = 0. If t ∈ R and (ψ1, . . . , ψn) ∈ Tn, define

τt(ψ1, . . . , ψn) = (ψ1 + γ1t, . . . , ψn + γnt)

where all coordinates are taken mod 1. Then (X, {τt}) is a Kronecker flow. One can
show that a Kronecker flow is minimal, since every orbit must be dense (see [20]); this
will be checked in Proposition 2.9. The numbers γ1, . . . , γn are called frequencies.

(b) Let Tn be the n-torus, and let · denote a Kronecker flow on Tn. Let r : Tn → R be a
continuous function. For each t ∈ R define

τt : Tn+1 = Tn × T −→ Tn+1

(ψ,ϕ) 7→ (ψ · t, ϕ+
∫ t

0
r(ψ · s)ds)

where ψ = (ψ1, . . . , ψn), r : Tn → R and all coordinates are taken mod 1. Then
(Tn+1, {τt}) is a flow called Furstenberg flow.

(c) Let f : Rn → Rn be a locally Lipschitz continuous function. Suppose that, for each
x0 ∈ Rn, the solution ϕ(t, x0) of the Cauchy problem{

x′ = f(x)
x(0) = x0

(1.1)

exists on the interval −∞ < t <∞, i.e. f is complete. Define

τt : Rn −→ Rn
x0 7→ ϕ(t, x0).

Then (Rn, {τt}) is a flow. Let us verify the group property. If x0 ∈ Rn, set ψ(s) =
τt+s(x0) = ϕ(t+ s, x0) and verify that dψ

ds = f(ψ(s)) and that ψ(0) = τt(x0). Since each
Cauchy problem (1.1) has a unique solution, we must have ψ(s) = τs(τt(x0)).

(d) Let X be a compact C2-manifold and let V : X → X be a C1 vector field. For x0 ∈ X,
let ϕ(t, x0) be the solution of x′ = V (x) satisfying ϕ(0, x0) = x0. By compactness of X,
ϕ(·, x0) exists on (−∞,∞) for all x0 ∈ X, so setting τt(x0) = ϕ(t, x0) and reasoning as
above one obtains a flow (X, {τt}).

(e) Suppose that X = T2 is the 2-torus. Let ψ = (ψ1, ψ2) be angular coordinates mod 1
on T2. Let V (ψ) = (V1(ψ), V2(ψ)) be a C1 vector field on T2 such that V1(ψ) 6= 0 for
all ψ ∈ T2. Let C = {(ψ1, ψ2) : ψ2 = 0}, and let f : C → C be the first-return map
obtained by solving the problem{

ψ′ = V (ψ)
ψ(0) = (ψ1, 0)

for each ψ1 ∈ [0, 1). Then the qualitative behavior of the orbits of the flow {τt} is
described by that of the iterates {f (n) : n ∈ Z} of f . In turn, the qualitative behavior
of {f (n) : n ∈ Z} can be described using the rotation number

ρ = lim
n→∞

f̃ (n)(ψ1)
n
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where ψ1 ∈ R and f̃ is a lift of f to R. If ρ is rational, then f has a periodic point and so
{τt} has periodic orbits. If ρ is irrational and V is of class C2, then the flow (T2, {τt})
is minimal; this is a consequence of the fact that there is a homeomorphism h : C → C
such that h ◦ f ◦ h−1 equals the rigid rotation Rρ : ψ1 7→ ψ1 + ρ on C. If V is only
of class C1, it may happen that no such homeomorphism exists. In this case, the flow
(T2, {τt}) admits a unique minimal set which is a “strange attractor”. See [4, chapter
17] for further details.

2. Ergodic theory

We recall some facts from ergodic theory. They concern regular Borel measures which are
invariant/ergodic with respect to a given flow.

Fix a compact metric space X and a flow {τt} on X.

Definition 2.1. Let µ be a regular Borel probability measure on X. Say that µ is invariant if
µ(τt(B)) = µ(B) for each Borel set B ⊆ X and each t ∈ R. Suppose in addition that the measure
is indecomposable in the sense that, if B ⊆ X is a Borel set such that µ(τt(B)4B) = 0 for all t ∈
R, then µ(B) = 0 or µ(B) = 1 (4 denotes the symmetric difference: A4B = (A∪B)\ (A∩B)).
Then µ is said to be ergodic.

Theorem 2.2. There exists a measure µ on X which is {τt}-ergodic.

Proof. We give a proof which has an old-fashioned appearance but which illustrates a remark-
able, useful and flexible technique of Krylov and Bogoliubov. This technique is presented in [17],
and it is based on the Riesz representation theorem (see [19]).
Let Λ be a bounded linear functional on C(X) such that ‖Λ‖ = 1 and Λ(f) ≥ 0 whenever
f ≥ 0. Set τt(f)(x) = f(τ−t(x)) for t ∈ R, x ∈ X, f ∈ C(X). Say that Λ is {τt}-invariant if
Λ(τt(f)) = Λ(f) for all t ∈ R, f ∈ C(X). It can be checked that, if Λ is {τt}-invariant in this
sense, then the corresponding regular Borel measure µ has the property that µ(τt(B)) = µ(B)
for each t ∈ R and each Borel set B ⊆ X. So such a functional Λ corresponds to an {τt}-invariant
measure µ on X.

Let us construct a bounded linear functional Λ on C(X) such that Λ(1) = 1,Λ(f) ≥ 0
whenever f ≥ 0, and Λ is {τt}-invariant in the above sense. Let V = {f1, f2, . . . , fn, . . .} be a
countable dense subset of C(X) which is a vector space over Q. Fix x ∈ X. There is a sequence
(t(1)
n )→∞ such that

lim
n→∞

1

t
(1)
n

∫ t(1)n

0

f1(τs(x))ds exists;

call the limit Λ(f1). There is a subsequence (t(2)
n )→∞ of (t(1)

n ) such that

lim
n→∞

1

t
(2)
n

∫ t(2)n

0

f2(τs(x))ds exists;

call the limit Λ(f2). Continuing in this way, we obtain, for each k ∈ N, a sequence (t(k)
n ) → ∞

such that

lim
n→∞

1

t
(k)
n

∫ t(k)n

0

fk(τs(x))ds = Λ(fk) exists.

Let (t(n)
n ) be the diagonal sequence, and note that, for each f ∈ V , one has

Λ(f) = lim
n→∞

1

t
(n)
n

∫ t(n)
n

0

f(τs(x))ds

It is easy to see that Λ is Q-linear, that Λ(f) ≥ 0 whenever f ≥ 0 and that Λ(1) = 1. Therefore
Λ extends uniquely to a bounded linear functional (denoted by Λ) on C(X). One checks that
this functional Λ is {τt}-invariant, and hence so is µ.
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Krylov and Bogoliubov proved the existence of a {τt}-ergodic measure on X by analyzing
so-called regular points; see [17]. This time we will not follow their arguments but will appeal to
an abstract result. Let C∗(X) be the dual space of C(X) with the weak-∗ topology. Then C∗ is
a locally convex topological vector space. Let I = {Λ ∈ C∗(X) : Λ(1) = 1,Λ ≥ 0 whenever f ≥
0, and λ is {τt}-invariant }. Then I is compact and convex and, by the Krein-Milman theorem,
I is the compact convex hull of its extreme points. As an exercise, one can prove that an
extreme point of I corresponds via the the Riesz theorem to a {τt}-ergodic measure µ on X.
This completes the proof. �

Next we state without proof the Birkhoff ergodic theorem (in the special case when X is a
compact metric space and {τt} defines a continuous flow on X).

