Recent Trends in Nonlinear Science

Tracing, mixing and entropy

Piotr Oprocha

AGH University of Science and Technology, Kraków, Poland

RTNS 2022, Cullera, Spain, Jan 24-28, 2022

Piotr Oprocha (AGH)

Tracing, mixing and entropy

Cullera, Jan 2022

Juliusz Schauder (1899-1943)

"It is not important to learn theorems. It is important to learn methods"

3.5 3

(Notices AMS, 2002) Interview with Louis Nirenberg (1925-2020)

- [...] I myself don't understand so very well. I remember meeting a young Frenchman years ago, and he had been trying to do research for several years.
- He asked me, "How do you do research? How do you start on a problem?"
- I said, "Well, sometimes it happened to me that I read a paper and I didn't like the proof. So I started to think about something that might be more natural, and very often this led to some new work."
- Then I asked him, "What about your case?"
- He said,"I never found a proof I didn't like."
- I thought, "This is hopeless!"

Basic setting.

- (X, d) compact metric space
- 2 I = [0, 1] with standard metric d(x, y) = |x y|
- Cantor set any 0-dimensional compact metric space without isolated points, that is every space homeomorphic with the ternary Cantor set.
- $T: X \to X$ continuous map
- (X, T) dynamical system
- Orb $_{T}^{+}(x) = \{x, T(x), T^{2}(x), \ldots\}$ orbit $\bigcirc \omega_{\mathcal{T}}(x) = \{y : \liminf_{n \to \infty} d(y, T^n(x)) = 0\}$ - limit set 3 $T^n(x) = x$ - periodic point (n > 0)• minimal such *n* is called period of *x*.
- **9** (X, T) is minimal if $X = \omega_T(x)$ for every $x \in X$.

Invariant measures

- **1** M(X) set of all Borel probability measures
- 2 M(X) is compact (and metrizable) in weak*-topology
- **3** we can embedd (X, T) in $(M(X), T_*)$ by dynamics of δ_x , where

$$T_*\mu(A)=\mu(T^{-1}(A)).$$

- $\mu \in M(X)$ is T-invariant if $\mu(A) = \mu(T^{-1}(A))$ (i.e. $\mu = T_*\mu$).
- **5** $M_T(X) \subset M(X)$ set of all *T*-invariant Borel probablility measures **o** for any sequence $\nu_n \in M(X)$ we have

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}T_*^i\nu_n=\mu\in M_T(X)$$

provided the limit exists. By compactness, this immediately implies:

- $M_T(X) \neq \emptyset$ (Krylov-Bogolyubov)
- $M_T(X)$ is closed (hence compact)

Piotr Oprocha (AGH)

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙ Cullera, Jan 2022

Poulsen simplex

- **1** μ is ergodic if: $\mu(A) = \mu(T^{-1}(A)) \Rightarrow \mu(A) \in \{0, 1\}$
- 2 $M_T(X)$ is convex and ergodic measures are extreme points of $M_T(X)$
- \bigcirc when ergodic measures are dense in $M_T(X)$ then $M_T(X)$ is singleton or infinite (so-called Poulsen simplex; 1961).
- Poulsen simplex is unique up to affine homeomorphism (Lindenstrauss, Olsen, Sternfel; 1978).
- An efficient method of showing that $M_T(X)$ is Poulsen simplex is approximation of any measure by a measure we are sure is ergodic (e.g. supported on periodic orbit).
- 6 Ergodic decomposition

$$\mu(A) = \int_{
u} \int_{
u} \frac{\nu(A) d au}{d au}$$

Piotr Oprocha (AGH)

Tracing, mixing and entropy

Metric entropy - a brief look...

