Recent Trends in Nonlinear Science

Tracing, mixing and entropy III

Piotr Oprocha

AGH University of Science and Technology, Kraków, Poland

RTNS 2022, Cullera, Spain, Jan 24-28, 2022

Piotr Oprocha (AGH)

Tracing, mixing and entropy

Cullera, Jan 2022

Digraphs and topological properties

• A pair G = (V, E) is called a directed graph if

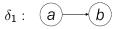
- V is finite (the set of vertices of G)
- Let Top(X) denotes the set of all nonempty open subsets of X and let G = (V, E). A map f ∈ C(X) has the mapping property (denoted f ⊢ G) defined by G if
 - **0** for any map $\psi: V o Top(X)$ there is $k \leq 1$ such that

$$(u,v)\in E \implies f^k(\psi(u))\cap\psi(v)\neq\emptyset.$$

イロト 不得下 イヨト イヨト 二日

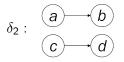
Simple examples

Consider the graph presented below



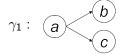
The mapping property defined by this graph is transitivity. The graph

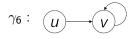
defines nonwandering, and weak mixing is defined by:



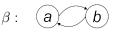
- 3

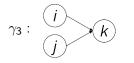
Selected mapping properties

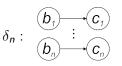




$$\gamma_2: d \longrightarrow e f$$

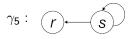






··· (a,

a



Tracing, mixing and entropy

 α_n :

э

Results of Banks

A map $\pi: K \to H$ between graphs H, G is *pseudo-homomorphisms* if for every edge $(u, v) \in E(H)$ there is $(a, b) \in E(K)$ such that $u = \pi(a)$, $v = \pi(b)$.

Remark

Let *H* be a pseudo-homomorphic image of a subgraph $K \subset G$. If $f \vdash G$ then $f \vdash H$.

Theorem

• A mapping property is equivalent to weak mixing iff it is not given by β , δ_1 or α_n .

2 If f is flip transitive and f^2 is transitive then f is weakly mixing.

Piotr Oprocha (AGH)

5 / 19

イロト イポト イヨト イヨト 二日

Periodic decomposition

A collection of sets D = {D₀, D₁, ..., D_{n-1}} is a regular periodic decomposition (of length n) if

$$\bullet \ \underline{T(D_i)} \subset D_{i+1 \mod n},$$

2 int
$$D_i = D_i$$
 for $i = 0, ..., n - 1$,

■ int
$$D_i \cap$$
 int $D_j = \emptyset$ for every $i \neq j$.

Theorem

Let $\mathcal{D} = \{D_0, \ldots, D_{n-1}\}$ be a regular periodic decomposition for f. Then the following conditions hold:

$$\ \ \, \overline{T^k(D_i)} = D_{i+k \mod n} \ \text{for all} \ i \leq i < n \ \text{and} \ k \geq 1.$$

2
$$T^k(D_i) \subset D_i$$
 iff $k = 0 \mod n$,

- 3 $T^{-j}(\operatorname{int} D_i) \subset \operatorname{int} D_{i-j \mod n}$ for $i = 0, \ldots, n-1$ and $j \ge 0$,
- $\bigcup_{i \neq i} D_i \cap D_j$ is invariant and nowhere dense in X.

In particular Trans(T) $\subset \bigcup_{i=1}^{n-1} \operatorname{int} D_i$.

6 / 19

< 17 ×

Odometers

Let $\mathbf{s} = (s_n)_{n \in \mathbb{N}}$ be a nondecreasing sequence of positive integers such that s_n divides s_{n+1} . For each $n \geq 1$ define $\pi_n \colon \mathbb{Z}_{s_{n+1}} \to \mathbb{Z}_{s_n}$ by the natural formula $\pi_n(m) = m \pmod{s_n}$ and let G_s denote the following inverse limit

$$G_{\mathbf{s}} = \varprojlim_{n}(\mathbb{Z}_{s_{n}}, \pi_{n}) = \Big\{ x \in \prod_{i=1}^{\infty} \mathbb{Z}_{s_{n}} : x_{n} = \pi_{n}(x_{n+1}) \Big\},\$$

where each \mathbb{Z}_{s_n} is given the discrete topology, and on $\prod_{i=1}^{\infty} \mathbb{Z}_{s_n}$ we have the Tychonoff product topology. On G_s we define $T_s: G_s \to G_s$ by

$$T_{\mathbf{s}}(x)_n = x_n + 1 \pmod{s_n}.$$

Then G_s is a compact metrizable space and T_s is a homeomorphism, therefore (G_s, T_s) is a dynamical system (odometer).

Periodic decomposition in interval map sub-dynamics

Figure: Classical Delahaye's example

Figure: Modified example with splitting

Periodic decomposition of transitive maps

Corollary

The elements of regular periodic decomposition for a minimal map are pairwise disjoint.