Theorem 2.3. Let µ be a {τt}-ergodic measure on X and let f ∈ L1(X,µ). There is a set
Xf ⊆ X satisfying µ(Xf ) = 1 such that, if x ∈ Xf , then

lim
|t|→∞

1
t

∫ t

0

f(τs(x))ds =
∫
X

fdµ.

For a proof see, e.g., [17]. The conclusion of the Birkhoff theorem can be strengthened in
the case when the flow (X, {τt}) admits a unique {τt}-invariant measure µ (which must then be
{τt}-ergodic).

Proposition 2.4. Suppose that (X,R) is uniquely ergodic; that is, there is just one {τt}-
invariant measure µ. Let f ∈ C(X). Then

lim
t→∞

1
t

∫ t

0

f(x · s)ds =
∫
X

fdµ,

where the limit exists and equality holds for all x ∈ X. Moreover the convergence is uniform in
x ∈ X.

This can be proved using a variant of the Krylov-Bogoliubov argument.
Let us illustrate the concept of ergodic measure in the context of almost periodic flows and

some related Furstenberg flows. First we open a parenthesis and discuss almost periodic flows.

Definition 2.5. Let X be a compact metric space, and let {τt} be a flow on X. Say that the
flow (X,R) is (Bohr) almost periodic if it is minimal and if there is a metric d̃ on X (compatible
with the topology on X) such that

d̃(x · t, y · t) = d̃(x, y) for all x, y ∈ X, t ∈ R.

One can prove that (X,R) is Bohr almost periodic if and only if it is minimal and, to every
ε > 0, there corresponds T > 0 such that each interval [a, a+ T ] ⊆ R contains s such that

d(x · s, x) ≤ ε for all x ∈ X,

where d is any metric on X.
Its is well known that the phase space X of an almost periodic flow (X,R) can be given the

structure of a compact abelian topological group which admits R as a dense subgroup. Let us
review how such a group structure can be defined. Let e ∈ X. Since (X,R) is minimal, the orbit
{e · t : t ∈ R} is dense in X (why?). If x = limk→∞ e · tk and y = limk→∞ e · sk are points in X,
set

x ∗ y = lim
k→∞

e · (tk + sk).

Exercise 2.6. Show that ∗ is a well-defined continuous group operation on X with identity e.
If x = limk→∞ e · tk, then x−1 = limk→∞ e · (−tk).

It is clear that the additive group (R,+) embeds densely in the compact abelian topological
group (X, ∗) via the group homomorphism i : R→ X, t 7→ e · t.

Next, let X̂ be the character group of X:

X̂ = {χ : X → T = R/Z : χ is a continuous homomorphism of groups }.
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Then X̂ is indeed an abelian group with respect to pointwise multiplication. It happens to
be discrete in the compact-open topology (Pontryagin). Each character χ ∈ X̂ is uniquely
determined by its restriction to the dense subgroup i(R) ⊆ X. Now

χ(e · t) = e2πiλt, t ∈ R,
for a uniquely determined number λ ∈ R.

Definition 2.7. The frequency module MX of the almost periodic flow (X,R) is

MX = {λ ∈ R : λ is determined as above by a character χ ∈ X̂}.

The frequency module MX is a countable subgroup of R.

Exercise 2.8. Let X = Tn and let (X,R) be a Kronecker flow with frequencies γ1, . . . , γn. Then

M =

{
n∑
i=1

ziγi : zi ∈ Z, 1 ≤ i ≤ n

}
.

Proposition 2.9. A Kronecker flow is minimal.

Proof. Let us prove this result for n ≥ 2. Let X = Tn = Rn/Zn; let γ1, . . . , γn ∈ R be Q-
independent. Define

τt(ψ1, . . . , ψn) = (ψ1 + γ1t, . . . , ψn + γnt), (ψ1, . . . , ψn) ∈ Tn, t ∈ R.
Let us check that the orbit {τt(0, . . . , 0) = (γ1t, . . . , γnt) : t ∈ R} is dense in Tn. Let Y =
cls{τt(0, . . . , 0) : t ∈ R} ⊆ Tn; note that Y contains a dense subgroup which is isomorphic to R.
Then Y is a closed connected subgroup of Tn; therefore, it is a Lie group, so it is either discrete
or isomorphic to Tl for some l ∈ N (and it is not discrete since it is connected). But we know
that the frequency module of (Y,R) is{

n∑
i=1

ziγi : zi ∈ Z, 1 ≤ i ≤ n

}
.

Consequently, Y has rank n and so l = n. �

Again, let (X, {τt}) be an almost periodic (minimal) flow. If B ⊆ X is a Borel set and x ∈ X,
write B∗x = {b∗x : b ∈ B}. It is known that there is a unique Borel regular probability measure
ν on X such that

ν(B ∗ x) = ν(B)
for all Borel sets B ⊆ X and all x ∈ X. This measure ν is called the (normalized) Haar measure
on X. It is clear that ν is {τt}-invariant: just restrict x to {e · t : t ∈ R}.

Exercise 2.10. Let µ be a {τt}-invariant measure on X. Let B ⊆ X be a Borel set and let
x ∈ X. Then µ(B ∗ x) = µ(B).

It follows from this exercise that the {τt}-invariant measure µ coincides with the normalized
Haar measure on X. This implies that ν is the unique {τt}-invariant measure on X, so ν is
actually {τt}-ergodic. We thus have a class of examples of uniquely ergodic flows, namely the
almost periodic flows.

Next let X = Tn, and let (X,R) be a Kronecker flow with frequencies γ1, . . . , γn. Let ν be
the normalized Haar measure on X. Let r : X → R be a continuous function, and let

r0 =
∫
X

rdν = lim
|t|→∞

1
t

∫ t

0

r(x · s)ds

where the limit is uniform in x ∈ X. Set

τt(x, ϕ) =
(
x · t, ϕ+

∫ t

0

r(x · s)ds
)

where x ∈ X,ϕ ∈ R, and t ∈ R. Then {τt} is a Furstenberg flow on X × T ∼= Tn+1. Let m be
the normalized Lebesgue measure on the circle T and let µ = ν ×m.

Let us study the Furstenberg flow (X ×T, {τt}). We do this via some exercises, the solutions
of which may require some hints from [12].

http://www.dance-net.org/rtns2007 Recent Trends in Nonlinear Science, 2007 (Granada)
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Exercise 2.11. The measure µ is {τt}-invariant.

It is convenient to divide the class of C of continuous real-valued functions on X into two
subclasses, namely

C1 = {r ∈ C :
∫ t

0

[r(x · s)− r0]ds is bounded on R for some x ∈ X},

and C2 = C\C1 (complement).