- Let \mathcal{R} , \mathcal{S} be two measurable (countable) partitions of X.
- 2 The parition $\mathcal{R} \lor \mathcal{S}$ consists of all nonempty sets of the form $R \cap S$ where $R \in \mathcal{R}$ and $S \in \mathcal{S}$.
- **3** For $n \in \mathbb{N}$ write $\mathcal{R}^n = \bigvee_{i=0}^n T^{-i}(\mathcal{R})$.
- **4** Consider function $\Phi(x) = x \log(x)$, where we assume $\Phi(0) = \lim_{x \to 0^+} \Phi(x) = 0.$

5 for $\mu \in M(X)$ and partition \mathcal{P} define its entropy

$$H_{\mu}(\mathcal{P}) = -\sum_{P \in \mathcal{P}} \mu(P) \log(\mu(P)) = \int_X \Phi(\mu(\mathcal{P}(x))) d\mu(x).$$

O Entropy of T with respect to measure $\mu \in M_T(X)$ is defined by:

$$h_{\mu}(T, \mathcal{P}) = \lim_{n \to \infty} \frac{1}{n} H_{\mu}(\mathcal{P}^{n})$$

$$h_{\mu}(T) = \sup_{\mathcal{P}} h_{\mu}(T, \mathcal{P}).$$

Piotr Oprocha (AGH)

Tracing, mixing and entropy

Measure vs. counting

• Note that the function $\Phi(x) = x \log(x)$ is convex. So for $\sum_i \alpha_i = 1$ and $x_i \in [0, 1]$ we have

$$-\sum_{i=1}^k \alpha_i \Phi(x_i) \leq -\Phi(\sum_{i=1}^k \alpha_i x_i).$$

2 In case of finite partition $\mathcal{P} = \{A_1, \dots, A_k\}$ it gives:

$$egin{array}{rcl} egin{array}{rcl} \mathcal{H}_{\mu}(\mathcal{P}) &=& -k\sum_{i=1}^krac{1}{k}\Phi(\mu(A_i))\ &\leq& \log(k). \end{array}$$

Topological entropy in brief...

- Let *R*, *S* be two open covers of *X*. The cover *R* ∨ *S* consists of all nonempty sets of the form *R* ∩ *S* where *R* ∈ *R* and *S* ∈ *S*.
- **2** For $n \in \mathbb{N}$ write $\mathcal{R}^n = \bigvee_{i=0}^n T^{-i}(\mathcal{R})$.
- Offine H(R) = inf(log #R') where infimum is taken over all subcovers R' of R.
- Interpretation of the second state of the s

$$h(T,\mathcal{R}) = \lim_{n\to\infty} \frac{1}{n} H(\mathcal{R}^n).$$

The topological entropy of f is the (sometimes infinite) number

 $h_{top}(T) = \sup h(T, \mathcal{R})$

where supremum is taken over all (finite) open covers of X.

Piotr Oprocha (AGH)

Tracing, mixing and entropy

- 3

9 / 16

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Topological entropy in brief...

Let *R*, *S* be two open covers of *X*. The cover *R* ∨ *S* consists of all nonempty sets of the form *R* ∩ *S* where *R* ∈ *R* and *S* ∈ *S*.

2 For
$$n \in \mathbb{N}$$
 write $\mathcal{R}^n = \bigvee_{i=0}^n T^{-i}(\mathcal{R})$.

- Of Define H(R) = inf(log #R') where infimum is taken over all subcovers R' of R.
- The following limit exists:

$$h(T,\mathcal{R}) = \lim_{n\to\infty} \frac{1}{n} H(\mathcal{R}^n).$$

The topological entropy of f is the (sometimes infinite) number

$$h_{top}(T) = \sup h(T, \mathcal{R})$$

where supremum is taken over all (finite) open covers of X.

Piotr Oprocha (AGH)

• Let $\{\mathcal{U}_n\}_{n=1}^{\infty}$ be a sequence of open covers with $\lim_{n\to\infty} \operatorname{diam} U_n = 0$. Then:

$$h_{top}(T) = \lim_{n \to \infty} h(f, \mathcal{U}_n).$$

2 A cover \mathcal{R} is generating if $\lim_{n\to\infty} \operatorname{diam} \mathcal{R}^n = 0$.

 ${f 3}$ If ${\cal R}$ is a generating cover, then

$$h_{top}(T) = h(T, \mathcal{R}).$$

Analogous conditions hold for generating partitions and metric entropy.

