Recent Trends in Nonlinear Science

Tracing, mixing and entropy II

Piotr Oprocha

AGH University of Science and Technology, Kraków, Poland

RTNS 2022, Cullera, Spain, Jan 24-28, 2022

Piotr Oprocha (AGH)

Tracing, mixing and entropy

Cullera, Jan 2022

Topological transitivity and its variants

Definition

A dynamical system (X, T) is (topologically)

- transitive if for all $U, V \neq \emptyset$ open in X there is n > 0 such that $T^n(U) \cap V \neq \emptyset$.
- 2 totally transitive if T^n is transitive for every n
- **3** weakly mixing if $T \times T$ is transitive.
- mixing if for all $U, V \neq \emptyset$ open in X there is N > 0 such that $T^n(U) \cap V \neq \emptyset$ for every $n \ge N$.
- **(**) exact if for all $U \neq \emptyset$ open in X there is N > 0 such that $T^N(U) = X$.
- On spaces without isolated points, T is transitive iff there is a point with dense orbit
- Trans(T) the set of points with dense orbit (residual in transitive maps)

Weak Mixing

Definition

T is weak (topologicall) mixing if $T \times T$ is transitive. Equivalently:

- For open $U_1, U_2, V_1, V_2 \neq \emptyset$, $(\exists k \in \mathbb{N}) T^k(U_1) \cap V_1, T^k(U_2) \cap V_2 \neq \emptyset$.
- Sor open U₁,..., U_n, V₁,..., V_n ≠ Ø (n ≥ 2) (∃k ∈ ℕ)(∀i ≤ n) T^k(U_i) ∩ V_i ≠ Ø.
- \bullet Mixing \implies weakly mixing \implies totally trans. \implies transitive
- Implications cannot be reversed in general.
- Totally transitive + dense periodic points \implies weak mixing
- In some settings:
 - Weak mixing \implies Mixing
 - Totally transitive \implies Weak mixing

- 20

(日) (周) (日) (日)

Full (two-sided) shift on two symbols

We define the following metric space:

• $\Sigma_2 = \{0,1\}^{\mathbb{Z}}.$

2 where a metric d on Σ_2 is defined as follows:

$$d(x,y) = \begin{cases} 2^{-k} & \text{, if } x \neq y \\ 0 & \text{, if } x = y \end{cases}$$

where k minimal integer such that $x_k \neq y_k$ or $x_{-k} \neq y_{-k}$.

Full (two-sided) shift on two symbols

• We define the shift map $\sigma: \Sigma_2 \to \Sigma_2$ by:

$$\sigma(\mathbf{x})_i = \mathbf{x}_{i+1}.$$

2 The map σ is continuous.

Forbidden words

1 Let \mathcal{F} be a set of finite sequences, i.e.

$$\mathcal{F} \subset igcup_{n=1}^{\infty} \{0,1\}^n$$
 .

2 Define the following set

$$X_{\mathcal{F}} = \{x \in \Sigma_2 : (x_i \dots x_{i+n}) \notin \mathcal{F} \text{ for every } i \in \mathbb{Z}, n \geq 0\}$$

Theorem

A set $X \subset \Sigma_2$ is a shift (i.e. is closed and $\sigma(X) = X$) iff $X = X_F$ for some set of forbidden words F.

Spacing subshifts - Lau & Zame

• Given $\mathcal{P} \subset \mathbb{N}$ we define a set $X_{\mathcal{P}} \subset \Sigma_2$ by $X_{\mathcal{P}} = \{ x \in \Sigma_2 : x_i = x_j = 1, i < j \implies j - i \in \mathcal{P} \}.$

It follows from the definition that X_P = σ(X_P) and obviously X_P is closed (so it is a subshift of Σ₂). So (X_P, σ) is an invertible DS.
P ⊂ N is thick when

$$\forall n \quad \exists i \qquad \{i, i+1, \ldots, i+n\} \subset \mathcal{P}$$

④ and syndetic when $\mathbb{N} \setminus \mathcal{P}$ is not thick.

Theorem

• If the map $\sigma_{\mathcal{P}}$ is mixing iff $\#(\mathbb{N} \setminus \mathcal{P}) < \infty$ (\mathcal{P} is co-finite),

2 If \mathcal{P} is thick iff the map $\sigma_{\mathcal{P}}$ is weakly mixing.

• as a consequence weak mixing $\neq \Rightarrow$ mixing.