Exercise 2.12. (a) If r ∈ C1, then there is a continuous function R : X → R such that

R(x · t)−R(x) =
∫ t

0

[r(x · s)− r0]ds

for all x ∈ X and all t ∈ R.
(b) If r ∈ C1 and if r0 is rationally independent of γ1, . . . , γn, then the flow (X × T, {τt}) is

isomorphic to the Kronecker flow on Tn+1 ∼= X × T with frequencies γ1, . . . , γn, r0. In
this case, µ is the unique {τt}-ergodic measure on X × T.

(c) Let r ∈ C1. If MX is the frequency module of (X,R) and if kr0 ∈MX for some integer
k ≥ 1, then X ×T laminates into minimal subsets, each of which is almost periodic and
each of which is a k-cover of X under the natural projection π : X × T → X. (It is
assumed that k is the minimal integer ≥ 1 such that kr0 ∈MX .)

In fact, one can prove the following result.

Proposition 2.13. Let (X,R) be a minimal flow and let r : X → R be a continuous function.
Suppose that there exists x̄ ∈ X such that

∣∣∣∫ t0 r(x̄ · s)ds∣∣∣ ≤ C for some C > 0. Then there exists
a continuous function R : X → R such that

R(x · t)−R(x) =
∫ t

0

r(x · s)ds, x ∈ X.

Proof. Introduce a flow {τ̂t} on X × R as follows:

τ̂t(x, u) =
(
τt(x), u+

∫ t

0

r(x · s)ds
)
.

Consider the point (x̄, 0) ∈ X × R; it has a bounded orbit in X × R. The closure cls{τ̂t(x̄, 0) :
t ∈ R} ⊆ X × R is compact and {τt}-invariant, so it contains a minimal set M .
Note that the projection π : M → X is a flow homomorphism which is surjective; this is because
π(M) ⊆ X is compact, {τt}-invariant and nonempty and because (X,R) is minimal.
It is yet to be proved that π−1(x)∩M contains just one point for all x ∈ X. Suppose that there
exists x̂ ∈ X such that π−1(x̂)∩M contains two points, say (x̂, u1) and (x̂, u2). Let δ = u2− u1

and let Tδ : X × R→ X × R, (x, u) 7→ (x, u+ δ) be the vertical translation by δ units.
Then Tδ(τ̂(·)) = τ̂(Tδ(·)); this means that Tδ(M) is a minimal subset of X × R and, therefore,
Tδ(M) = M . It follows that Tkδ(M) = M, k ∈ Z, which means that M is not bounded, a
contradiction.
Thus π−1(x) ∩M = {(x,R(x))} for all x ∈ X and some R(x) ∈ R. By compactness of M, R
must be continuous.
Finally, we have

τ̂t(x,R(x)) = (x · t, R(x · t)),

τ̂t(x,R(x)) =
(
x · t, R(x) +

∫ t

0

r(x · s)ds
)
,

so that R(x · t)−R(x) =
∫ t

0
r(x · s)ds, x ∈ X. �

The case when
∫ t

0
[r(x · s)− r0]ds is unbounded for some (hence all) x ∈ X is more complex.

Exercise 2.14. If r ∈ C2, then (X × T, {τt}) is minimal.

Dynamics, Atractors and Non linearities, Chaos and Stability (DANCE) http://www.dance-net.org
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Let us divide C2 into two subclasses. Namely set

C′2 = {r ∈ C2 : there exists a ν-measurable function R : X → R such that

R(x · t)−R(x) =
∫ t

0

[r(x · s)− r0]ds for all x ∈ X, t ∈ R.

Then set C′′2 = C2 − C′2.

Exercise 2.15. (a) If r ∈ C′′2 then (X × T, {τt}) is a uniquely ergodic flow.
(b) If r ∈ C′2 and if r0 is rationally independent of γ1, . . . , γn, then (X × T, {τt}) is again a

uniquely ergodic flow.

Exercise 2.16. If r ∈ C′2 and if kr0 ∈MX for some integer k ≥ 1, then there are uncountably
many {τt}-ergodic measures µ on X × T. Describe these ergodic measures.

It can further be shown that, if r ∈ C2 then the flow (X × T, {τt}) is minimal but not almost
periodic.

Remark 2.17. For “most” continuous functions r (Baire sense), there is no solution at all of the
relation

R(ψ · t)−R(ψ) =
∫ t

0

r(ψ · s)ds.

Let us finish this section by introducing the support of an invariant measure. Let X be a
compact metric space, let (X, {τt}) be a flow and let µ be a {τt}-invariant measure. Since µ is
Borel regular, there exists an open subset V ⊆ X which can be described as the largest open
subset of X having µ-measure zero.

Definition 2.18. The topological support of µ is Supp(µ) = X\V .

Clearly Supp(µ) is compact; it is easy to see that it is {τt}-invariant. If (X, {τt}) is a minimal
flow and if µ is a {τt}-invariant measure on X, then Supp(µ) = X (why?).

Exercise 2.19. Determine a flow (X,R) and an {τt}-ergodic measure µ on X such that
Supp(µ) = X but (X,R) is not minimal.

Let (X,R) be a flow and let µ be a {τt}-ergodic measure on X such that Supp(µ) = X. Then
(X,R) is topologically transitive; that is, there exists x ∈ X such that the orbit {x · t : t ∈ R} is
dense in X. To see this, let {Vi : i ∈ {1, 2, . . .}} be a countable basis for the topology of X, and
let χi be the characteristic function of Vi, i ∈ {1, 2, . . .}. By the Birkhoff ergodic theorem,

lim
t→∞

1
t

∫ t

0

χi(x · s)ds = µ(Vi) > 0

for µ-a.a. x ∈ X, say for x ∈ Xi, i ∈ {1, 2, . . .}. Thus if x ∈ Xi, then the positive semiorbit of x

enters Vi. Let X∞ =
∞⋂
i=1

Xi; each point x ∈ X∞ has a dense positive semiorbit and a fortiori a

dense orbit.

Exercise 2.20. Let (X,R) be a flow which is uniquely ergodic with unique {τt}-invariant mea-
sure µ. If X = Supp(µ), then (X,R) is minimal.

3. Flows of Bebutov-type and skew-product flows

We state some facts concerning flows of Bebutov-type and associated skew-product flows.

We observed earlier that, if f : Rn → Rn is a Lipschitz vector field and if all solutions of the
autonomous ODE

x′ = f(x) (3.1)

exist on (−∞,∞), then those solutions determine a flow on Rn. This simple fact is extremely
useful when one studies the qualitative behavior of the solutions of (3.1); i.e., their stability
properties, their oscillation properties, their recurrence properties, their asymptotic behavior,

http://www.dance-net.org/rtns2007 Recent Trends in Nonlinear Science, 2007 (Granada)
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etc. Think of the Poincaré-Bendixson theory as an illustration of this remark, where one uses
the concept of ω-limit set.