Theorem

Transitive map has at most one regular periodic decomposition of length n.

Theorem

Two decompositions for transitive map have always common refinement.

Theorem

Let $\mathcal{D} = \{D_0, \dots, D_n\}$ be a regular periodic decomposition for T. Then T is transitive iff $T^n|_{D_i}$ is transitive for $i = 0, \dots, n$.

Piotr Oprocha (AGH)

Tracing, mixing and entropy

Cullera, Jan 2022

Periodic decomposition of transitive maps

Theorem

let T be transitive with T^p not transitive, where p is a prime number. Then f admits a regular periodic decomposition of length p.

Theorem

Let $\mathcal{D} = \{D_0, \dots, D_{n-1}\}$ be a periodic decomposition for a transitive (X, T). The following conditions are equivalent:

1 \mathcal{D} is terminal (i.e. does not have sub-decomposition),

2 $T^n|_{D_i}$ is totally transitive for i = 0, ..., n-1.

Theorem

Let (X, T) be transitive and X locally connected. Then every regular periodic decomposition for T has a connected refinement (i.e. sub-decomposition).

Piotr Oprocha (AGH)

Tracing, mixing and entropy

Cullera, Jan 2022

Decomposition - further properties

Theorem

Let (X, T) be transitive. If X has a connected component C with int $C \neq \emptyset$ then

- X has finitely many connected components
- and they form a regular periodic decomposition.

Corollary

A terminal decomposition for a transitive map on a locally connected space X consists of connected sets. A minimal map on a connected space X is totally transitive.

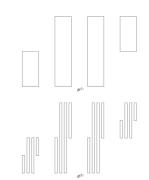


Figure: Auslander-Floyd system

Piotr Oprocha (AGH)

Cullera, Jan 2022

- A space X is almost totally disconnected if the set of its degenerate components, considered as a subset of X, is dense in X.
- A space X is cantoroid if it is almost totally disconnected without isolated points.

Theorem

An almost totally disconnected compact metric space admits a minimal map if and only if it is either a finite set or a cantoroid.

3

Decompositions in dimension one

Theorem

Let T be transitive and let C be a refinement of a regular periodic decomposition $\mathcal{D} = \{D_0, D_1, \dots, D_{n-1}\}$. Then $C \in \mathcal{C}$ intersects D_j iff the parent of C intersects D_j .

Theorem

Let $\mathcal{D} = \{D_0, D_1, \dots, D_{n-1}\}$ be a regular periodic decomposition for a transitive map f and let p be a periodic point whose period is co-prime with n. Then $Orb^+(p) \subset \bigcap_{i=0}^{n-1} D_i$.

Corollary

 Transitive map T on topological graph has always terminal decomposition.

Transitive map T on [0, 1] has always terminal decomposition of length 1 or 2.

Shadowing property

- a finite sequence x_1, \ldots, x_n is δ -pseudo orbit if $d(T(x_i), x_{i+1}) < \delta$ for $i = 1, \ldots, n-1$
- **2** a point $z \in \text{-traces } \delta \text{-pseudo orbit if } d(T^i(z), x_i) < \varepsilon$.
- (X, T) has shadowing property if for every ε > 0 there is δ > 0 such that every δ-pseudo orbit can be ε-traced.

Remark

- If (X, T) has shadowing property then elements of periodic decomposition must be pairwise-disjoint.
- So if X is connected, then transitive T is totally transitive, thus weak mixing, thus mixing.

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

Expansive maps

• A surjective dynamical system (X, T) is expansive if there is $\varepsilon > 0$ such that for $\{x_i\}_{i \in \mathbb{Z}}$, $\{y_i\}_{i \in \mathbb{Z}}$, $T(x_i) = x_{i+1}$, $T(y_i) = y_{i+1}$ we have

 $\forall i \in \mathbb{Z} \ d(x_i, y_i) < \varepsilon \Longrightarrow x_0 = y_0 \quad (\text{so } x_i = y_i \text{ for all } i \in \mathbb{Z})$

- A dynamical system (X, T) is positively expansive if there is ε > 0 such that
 ∀i > 0 d(Tⁱ(x), Tⁱ(y)) < ε ⇒ x = y
- **③** definition of expansive was initially defined for homeomorphisms.
- interval maps are never expansive.
- classical examples of (positively) expansive dynamical systems are (one sided) subshifts.

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

Theorem

Suppose that X is infinite. Then for every $\varepsilon > 0$ there exists a future ε -bounded orbit, i.e. $x \neq y$ such that $d(T^i(x), T^i(y)) < \varepsilon$ for all $i \geq 0$.

Corollary

Suppose T is invertible. The following conditions are equivalent:

- T is positively expansive,
- **2** X is finite.

Piotr Oprocha (AGH)

Shifts of finite type

If there is #*F* < ∞ such that X = X_F then we call X a shift of finite type (SFT).