10 / 16

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Let $\{\mathcal{U}_n\}_{n=1}^{\infty}$ be a sequence of open covers with $\lim_{n\to\infty} \operatorname{diam} U_n = 0$. Then:

$$h_{top}(T) = \lim_{n \to \infty} h(f, \mathcal{U}_n).$$

- **2** A cover \mathcal{R} is generating if $\lim_{n\to\infty} \operatorname{diam} \mathcal{R}^n = 0$.
- **3** If \mathcal{R} is a generating cover, then

$$h_{top}(T) = h(T, \mathcal{R}).$$

Analogous conditions hold for generating partitions and metric entropy.

Bowen's formula

- Let $d_n(x, y) = \max \{ d(T^i(x), T^i(y)) : 0 \le i < n \}.$
- 2 Let $\varepsilon > 0.A$ set $A \subset X$ is:
 - (ε, n)-spanning if for every x ∈ X there is y ∈ A such that d_n(x, y) < ε.
 (ε, n)-separated if d_n(x, y) ≥ ε provided that x, y ∈ A, x ≠ y.
- Let R(T, n, ε) be the minimal cardinality of an (n, ε)-spanning set and let S(T, n, ε) be the maximal cardinality of an (n, ε)-separated set.

Theorem

$$h_{top}(T) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log \mathcal{R}(T, n, \varepsilon) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log \mathcal{S}(T, n, \varepsilon)$$

Piotr Oprocha (AGH)

Cullera, Jan 2022

11 / 16

イロト イポト イヨト イヨト 二日

Bowen's formula

• Let
$$d_n(x, y) = \max \{ d(T^i(x), T^i(y)) : 0 \le i < n \}.$$

2 Let
$$\varepsilon > 0.A$$
 set $A \subset X$ is:

- (ε, n)-spanning if for every x ∈ X there is y ∈ A such that d_n(x, y) < ε.
 (ε, n)-separated if d_n(x, y) ≥ ε provided that x, y ∈ A, x ≠ y.
- Let R(T, n, ε) be the minimal cardinality of an (n, ε)-spanning set and let S(T, n, ε) be the maximal cardinality of an (n, ε)-separated set.

Theorem

$$h_{top}(T) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log \mathcal{R}(T, n, \varepsilon) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log \mathcal{S}(T, n, \varepsilon)$$

Piotr Oprocha (AGH)

Tracing, mixing and entropy

✓ ⓓ ▷ < ≧ ▷ < ≧ ▷</p>
Cullera, Jan 2022

3

Further properties of entropy

- If S is a subsystem of T (i.e. S = T|_Λ where Λ ⊂ X is an T-invariant subset) then h_{top}(T) ≥ h_{top}(S).
- 3 If S is a factor of T then $h_{top}(T) \ge h_{top}(S)$.
 - If the factor map is finite-to-one (all fibers are finite) then $h_{top}(T) = h_{top}(S)$.
- $h_{top}(T^k) = kh_{top}(T).$
- **(5)** If T is an isometry then $h_{top}(T) = 0$.
- h_{top}(T) = sup h_{top}(T|_Z) over any family of subsystems (Z, T|_Z) of (X, T) whose domains cover X.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Further properties of entropy

- If S is a subsystem of T (i.e. S = T|_Λ where Λ ⊂ X is an T-invariant subset) then h_{top}(T) ≥ h_{top}(S).
- ⁽²⁾ If S is a factor of T then $h_{top}(T) \ge h_{top}(S)$.
 - If the factor map is finite-to-one (all fibers are finite) then $h_{top}(T) = h_{top}(S)$.
- $\bullet h_{top}(T^k) = kh_{top}(T).$
- **(5)** If T is an isometry then $h_{top}(T) = 0$.
- h_{top}(T) = sup h_{top}(T|_Z) over any family of subsystems (Z, T|_Z) of (X, T) whose domains cover X.