Now consider a nonautonomous differential equation

x′ = f(t, x), t ∈ R, x ∈ Rn. (3.2)

Suppose that f is continuous in (t, x) and locally Lipschitz continuous in x, so that solutions of
(3.2) are locally defined and unique. Suppose that, for each x0 ∈ Rn, the solution ϕ(t, x0) of
(3.2) satisfying ϕ(0, x0) exists on −∞ < t <∞. It is easy to see that, if we set τt(x0) = ϕ(t, x0)
as before, and if f “really” depends on t, then {τt} does not define a flow on Rn.

If we augment the system (3.2) as follows:{
x′ = f(t, x)
t′ = 1 (3.3)

and if f satisfies the conditions indicated above, then the solutions of (3.3) define a flow on
Rn+1 = R × Rn. However each solution of (3.3) has an empty ω-limit set (α-limit set), so we
cannot hope to use these concepts to study the asymptotic properties of solutions of (3.2). More-
over, f(·, x) may have recurrence properties in the t-variable (for example, almost periodicity).
One might try to use this fact to study the recurrence properties of solutions of (3.2). However,
the recurrence properties of f are washed away when we augment the system.

The Bebutov approach allows one to use the solutions of (3.2) to define a flow which has
better properties than that defined by (3.3). Let us begin our discussion of Bebutov flows by
considering linear differential systems. Let Mn be the set of n × n real matrices and let | · | be
the usual norm on Mn.

If a : R → Mn is continuous and bounded, let Φ(t) be the fundamental matrix solution of
x′ = a(t)x (that is Φ(·) ∈Mn; Φ′ = a(x)Φ and Φ(0) = I). Then Φ(t) is defined on −∞ < t <∞.

Let B = {b : R→Mn : b(·) is bounded and continuous}. If b1, b2 ∈ B, let

ρ(b1, b2) =
∞∑
n=1

(
sup

−n≤t≤n
|b1(t)− b2(t)|

)
· 2−n.

Then (B, ρ) is a metric space.

Definition 3.1. For each t ∈ R and b ∈ B, set τt(b)(·) = b(t + ·). Then {τt} defines a flow on
B called the Bebutov flow

Next, let a ∈ B be a uniformly continuous function. Let Ωa = cls{τt(a) : t ∈ R}. Then Ωa is
a closed {τt}-invariant subset of B.

Lemma 3.2. Ωa is compact. One calls Ωa the hull of a.

Proof. Apply the Arzelà-Ascoli theorem. Consider a sequence {a(t + tk)} where {tk} ⊆ R.
Restrict each a(t + tk) to some fixed compact interval I; call the restriction bk. Then {bk} is
uniformly bounded and equicontinuous.
So, if a ∈ B and a is uniformly continuous, then Ωa is compact. �

Example 3.3. (a) Suppose a(·) = a0 is a constant function. Then a(·) is fixed with respect
to the Bebutov flow, so Ωa = {a0}.

(b) Suppose a ∈ B is a 1-periodic function. Then τt(a)(·) = a(t+ ·) for all t ∈ R and, cose-
quently, τ1(a)(·) = a(·). So Ωa is a topological version of T and (Ωa, {τt}) is isomorphic
to (T, τRt ), where τRt (ψ) = ψ + t.

(c) Suppose for example that a(·) is Bohr almost periodic. This means that, to each ε > 0,
there corresponds T = T (ε) > 0 such that each interval [α, α+T ] ⊆ R contains a number
η such that

|a(t+ η)− a(t)| ≤ ε for all t ∈ R.

One can show that such a function a(·) is uniformly continuous and hence Ωa is compact.
Actually much more is true. Among other things, one can show that (Ωa, {τt}) is an
almost periodic flow. See [11].
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Remark 3.4. Where do almost periodic functions come from?
Consider T2 = R2/Z2 and a Kronecker flow with frequencies (1,

√
2) on T2.

Let (ψ1, ψ2) be coordinates on T2 and set

f(ψ1, ψ2) = sin(2πψ1) + sin(2πψ2).

Consider the orbit passing through (0, 0):

{(t,
√

2t) : t ∈ R} ⊆ T2.

Set f(t,
√

2t) = sin(2πt) + sin(2π
√

2t); it turns out that f is Bohr almost periodic.
More generally, any finite sum of periodic functions and even a uniformly convergent series of
periodic functions is Bohr almost periodic.
Let (X,R) be an almost periodic flow and let f : X → R be continuous. Then, for each x ∈ X,
the restriction t 7→ f(x · t) is Bohr almost periodic.

Let a : R→Mn be uniformly continuous and consider the differential system

x′ = a(t)x (3.4)

Let Ωa be the hull of a and define A : Ωa →Mn, ω 7→ ω(0).
Consider the family of equations

x′ = A(ω · t)x (3.5)

where ω · t = τt(ω). If ω = a, we obtain the original equation (3.4), which has thus been
embedded in a compact, Bebutov-invariant family of linear differential systems.

Proposition 3.5. Let Φω(t) be the fundamental matrix solution of (3.5). If t ∈ R, define

τ̂t : Ωa × Rn −→ Ωa × Rn
(ω, x0) 7→ (τt(ω),Φω(t)x0).

Then (Ω× Rn, {τ̂t}) is a flow.

Proof. First use the uniqueness property of the solutions of the equations (3.5) to prove the
cocycle identity :

Φω(t+ s) = Φω·t(s)Φω(t).

The group property of {τ̂t} follows from the cocycle identity. The continuity property of {τ̂t}
follows from the Gronwall lemma. �

Example 3.6. (a) Suppose a is a constant function with value A. Then

Ωa = {A}, Φ(t) = eAt and τ̂t(A, x0) = (A, eAtx0).

(b) Suppose a is 1-periodic. If ω ∈ Ωa, then ω is a translate of a. Let Φ(t) be the fundamental
matrix solution of x′ = a(t)x. One can study the “dynamical” properties of solutions of
x′ = a(t)x by studying the iterates of the “period matrix” P = Φ(1).

(c) Consider x′ = a(t)x where a : R→Mn is Bohr almost periodic. Is there an analogue of
the period matrix? Think about it. . .

One calls (Ω× Rn, {τ̂t}) a (linear) skew-product flow. It can be viewed as a nonautonomous
analogue of the flow {τ̂t(x0) = eAtx0} which is determined by the linear differential system
with constant coefficients x′ = Ax. It is now natural to look for analogues of eigenvalues and
generalized eigenspaces in the context of nonautonomous linear differential systems. We will do
so a bit later.

It is worth noting that the flow (B, {τt}) can be substituted by other Bebutov-type flows. For
example, let B = L∞(R,Mn) with the weak-∗ topology. If k > 0, let Bk = {b ∈ B : |b|∞ ≤ k}.
Then Bk is compact. Define

τt : Bk −→ Bk

b 7→ τt(b)(·) = b(t+ ·)
for each t ∈ R. Then (Bk, {τt}) is a flow. The analogue of Proposition 3.5 holds for this flow.
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Next we consider nonlinear flows which arise from a Bebutov-type construction. We give just
one example. Let F be the set of all functions f : R×Rn → Rn which are jointly continuous and
which have the following property: for each compact set K ⊆ Rn there is a constant lK (which
depends also on f) such that

|f(t, x)− f(t, y)| ≤ lK |x− y|
for all t ∈ R and all x, y ∈ K. Give F the compact-open topology, then set

τt(f)(·, x) = f(t+ ·, x)

for each t ∈ R, x ∈ Rn, f ∈ F. The pair (F, {τt}) is a Bebutov-type flow.
Next suppose that f ∈ F is uniformly continuous on R×K for each compact subset K ⊆ Rn.