Theorem (Walters)

A shift $X \subset \Sigma_2$ is SFT iff $\sigma|_X$ has shadowing (same is true for $X \subset \Sigma_2^+$).

Theorem (Parry)

A one-sided shift $X \subset \Sigma_2^+$ is SFT iff $\sigma|_X$ is open.

Shifts of finite type

1 If there is $\#\mathcal{F} < \infty$ such that $X = X_{\mathcal{F}}$ then we call X a shift of finite type (SFT).

Theorem (Walters)

A shift $X \subset \Sigma_2$ is SFT iff $\sigma|_X$ has shadowing (same is true for $X \subset \Sigma_2^+$).

Theorem (Parry)

A one-sided shift $X \subset \Sigma_2^+$ is SFT iff $\sigma|_X$ is open.

Remark

More generally, every open positively expansive map has shadowing.

Piotr Oprocha (AGH)

Tracing, mixing and entropy

<□> <同> <同> <同> <同> <同> <同> <同> <同> < Cullera, Jan 2022

Chain recurrence

- a point x is *P*-related to y (written xPy) if for every $\delta > 0$ there exists a δ -pseudo orbit z_0, \ldots, z_{n+1} such that $x = z_0$ and $y = z_{n+1}$.
- (a) if xPy and yPx then x is related to y (written $x \sim y$).
- So the set CR(T) = {x ∈ X : x ~ x} is called the chain recurrent set of f.
- $\mathsf{CR}(\mathcal{T})$ is closed, invariant and $\Omega(\mathcal{T}) \subset \mathsf{CR}(\mathcal{T})$.
- If T has shadowing then $\Omega(T) = CR(T)$.
- O For every $x \in CR(T)$ the set $[x]_{\sim}$ is closed and $T([x]_{\sim}) = [x]_{\sim}$.
- If T has shadowing then $T(\Omega(T)) = \Omega(T)$.
- (a) If T has shadowing then also $(\Omega(T), T)$ has shadowing.

< □ > < □ > < □ > < □ > < □ > < □ >

3

Chain recurrence

- a point x is P-related to y (written xPy) if for every $\delta > 0$ there exists a δ -pseudo orbit z_0, \ldots, z_{n+1} such that $x = z_0$ and $y = z_{n+1}$.
- **2** if *xPy* and *yPx* then *x* is related to *y* (written $x \sim y$).
- the set $CR(T) = \{x \in X : x \sim x\}$ is called the chain recurrent set of f.
- $\mathsf{CR}(\mathcal{T})$ is closed, invariant and $\Omega(\mathcal{T}) \subset \mathsf{CR}(\mathcal{T})$.
- So If T has shadowing then $\Omega(T) = CR(T)$.
- O For every x ∈ CR(T) the set $[x]_{\sim}$ is closed and $T([x]_{\sim}) = [x]_{\sim}$.
- 3 If T has shadowing then $T(\Omega(T)) = \Omega(T)$.
- If T has shadowing then also $(\Omega(T), T)$ has shadowing.

イロト イポト イヨト イヨト

- 31

Chain recurrence

- **Q** a point x is *P*-related to y (written xPy) if for every $\delta > 0$ there exists a δ -pseudo orbit z_0, \ldots, z_{n+1} such that $x = z_0$ and $y = z_{n+1}$.
- 2 if xPy and yPx then x is related to y (written $x \sim y$).
- **3** the set $CR(T) = \{x \in X : x \sim x\}$ is called the chain recurrent set of f.
- CR(T) is closed, invariant and $\Omega(T) \subset CR(T)$.
- **(5)** If T has shadowing then $\Omega(T) = CR(T)$.
- For every $x \in CR(T)$ the set $[x]_{\sim}$ is closed and $T([x]_{\sim}) = [x]_{\sim}$.
- **1** If T has shadowing then $T(\Omega(T)) = \Omega(T)$.
- **9** If T has shadowing then also $(\Omega(T), T)$ has shadowing.

Expansive dynamics - decomposition theorems

Theorem (Topological decomposition theorem)

Let (X, T) be a dynamical system with T surjective. Assume additionally that (X, T) is expansive with the shadowing property. Then the following assertions hold.

 (decomposition due to Smale) There are finitely many closed, *T*-invariant and pairwise disjoint sets B₁,..., B_l ⊂ Ω(T) such that:

2 Each dynamical system (B_i, T) is topologically transitive.

Sets B_i are called basic sets.

- (decomposition due to Bowen) For each basic set B there is k and a finite sequence of pairwise disjoint closed sets C₀,..., C_{k-1} such that:
 - $T(C_i) = C_{i+1}$ for i = 0, ..., k-1, where for technical reasons $C_k = C_0$,

$$B = \sum_{i=0}^{m-1} C_i,$$

(C_i, T^k **)** is topologically mixing for each *i*.

Sets C_i are called elementary sets.