Further properties of entropy

- If S is a subsystem of T (i.e. $S = T|_{\Lambda}$ where $\Lambda \subset X$ is an T-invariant subset) then $h_{top}(T) \ge h_{top}(S)$.
- 2 If S is a factor of T then $h_{top}(T) \ge h_{top}(S)$.
 - If the factor map is finite-to-one (all fibers are finite) then $h_{top}(T) = h_{top}(S).$
- $\bullet h_{top}(T \times S) = h_{top}(T) + h_{top}(S).$
- $h_{top}(T^k) = kh_{top}(T)$.
- **(5)** If T is an isometry then $h_{top}(T) = 0$.
- $h_{top}(T) = \sup h_{top}(T|_Z)$ over any family of subsystems $(Z, T|_Z)$ of (X, T) whose domains cover X.

Invariant measures and topological entropy

By Variational Principle:

$$egin{aligned} h_{ ext{top}}(T) &=& \sup_{\mu\in M_{\mathcal{T}}(X)} h_{\mu}(T) \ &=& \sup_{\{\mu \ - \ ext{ergodic}\}} h_{\mu}(T) \end{aligned}$$

2 If there exists $\mu \in M_T(X)$ such that

$$h_{top}(T) = h_{\mu}(T)$$

then μ is so-called measure of maximal entropy (m.m.e. for short).

Suppose m.m.e. exists. By ergodic decomposition theorem of entropy

$$h_\mu(T) = \int_{
u ext{ - ergodic}} h_
u(T) d au$$

hence if additionally $h_{top}(T) < \infty$ then there is ergodic measure of max. entropy, provided m.m.e. exists.

Piotr Oprocha (AGH)

Tracing, mixing and entropy

Cullera, Jan 2022

Immediate consequences of variational principle

• The topological entropy of a dynamical system is concentrated on its nonwandering set $\Omega(T)$, that is

 $h_{top}(T) = h_{top}(T|_{\Omega(T)}).$

2 or even more

 $h_{top}(T) = h_{top}(T|_{\overline{\operatorname{Rec}}(T)}).$

3 If we have $X = \bigcup_{\tau \in \Lambda} X_{\tau}$ where sets X_{τ} are closed and invariant then

$$h_{top}(T) = \sup_{\tau \in \Lambda} h_{top}(T|_{X_{\tau}}).$$

Supremum is not always achieved.

- There are mixing C^r interval maps without measure of maximal entropy [Ruette].
- When interval map is piecewise monotone (finitely many pieces) or C[∞] then there is measure of maximal entropy [Hofbauer, Buzzi]

Piotr Oprocha (AGH)

Tracing, mixing and entropy

Cullera, Jan 2022

Topological transitivity and its variants

Definition

A dynamical system (X, T) is (topologically)

- transitive if for all $U, V \neq \emptyset$ open in X there is n > 0 such that $T^n(U) \cap V \neq \emptyset$.
- 2 totally transitive if T^n is transitive for every n
- **3** weakly mixing if $T \times T$ is transitive.
- mixing if for all $U, V \neq \emptyset$ open in X there is N > 0 such that $T^n(U) \cap V \neq \emptyset$ for every $n \ge N$.
- **(**) exact if for all $U \neq \emptyset$ open in X there is N > 0 such that $T^N(U) = X$.
- On spaces without isolated points, T is transitive iff there is a point with dense orbit
- Trans(T) the set of points with dense orbit (residual in transitive maps)

Piotr Oprocha (AGH)

Weak Mixing

Definition

T is weak (topologicall) mixing if $T \times T$ is transitive. Equivalently:

- For open $U_1, U_2, V_1, V_2 \neq \emptyset$, $(\exists k \in \mathbb{N}) T^k(U_1) \cap V_1, T^k(U_2) \cap V_2 \neq \emptyset$.
- Sor open U₁,..., U_n, V₁,..., V_n ≠ Ø (n ≥ 2) (∃k ∈ ℕ)(∀i ≤ n) T^k(U_i) ∩ V_i ≠ Ø.
- \bullet Mixing \implies weakly mixing \implies totally trans. \implies transitive
- Implications cannot be reversed in general.
- Totally transitive + dense periodic points \implies weak mixing
- In some settings:
 - Weak mixing \implies Mixing
 - Totally transitive \implies Weak mixing

Cullera, Jan 2022

э