Let Ωf = cls{τt : t ∈ R} be the hull of f . Then Ωf is Bebutov-invariant and compact. In
this case, let ϕ(t, ω, x0) be the solution of x′ = ω(t, x) satisfying ϕ(0, ω, x0) = x0 for each
ω ∈ Ωf , x0 ∈ Rn. Suppose that ϕ(·, ω, x0) is defined on (−∞,∞) for each (ω, x0) ∈ Ωf × Rd.

Exercise 3.7. Set τ̂t(ω, x0) = (τt(ω), ϕ(t, ω, x0)) for each t ∈ R and each (ω, x0) ∈ Ωf × Rd.
Then {τ̂t} defines a flow on Ωf × Rd.

We have defined a typical (nonlinear) skew-product flow. We can now try to study the
qualitative properties of the solutions of the equation x′ = f(t, x) and of the equations x′ =
ω(t, x) by studying the dynamics of the flow {τ̂t}. Note that the recurrence properties of f are
encoded in the flow (Ωf , {τt}).

We finish this section by noting that it is possible to modify the choice of F in such a way as
to take account of eventual higher smoothness in x of the vector field f .

4. Exponential dichotomies

Next we discuss exponential dichotomies. There are several ways to introduce this basic
concept. We do so following a line of thought which goes back (at least) to Lyapunov.

Consider a linear differential equation with constant coefficients

x′ = Ax, x ∈ Rn. (4.1)

The fundamental matrix solution of this equation is Φ(t) = eAt. Making a linear change of
variables x = Cy, one can put A in Jordan form J = C−1AC and then Φ(t) = CeJtC−1, from
which one sees that, if x0 ∈ Rn, then

Φ(t)x0 =
r∑
j=1

eηjtpj(t)

where η1, . . . , ηr are the eigenvalues of A and p1(t), . . . , pr(t) are polynomials. There is clearly a
close relation between the exponential growth/decay of x(t) = Φ(t)x0 as t → ±∞ and the real
parts Re(ηj) of the eigenvalues of A. Thus for example

lim
t→∞

1
t

ln |x(t)| = max{Re(ηj) : pj 6= 0, 1 ≤ j ≤ r}.

Furthermore, the imaginary parts Im(ηj) of these eigenvalues are related to the “rotation” of
x(t) in some not-very-well-defined sense.

Let us make some observations which involve the real parts Re(ηj) of the eigenvalues η1, . . . , ηr
of A.

First of all, suppose Re(ηj) < 0 for all j ∈ {1, 2, . . . , r}. Let g be a sufficiently regular function
defined on [0,∞)×W , where W is a neighborhood of x = 0 in Rn. If g(t, x) = o(|x|) uniformly
in t ≥ 0 as x → 0, then a theorem of Perron states that the solution ψ(t) ≡ 0 of the nonlinear
system

x′ = Ax+ g(t, x) (4.2)

is exponentially asymptotically stable as t→∞. So one has a sufficient condition for asymptotic
stability of the zero solution of (4.2) which involves only the linear terms of the right-hand side.
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Second, if no eigenvalue η1, . . . , ηr of A has real part zero, then Rn = Ws⊕Wu where Ws (Wu)
is the intersection of Rn with the direct sum of the generalized eigenspaces of A corresponding
to eigenvalues with negative (positive) real parts. Let P : Rn → Ws be the projection whose
image is Ws and whose kernel is Wu. Let g : R→ Rn be a bounded measurable function. Then
the nonhomogeneous equation

x′ = Ax+ g(t)

admits a unique solution xg which is bounded on all of R:

xg =
∫ t

−∞
Φ(t)PΦ(s)−1g(s)ds−

∫ ∞
t

Φ(t)(I − P )Φ(s)−1g(s)ds.

This simple and explicit formula is very useful.
Third and finally, let λ1, . . . , λs be the distinct values of Re(η1), . . . ,Re(ηr). Let Wk ⊆ Rn be

the intersection of Rn with the direct sum of the generalized eigenspaces of A corresponding to
eigenvalues ηj satisfying Re(ηj) = λk for 1 ≤ k ≤ s. Then Wk is an A-invariant subspace of Rn,
and

Rn = W1 ⊕W2 ⊕ · · · ⊕Ws

If 0 6= x0 ∈Wk, then

lim
t→∞

1
t

ln |Φ(t)x0| = lim
t→∞

1
t

ln |Φ(t)x0| = λk,

and solutions x(t) = Φ(t)x0 such that x0 does not lie in one of the subspaces Wk have growth
properties and “angular” properties which are easily worked out.

Let us now consider a compact Bebutov-invariant set Ω ⊆ B. Let A : Ω→Mn, ω 7→ ω(0) as
before and consider the family of linear differential systems

x′ = A(ω · t)x. (4.3)

It is natural to look for analogues of the set of the real parts of the eigenvalues and of the cor-
responding sums of generalized eigenspaces, in the context to the family (4.3). Roughly speak-
ing, two approaches to this question have been developed. One can be viewed as “topologico-
dynamical” and is due to Bylov, Sacker, Sell and others. The other is based on ergodic theory
and is due to Oseledets (also Millions̆c̆ikov) with later developments by Pesin, Arnold and others.

Let us consider the topologico-dynamical approach. The point of departure is

Definition 4.1. Say that equations (4.3) admit an exponential dichotomy over Ω if there are
constants k > 0, η > 0 and a continuous projection-valued function P : Ω→ Mn (thus P (ω)2 =
P (ω) for all ω ∈ Ω) such that

|Φω(t)P (ω)Φω(s)−1| ≤ ke−η(t−s) if t ≥ s,

|Φω(t)(I − P (ω))Φω(s)−1| ≤ keη(t−s) if t ≤ s.
Using the continuity of P , one can show that the sets

W+ =
⋃
ω∈Ω

{(ω, P (ω)x) : x ∈ Rn}

and

W− =
⋃
ω∈Ω

{(ω, (I − P (ω))x) : x ∈ Rn}

are topological vector subbundles of Ω× Rn. They are invariant under the linear skew-product
flow {τ̂t} on Ω× Rn determined by equations (4.3). Moreover

Ω× Rn = W+ ⊕W− (Whitney sum).

Exercise 4.2. The constant-coefficient system x′ = Ax admits an exponential dichotomy if and
only if no eigenvalue of A has zero real part. Identify the subbundles W+ and W− in this case.
Hint: what is Ω if A is constant?
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Definition 4.3. The dynamical or Sacker-Sell spectrum Λ of equations (4.3) is by definition

Λ = {λ ∈ R : the translated equations x′ = [−λI +A(ω · t)]x do not

admit an exponential dichotomy over Ω}.