- 34

- If (I, T) is transitive then it has dense periodic points
- 2 If (I, T^2) is transitive then (I, T) is mixing.
- Solution If (I, T) is transitive but (I, T^2) is not then
 - There is a fixed point $p \in (0,1)$ such that
 - intervals $I_1 = [0, p]$ and $I_2 = [p, 1]$ are permuted by T that is
 - $T(I_1) = I_2$, $T(I_2) = I_1$ and
 - $T^2|_{I_i}$ is transitive for i = 1, 2.
- In the circle (or more widely, topological graphs) it is similar, if we rule out irrational rotations (or map is non-invertible)

8 / 65

イロト 不得下 イヨト イヨト 二日

Piecewise linear maps

- (I, T) is piecewise linear if
 - there is division $P = 0 = a_0 < a_1 < \ldots < a_n < a_{n+1} = 1$ such that
 - $T|_{[a_i,a_{i+1}]}$ is linear for every $i = 0, 1, \dots, n$
- 2 Piecewise linear map is Markov if $T(P) \subset P$
- Denote $I_i = [a_i, a_{i+1}]$. We can define a transition graph G_T for T where
 - I_i are vertices
 - there is an edge $I_i \longrightarrow I_j$ if $I_j \subset T(I_i)$
- Graph is strongly connected if there is path between any two vertices.
- If G_T is strongly connected but not a cycle and T is Markov then T is transitive.
- If matrix A associated with G_T is primitive (i.e. A^n has all entries positive) then T is exact (mixing Markov maps are always exact).
- If λ is leading eigenvalue of G_T then $h_{top}(T) = \log \lambda$.

Mixing but not exact example

Piotr Oprocha (AGH)

Tracing, mixing and entropy

(4) E > (4) E > Cullera, Jan 2022

< 1[™] >

æ

Mixing but not exact example

< 17 ▶

Piotr Oprocha (AGH)

Tracing, mixing and entropy

Cullera, Jan 2022

< 3 >

æ

Mixing but not exact example

< A

Piotr Oprocha (AGH)

Tracing, mixing and entropy

Cullera, Jan 2022

10 / 65

æ

∃ ⊳

- if T is mixing interval map then $h_{top}(T) > \frac{1}{2} \log(2)$ and this number is infimum of possible entropies
- 2 if T is mixing circle map then $h_{top}(T) > 0$ and this number is infimum of possible entropies
- If T is mixing interval or circle map which is not exact then $h_{top}(T) > \frac{1}{2}\log(3).$

Characterization of Weak Mixing by Xiong and Yang

• Let (T, X) be a dynamical system.

2 A set $S \subset X$ is chaotic with respect to a sequence $\{p_i\}_{i=1}^{\infty}$ when

- for every continuous function $F: S \to X$
- 2 there is a subsequence $\{q_j\}_{j=1}^{\infty} \subset \{p_i\}_{i=1}^{\infty}$ such that

$$\forall x \in S$$
 $\lim_{j \to \infty} T^{q_j}(x) = F(x).$

Theorem

The following conditions are equivalent:

(X, T) is weakly mixing (mixing)

² There is a dense set *S* which is at most countable union of Cantor sets which is chaotic with respect to an increasing sequence $\{p_i\}_{i=1}^{\infty}$ (respectively: every increasing sequence).

イロト イポト イヨト イヨト

Characterization of Weak Mixing by Xiong and Yang

- Let (T, X) be a dynamical system.
- **2** A set $S \subset X$ is chaotic with respect to a sequence $\{p_i\}_{i=1}^{\infty}$ when
 - **1** for every continuous function $F: S \to X$
 - **2** there is a subsequence $\{q_j\}_{j=1}^{\infty} \subset \{p_i\}_{i=1}^{\infty}$ such that

$$\forall x \in S$$
 $\lim_{j \to \infty} T^{q_j}(x) = F(x).$

Theorem

The following conditions are equivalent:

- (X, T) is weakly mixing (mixing)
- There is a dense set S which is at most countable union of Cantor sets which is chaotic with respect to an increasing sequence {p_i}[∞]_{i=1} (respectively: every increasing sequence).

イロト イポト イヨト イヨト

Uniformly rigid systems

- Dynamical system (X, T) is uniformly rigid if for every ε > 0 there is n > 0 such that d(x, Tⁿ(x)) < ε for every x ∈ X.
- 2 Natural examples:
 - Periodic orbit
 - Irrational rotation of the circle (or \mathbb{T}^n).
- **3** Uniformly rigid systems cannot be mixing (if nontrivial).
- Uniformly rigid systems do not contain (proper) asymptotic pairs.
- But uniformly rigid system can be weakly mixing (Glasner & Maon, 1989)
 - On various spaces of the form S¹ × Y (including all Tⁿ, n ≥ 2) there exists weakly mixing, uniformly rigid, minimal dynamical system.
- Fathi and Herman proved (1977) residual set of maps with weak mixing in:

$\overline{O(\mathbb{T}^2)} = \mathsf{cl}\{h \circ R_\alpha \circ h^{-1} : h \in \mathsf{Diff}_\infty(\mathbb{T}^2), \alpha \in \mathbb{T}^2\}$

3

Uniformly rigid systems

- Opphasical system (X, T) is uniformly rigid if for every ε > 0 there is n > 0 such that d(x, Tⁿ(x)) < ε for every x ∈ X.</p>
- Olympical examples:
 - Periodic orbit
 - Irrational rotation of the circle (or \mathbb{T}^n).
- Uniformly rigid systems cannot be mixing (if nontrivial).
- Uniformly rigid systems do not contain (proper) asymptotic pairs.
- But uniformly rigid system can be weakly mixing (Glasner & Maon, 1989)
 - On various spaces of the form S¹ × Y (including all Tⁿ, n ≥ 2) there exists weakly mixing, uniformly rigid, minimal dynamical system.
- Fathi and Herman proved (1977) residual set of maps with weak mixing in:

$$\overline{O(\mathbb{T}^2)} = \mathsf{cl}\{h \circ R_\alpha \circ h^{-1} : h \in \mathsf{Diff}_\infty(\mathbb{T}^2), \alpha \in \mathbb{T}^2\}$$

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

Uniformly rigid systems

- Dynamical system (X, T) is uniformly rigid if for every ε > 0 there is n > 0 such that d(x, Tⁿ(x)) < ε for every x ∈ X.
- Olympical examples:
 - Periodic orbit
 - Irrational rotation of the circle (or \mathbb{T}^n).
- Oniformly rigid systems cannot be mixing (if nontrivial).
- Uniformly rigid systems do not contain (proper) asymptotic pairs.
- But uniformly rigid system can be weakly mixing (Glasner & Maon)

Theorem (Glasner & Maon)

Let $\mathcal{H}_0(Y)$ be a path component of identity in $\mathcal{H}(Y)$. If Y is nontrivial and action of $\mathcal{H}_0(Y)$ is minimal on Y then there is weakly mixing, uniformly rigid and minimal homeomorphism (on $\mathbb{S}^1 \times Y$) in

$$\overline{\{G^{-1} \circ (\mathcal{R}_{\alpha} \times \mathsf{id}) \circ G : G \in \mathcal{H}(\mathbb{S}^{1} \times Y)\}}$$

M. Handel - Anosov-Katok type construction

• (1982) M. Handel: pseudo-circle as minimal set and attractor

Figure: by M. Handel

Theorem (Handel, 1982)

There exists a C^{∞} -smooth diffeomorphism of the plane F with pseudo-circle as an attracting minimal set. In addition, F has a well defined irrational rotation number but is not semi-conjugate to a circle rotation (Thurston?).

Piotr Oprocha (AGH)

Tracing, mixing and entropy

Cullera, Jan 2022 14 / 65

Eigenfunctions and weak mixing

- $\chi: X \to \mathbb{S}^1$ is an eigenfunction of T if it is continuous and $\chi \circ T = R_{\alpha} \circ \chi$ for some α .
- Suppose T is a minimal homeomorphism. The following are equivalent:
 - (X, T) is weakly mixing
 - all eigenfunctions are constant.

Additionally, if X is connected and χ is not constant, then χ is surjective.

 \bigcirc Then, if T is a minimal homeomorphism and X is connected, (X, T)is weakly mixing iff it is not semi-conjugate to a rotation.

Eigenfunctions and weak mixing

- $\chi: X \to \mathbb{S}^1$ is an eigenfunction of T if it is continuous and $\chi \circ T = R_\alpha \circ \chi$ for some α .
- Suppose T is a minimal homeomorphism. The following are equivalent:
 - (X, T) is weakly mixing
 - all eigenfunctions are constant.

Additionally, if X is connected and χ is not constant, then χ is surjective.

Then, if T is a minimal homeomorphism and X is connected, (X, T) is weakly mixing iff it is not semi-conjugate to a rotation.

Corollary

Handel's example is weakly mixing.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

- If (X, f) is uniformly rigid and proximal then it is completely scrambled.
- Statznelson and Weiss provided a method of construction of uniformly rigid, proximal, transitive systems.
- Sonstructed system is a subset of the Hilbert cube $[0,1]^{\mathbb{N}}$ with metric

$$d(\alpha,\beta) = \sum_{n=0}^{\infty} \frac{|\alpha(n) - \beta(n)|}{2^n}$$

and left shift $\sigma(\alpha)(i) = \alpha(i+1)$ on it.

• Fix $L \ge 2$ and start with function $a_0: [-1,1] \rightarrow [0,1]$ such that

 $|a_0(s_1) - a_0(s_2)| \le L|s_1 - s_2|$ and $a_0(1) = a_0(-1) = 1$, $a_0(0) \ne 1$.