Exercise 4.4. Identify the dynamical spectrum of the constant-coefficient system x′ = Ax.

Theorem 4.5 (Sacker-Sell). Let Ω be connected (this is true if Ω is the hull Ωa of some uniformly
continuous function a ∈ B). Then the dynamical spectrum is Λ = [a1, b1]∪ [a2, b2]∪ . . .∪ [as, bs]
where −∞ < a1 ≤ b1 < . . . < as ≤ bs <∞ and 1 ≤ s ≤ n. Moreover, Ω× Rn = W1 ⊕ · · · ⊕Ws

as a Whitney sum, where each Wk is a {τ̂t}-invariant topological vector subbundle of Ω × Rn.
One has

Wk = {(ω, x) ∈ Ω× Rn : x = 0 or

ak ≤ lim inf
t→±∞

1
t

ln |Φ(t)x| ≤ lim sup
t→±∞

1
t

ln |Φ(t)x| ≤ bk}.

Example 4.6. The Sacker-Sell subbundles of the constant-coefficient system x′ = Ax are

Wk = Rn ∩ W̃k

where W̃k is the sum of all generalized eigenspaces corresponding to eigenvalues ηj with Re(ηj) =
λk. The Sacker-Sell spectrum is the set of the real parts of eigenvalues of A, so that each interval
reduces to a point.

Exercise 4.7. Let a : R→Mn be a continuous, p-periodic matrix function. Consider the linear
differential system

x′ = a(t)x. (4.4)

Let Φ(t) be the fundamental matrix solution of (4.4) and let M = Φ(p) be the period matrix.
(i) Describe the hull Ωa ⊆ B of the function a. Describe the Bebutov flow {τt} on Ωa.

Introduce the family of equations (4.3) where ω ∈ Ωa.
(ii) Describe the dynamical spectrum of the family (4.3). Hint: use the eigenvalues of M .
(iii) Describe the Sacker-Sell subbundles of the family (4.3). Hint: use the generalized

eigenspaces of M .

Remark 4.8. What happens in the almost periodic case? In the previous cases, the Sacker-Sell
spectrum was discrete. Is it true that the dynamical spectrum is discrete in the almost periodic
case? The answer is no; there are well-known examples due to Millions̆c̆ikov and Vinograd for
which the Sacker-Sell spectrum is a nontrivial interval.

We close this brief introduction to the theory of exponential dichotomies by stating two basic
results. The first can frequently be used to verify that an exponential dichotomy is present.
The second says that an exponential dichotomy is insensitive to perturbation of the coefficient
matrix.

Let us first recall that, if X is a compact metric space with metric d and if {τt} defines a
flow on X, then (X, {τt}) is chain recurrent if for each x ∈ X, ε > 0 and T > 0, there are points
x = x1, x2, . . . , xn, xn+1 = x and times t1 > T, . . . , tn > T such that

d(xi · ti, xi+1) ≤ ε, 1 ≤ i ≤ n.

Theorem 4.9 (Sacker-Sell-Selgrade). Suppose that Ω is connected and that (Ω,R) is chain
recurrent. Say that a solution x(t) = Φω(t)x0 of equation (4.3) is bounded if supt∈R |x(t)| <∞.
The family of equations (4.3) admits an exponential dichotomy over Ω if and only if, for all
ω ∈ Ω, the only bounded solution of equation (4.3) is the zero solution.

Note. R. Mañé had a version of this result in the time frame in which Sacker-Sell and Selgrade
worked out their proofs of this theorem.

Now we consider the robustness properties of exponential dichotomies. We state a result due
to Sacker and Sell. Other perturbation theorems are due to Coppel and to Palmer.
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Theorem 4.10. Let X ⊆ B be a compact, Bebutov-invariant set (it is understood that X has
the topology induced from B). Define A : X →Mn, x 7→ x(0). Let Ω ⊆ X be a compact Bebutov-
invariant set, and let (4.3) denote the corresponding family of differential systems x′ = A(ω · t)x.
Suppose that the family (4.3) admits an exponential dichotomy over Ω. Then there is an open
set U ⊆ X containing Ω such that, if Y ⊆ U is a compact Bebutov-invariant set, then the family

x′ = A(y · t)x

admits an exponential dichotomy over Y .

We conclude this section by noting that the point of view we have taken regarding the theory
of exponential dichotomies is not unique. Indeed Massera and Schäffer based their theory of
exponential dichotomies on the solvability of the nonhomogeneous linear system x′ = a(t)x+f(t)
in various function spaces. Palmer makes frequent use of the theory concerning exponential
dichotomies on the half-lines (−∞, 0) and (0,∞). Latushkin has systematically developed a
semigroup approach to the theory of exponential dichotomies, the basic idea of which goes back
to papers by Johnson and Chicone-Swanson in 1980.

5. Lyapunov exponents

Now we discuss Lyapunov exponents, beginning with some classical theory. Let a : R→ Mn

be a bounded measurable function. Consider the system

x′ = a(t)x (5.1)

and let Φ(t) be its fundamental matrix solution. Lyapunov showed that there are numbers
λ1, . . . , λs, where 1 ≤ s ≤ n, with the property that, if 0 6= x0 ∈ Rn, then

λ(x0) = lim sup
t→∞

1
t

ln |Φ(t)x0| ∈ {λ1, . . . , λn}.

Moreover, if we assume that λ1 < λ2 < . . . < λs and set

Vk = {x0 ∈ Rn : λ(x0) ≤ λk},

then Vk is a vector subspace of Rn, and {0} = V0 ⊆ V1 ⊆ . . . ⊆ Vs = Rn. Set dk = dimVk −
dimVk−1, 1 ≤ k ≤ s. Say that (5.1) is Lyapunov regular if

s∑
k=1

dkλk = lim inf
t→∞

1
t

∫ t

0

tr a(s)ds.

This concept of regularity is important because it is related to a stability question. Namely,
suppose that λs < 0. Then the solution ψ(t) ≡ 0 of (5.1) is exponentially asymptotically stable.
It is natural to ask if the asymptotic stability of the zero solution is inherited by a small nonlinear
perturbation of (5.1). Consider the nonlinear system

x′ = a(t)x+ g(t, x), x ∈W ⊆ Rn, t ≥ 0 (5.2)

where W is a neighborhood of the origin; g : [0,∞)×W → Rn is continuous, and g satisfies
- |g(t, x)| ≤ C1|x|q, q > 1;
- |g(t, x1)− g(t, x2)| ≤ C2(δ)|x1 − x2| where δ = max(|x1|, |x2|) and C2(δ)→ 0 as δ → 0

for all t ≥ 0 and x, x1, x2 ∈ W . Even if λs < 0, the solution ψ(t) ≡ 0 of (5.2) need not be
asymptotically stable. However, Lyapunov showed that if in addition, (5.1) is Lyapunov regular,
then the solution ψ(t) ≡ 0 of (5.2) is asymptotically stable. See [3].

Oseledets found a very useful way to put Lyapunov’s theory in an ergodic-theoretic context.
We will not give the most general version of the Oseledets theorem (for this see [1]). Instead we
formulate a weaker version using the structure we have introduced. Let Ω ⊆ B be a compact
Bebutov-invariant set, let A : Ω → Mn, ω 7→ ω(0) and consider the corresponding family (4.3)
of linear differential systems.

Theorem 5.1 (Oseledets; also Millions̆c̆ikov). Let µ be a {τt}-ergodic measure on Ω. There are
a set Ωµ ⊆ Ω of µ-measure 1 and a set {λ1, . . . , λs} of real numbers with the following properties.
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(i) For each ω ∈ Ωµ, the set

Vk(ω) = {0} ∪ {x0 ∈ Rn\{0} : lim
t→∞

1
t

ln |Φω(t)x0| =

= lim
t→∞

1
t

ln |Φω(t)x0| = λk}
is a vector subspace of Rn, 1 ≤ k ≤ s.

(ii) For each ω ∈ Ωµ, there holds V1(ω)⊕ . . .⊕ Vs(ω) = Rn.
(iii) The sets Vk =

⋃
ω∈Ωµ

{(ω, x0) : x0 ∈ Vk(ω)} are “measurable subbundles” of Ω × Rn

which are invariant under the linear skew-product flow {τ̂t} induced by equations (4.3),
1 ≤ k ≤ s.

(iv) For each ω ∈ Ωµ, the equation (4.3) is Lyapunov regular.

The set of numbers {λ1, . . . , λs} is called the Oseledets spectrum of the family (4.3). The
main virtue of the Oseledets theorem is its extreme generality. Note that, µ-a.e., the equation
(4.3) is Lyapunov regular and has two-sided Lyapunov exponents.

There are certain relative relations between the Sacker-Sell theory and the Oseledets theory
which are discussed in Johnson-Palmer-Sell. We give two of them.

Proposition 5.2. Suppose that Ω ⊆ B is a compact connected Bebutov-invariant set. Consider
the corresponding family of equations (4.3).

(i) If µ is a {τt}-ergodic measure on Ω, then each Oseledets bundle Vk is contained on some
Sacker-Sell bundle Wl.

(ii) If β is an endpoint of a Sacker-Sell interval, then there is a {τt}-ergodic measure µ on
Ω such that β belongs to the µ-Oseledets spectrum.

We make a final remark. Suppose that Ω ⊆ B is compact and Bebutov-invariant. A good
test case for various hypotheses concerning linear nonautonomous differential systems is that in
which (Ω, {τt}) is almost periodic and n = 2. For example, one might conjeture that, in this
case, the dynamical spectrum Λ consists either of one point or of exactly two points. It turns
out that this conjecture is false. Examples of Millions̆c̆ikov (1969) and Vinograd (1974) have
the property that Λ is a nondegenerate interval [a, b]. This is a remarkable phenomenon which
turns out to be important in the spectral theory of the quasi-periodic Schrödinger operator and
in other theories which involve almost periodic differential systems.

6. Rotation numbers

We discuss the concept of rotation number. We take as a starting point an observation whose
content is admittedly vague and which will turn out to be in some degree misleading. Namely,
let A be an n × n matrix and let η be an eigenvalue of A with nonzero imaginary part. Let
x0 ∈ Rn be a vector of the form x + x where Ax = ηx. Then eAtx0 admits “rotation” with
angular velocity ±Im(η) in the “real part” of Span{x, x} in Cn.

We can think of the theories of Sacker-Sell and Oseledets as developments of the theory of Lya-
punov exponents, which (roughly speaking) play the role for nonautonomous linear differential
systems that the real parts of the eigenvalues of A play for the autonomous linear system x′ = Ax.
We now want to transplant the imaginary parts of the eigenvalues to the nonautonomous setting,
i.e., we want to define and discuss rotation of the solutions of a nonautonomous linear system.

Let us begin with the case n = 2. As usual, let Ω ⊆ B be a compact, Bebutov-invariant set;
let A : Ω→Mn, ω 7→ ω(0) and consider the family

x′ = A(ω · t)x. (6.1)

In this situation, there is a natural way to define rotation. Introduce polar coordinates (r, θ) ∈
R2. Setting

A =
(
a+ d −b+ c
b+ c −a+ d

)
,

one obtains
r′

r
= d(ω · t) + a(ω · t) cos(2θ) + c(ω · t) sin(2θ) (6.2)
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θ′ = b(ω · t)− a(ω · t) sin(2θ) + c(ω · t) cos(2θ) (6.3)

“Define” the rotation number α of the family (6.1) to be

α = lim
t→∞

θ(t)
t

(6.4)

This is an intriguing idea but not a priori convincing: it is not clear that the limit exists and,
even if it does, it is not clear that the resulting quantity has more than superficial interest. We
proceed to deal with these objections.

Suppose, to be specific, that (Ω, {τt}) is an almost periodic flow. Let ν be the unique {τt}-
invariant measure on Ω. Let P be the one-dimensional projective space of lines through the
origin in R2. We think of P as R/πZ, and we think of θ as a π-periodic angular coordinate on
P. Let us define a flow {τ̂t} on the product space Σ = Ω× P by setting

τ̂t(ω, θ) = (τt(ω), θ(t))

where θ(t) is the solution of (6.3) with θ(0) = θ0.
Next write

Θ(ω, θ) = b(ω)− a(ω) sin(2θ) + c(ω) cos(2θ)

and note that

θ(t) = θ0 +
∫ t

0

Θ(τ̂s(ω, θ0))ds.

We recognize the limit in (6.4) as a time-average of Θ. Using the Birkhoff ergodic theorem,
we see that, if µ is a {τ̂t}-ergodic measure on Σ, then the limit in (6.4) exists µ-a.e., say for
(ω, θ) ∈ Σµ, and is equal there to

∫
Σ

Θdµ.

This is certainly a step forward, but more can be said. Note that, if π : Σ → Ω is the
projection, then Ων = π(Σµ) has ν-measure 1. If ω ∈ Ων and θ1, θ2 ∈ R,∣∣∣∣∫ t

0

Θ(τ̂s(ω, θ1))ds−
∫ t

0

Θ(τ̂s(ω, θ2))ds
∣∣∣∣ ≤ |θ1 − θ2|+ 2π

because orbits of the {τ̂t}-flow are either equal (as sets) or are disjoint. This implies that the
limit in (6.4) exists on the set Σν = Ων ×P and does not depend on the choice of (ω, θ) ∈ Σν . A
further argument of Krylov-Bogoliubov type shows that the limit in (6.4) exists for all (ω, θ) ∈ Σ
and is uniform on Σ; one uses the unique ergodicity of (Ω, ν). The uniform limit is called the
rotation number of the family (6.1).

We summarize:

Theorem 6.1. If (Ω, {τt}) is almost periodic, then

α = lim
t→∞

1
t

∫ t

0

Θ(τ̂s(ω, θ))ds

is defined and constant for all (ω, θ) ∈ Σ. The limit is uniform over Ω.