- 2 Define $a_1 \colon \mathbb{R} \to [0,1]$ by $a_1(s) = a_0(s)$ when $|s| \le 1$, and $a_1(s+2) = a_1(s)$ for all $s \in \mathbb{R}$.
- If Put $a_p(s) = a_1(s/p)$, i.e. "stretch" graph of a_1 .
- Finally $a_{\infty}(s) = \sup_{n} a_{p_n}(s)$ for a sequence p_n where $p_{n+1} = p_n k_n$, $\{k_n\}_{n=1}^{\infty}$ is strictly increasing and 8 divides each k_n .
- **(**) Define $\alpha(n) = a_{\infty}(n)$ and $\mathbb{X} = \overline{\{\sigma^n(\alpha) : n \ge 0\}} \subset [0, 1]^{\mathbb{N}}$.

• Fix $L \ge 2$ and start with function $a_0: [-1,1] \rightarrow [0,1]$ such that

 $|a_0(s_1) - a_0(s_2)| \le L|s_1 - s_2|$ and $a_0(1) = a_0(-1) = 1$, $a_0(0) \ne 1$.

- 2 Define $a_1 \colon \mathbb{R} \to [0,1]$ by $a_1(s) = a_0(s)$ when $|s| \leq 1$, and $a_1(s+2) = a_1(s)$ for all $s \in \mathbb{R}$.
- Solution Put $a_p(s) = a_1(s/p)$, i.e. "stretch" graph of a_1 .
- Finally $a_{\infty}(s) = \sup_{n} a_{p_n}(s)$ for a sequence p_n where $p_{n+1} = p_n k_n$, $\{k_n\}_{n=1}^{\infty}$ is strictly increasing and 8 divides each k_n .
- **(**) Define $\alpha(n) = a_{\infty}(n)$ and $\mathbb{X} = \{\sigma^n(\alpha) : n \ge 0\} \subset [0, 1]^{\mathbb{N}}$.

• Fix $L \ge 2$ and start with function $a_0: [-1,1] \rightarrow [0,1]$ such that

 $|a_0(s_1) - a_0(s_2)| \le L|s_1 - s_2|$ and $a_0(1) = a_0(-1) = 1$, $a_0(0) \ne 1$.

- 2 Define $a_1 : \mathbb{R} \to [0,1]$ by $a_1(s) = a_0(s)$ when $|s| \leq 1$, and $a_1(s+2) = a_1(s)$ for all $s \in \mathbb{R}$.
- O Put $a_p(s) = a_1(s/p)$, i.e. "stretch" graph of a_1 .
- Finally $a_{\infty}(s) = \sup_{n} a_{p_n}(s)$ for a sequence p_n where $p_{n+1} = p_n k_n$, $\{k_n\}_{n=1}^{\infty}$ is strictly increasing and 8 divides each k_n .
- **5** Define $\alpha(n) = a_{\infty}(n)$ and $\mathbb{X} = \overline{\{\sigma^n(\alpha) : n > 0\}} \subset [0, 1]^{\mathbb{N}}$.

Main features of K-W construction:

•
$$|a_p(s_1) - a_p(s_2)| \le |a_1(s_1/p) - a_1(s_2/p)| \le \frac{L}{p}|s_1 - s_2|$$
 hence

$$|a_{\infty}(s+2p_i)-a_{\infty}(s)|\leq \sup_{j>i}|a_j(s+2p_m)-a_j(s)|\leq \sup_{j>i}\frac{2Lp_i}{p_j}\leq \frac{2L}{k_i}$$

2 for any $\varepsilon > 0$, all odd *m* and $|s| < \varepsilon p_i/L$ we have

$$1-\varepsilon < a_{\infty}(mp_i+s) \leq 1.$$

Theorem

Dynamical system (X, σ) (which is orbit closure of α) is uniformly rigid, and $\{\theta\}$ is its unique minimal subsystem, where $\theta(n) = 1$ for all n.

Theorem (Akin, Auslander, Berg)

If a_0 has strict minimum in 0 then (\mathbb{X}, σ) is almost equicontinuous.

Piotr Oprocha (AGH)

Tracing, mixing and entropy

Theorem (Akin, Auslander, Berg)

Every almost equicontinuous dynamical system is uniformly rigid.

• Defining $a_0(t) = 0$ for $|t| \le 1/2$ and $a_0(t) = 2|t| - 1$ for |t| > 1/2 we obtain (\mathbb{X}, σ) which is not almost equicontinuous.

Theorem

Let (X, f) be transitive and pointwise recurrent. If (X, f) contains a minimial set that is connected, then X is connected.

() Then X is always connected. However dimension of X is unknown.

<□> <同> <同> <同> <同> <同> <同> <同> <同> <