This reasoning works in part when (Ω, {τt}) is not uniquely ergodic. If ν is a fixed {τt}-ergodic
measure on Ω, then one still obtains a set Σν = Ων × P where ν(Ων) = 1 and the time averages
of Θ converge on Σν to a fixed limit α.

There is a well-known application of the rotation number to the theory of the ergodic Schrödin-
ger operator. Let q : R→ R be a bounded uniformly continuous function. Let Ω be its Bebutov
hull in B = {b : R → R : b is bounded and continuous}, and set Q(ω) = ω(0) for ω ∈ Ω. The
Schrödinger operator

− d2

dt2
+ q(t)

can be viewed as a self-adjoint operator on L2(R), as can each of the operators

− d2

dt2
+Q(ω · t).
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Let us write (−d2/dt2 + q(ω · t))ψ = Eψ, then pass to the phase variables
(
ψ
ψ′

)
and rewrite

the operator equation as (
ψ
ψ′

)′
=
(

0 1
−E +Q(ω · t) 0

)(
ψ
ψ′

)
(6.5)

Let ν be a {τt}-ergodic measure on Ω (hence the term “ergodic” Schrödinger operator). Let
α = α(E) denote the ν-rotation number of the family (6.5). Then one has the following.

Theorem 6.2 (Johnson-Moser). The rotation number α = α(E) is continuous, non-decreasing
and increases exactly on the spectrum of Lω = −d2/dt2 +Q(ω · t) for ν-almost all ω ∈ Ω. If Ω is
the topological support of ν, then α is constant in an open interval I ⊆ R if and only if equation
(6.5) have an exponential dichotomy over Ω for all E ∈ I.

Johnson-Moser treated the case when (Ω, ν) is almost periodic; the ergodic case presents no
essentially new difficulties. If α is constant on an open interval I ⊆ R, then the value of α lies
in the image of the so-called Schwartzmann homomorphism. In particular, each such value of
α lies in a countable subgroup of R which is determined by the topology of Ω (more exactly by
its first Čech cohomology group) and by the ergodic measure ν. This phenomenon is called gap
labelling. In the almost periodic case, α/π lies in the frequency module MΩ of Ω if α is constant
on an open interval I ⊆ R.

Let us now consider the concept of rotation in the context of higher-dimensional linear sys-
tem. At first, it is not clear how to realize this concept and it seems fair to say that it is only in
the last 20-25 years that the outlines of a theory of “higher-dimensional rotation” have become
visible.

Actually, more than one approach is available. One has been developed by San Martin, Arnold
and their co-workers. We will discuss another approach, which was initiated by Johnson (also
Ruelle) and which has been developed by Novo, Núñez, Obaya, Colonius, Fabbri and Nerurkar.
It is at present specific to the symplectic group and to certain other matrix groups.

Let us explain what we have said in a little more detail. Let

J =
(

0 −I
I 0

)
∈M2n

where I is the n×n identity matrix. Let Sp(n,R) = {Φ ∈M2n : ΦtJΦ = J} where t denotes the
transpose. Let sp(n,R) be the Lie algebra of Sp(n,R): it can be described as sp(n,R) = {JA :
At = A,A ∈M2n}.

Next, let Ω be a compact metric space and let {τt} be a flow on Ω. We change point of view
somewhat and let A : Ω → M2n be a continuous function with values in the set of 2n × 2n
symmetric matrices. Consider the family of Hamiltonian linear differential systems:

Jz′ = A(ω · t)z, z =
(
x
y

)
∈ R2n. (6.6)

For each ω ∈ Ω, the fundamental matrix solution Φω(t) of (6.6) takes values in Sp(n,R).
Let Λ be the Grassmann-type manifold of Lagrange subspaces of R2n. Thus Λ is the set of

these n-dimensional vector subspaces λ ⊆ R2n satisfying the following property: if z1, z2 ∈ λ,
then 〈z1, Jz2〉 = 0. Then Λ is a compact manifold of dimension n(n+1)

2 . Let us introduce the

vertical subspace λv =
{(

0
y

)
: y ∈ Rn

}
, which is an element of Λ. The vertical Maslov cycle

is by definition

Cv = {λ ∈ Λ : dim(λ ∩ λv) > 0}.

It can be shown that Cv is a Z2-cycle of codimension 1 on Λ. It is two-sided in a natural sense
(V. Arnold). Its complement can be parametrized by the set of n × n symmetric matrices: if
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λ ∈ Λ\Cv, then there exists a symmetric matrix m ∈Mn such that

λ =
{(

x
m · x

)
: x ∈ Rn

}
.

One can check that, if λ ∈ Λ, then the image subspace Φω(t)·λ is an element of Λ, for ω ∈ Ω, t ∈ R.
It is now natural to define

α = lim
T→∞

1
T
NT (Φω(t)λ0 ∩ Cv) (6.7)

where λ0 ∈ Λ and NT is the number of oriented intersection points of the curve

[0, T ] −→ Λ
t 7→ Φω(t)λ0

with the two-sided cycle Cv.

It turns out that α is well-defined in the following sense.

Proposition 6.3. Let ν be a {τt}-ergodic measure on Ω. There is a set Ων ⊆ Ω of ν-measure
1 such that, if (ω, λ0) ∈ Ων × Λ, then the limit in (6.7) is well-defined and does not depend on
the choice of (ω, λ0).

The original proof of this result [13] used methods of V. Arnold. Novo, Núñez and Obaya
gave another proof using the argument functions on Sp(n,R) of Yakubovich; he developed his
theory using results of Gel’fand and Lidskii.

The rotation number seems at first glance to be a somewhat artificial construct. There is
evidence (convincing in the opinion of the present author) that this is not so. We first present
an application of the rotation number to Atkinson-type spectral problems. Let B : Ω→M2n be
a continuous function with values which are symmetric and positive semi-definite. Consider the
Atkinson problem

Jz′ = (A(ω · t) + EB(ω · t))z (6.8)

where E is a real or complex parameter. Let us suppose that the following Atkinson condition
is satisfied. As before, write Φω(t) for the fundamental matrix solution of Jz′ = A(ω · t)z.

Hypothesis 6.4. For each ω ∈ Ω, there is a constant δ > 0 such that, for each z0 ∈ R2n there
holds ∫ ∞

−∞
|B(ω · t)Φω(t)z0|2dt ≥ δ|z0|2.

The Atkinson condition has a useful control-theoretic interpretation: it means that the control
system

z′ = −At(ω · t)z +B(ω · t)u
is null controllable for each ω ∈ Ω.

Now let ν be an ergodic measure on Ω . Let α = α(E) be the ν-rotation number of equations
(6.8). It can be checked that α is continuous and non-increasing.

Theorem 6.5 (Johnson-Nerurkar). Suppose that Ω is the topological support of ν. Suppose that
Hypothesis 6.4 is valid. Let I ⊆ R be an open interval such that α is constant on I. Then
equations (6.8) admit an exponential dichotomy over Ω for all E ∈ I.

Note that the perturbation EB of A is quite special in that B is positive semidefinite and is
otherwise only subject to Hypothesis 6.4.
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