Recent Trends in Nonlinear Science

Tracing, mixing and entropy IV

Piotr Oprocha

AGH University of Science and Technology, Kraków, Poland

RTNS 2022, Cullera, Spain, Jan 24-28, 2022

Piotr Oprocha (AGH)

Tracing, mixing and entropy

Cullera, Jan 2022

Expansive dynamics - decomposition theorems

Theorem (Topological decomposition theorem)

Let (X, T) be a dynamical system with T surjective. Assume additionally that (X, T) is expansive with the shadowing property. Then the following assertions hold.

 (decomposition due to Smale) There are finitely many closed, *T*-invariant and pairwise disjoint sets B₁,..., B_l ⊂ Ω(T) such that:

2 Each dynamical system (B_i, T) is topologically transitive.

Sets B_i are called basic sets.

- (decomposition due to Bowen) For each basic set B there is k and a finite sequence of pairwise disjoint closed sets C₀,..., C_{k-1} such that:
 - $T(C_i) = C_{i+1}$ for i = 0, ..., k-1, where for technical reasons $C_k = C_0$,

$$B = \sum_{i=0}^{m} C_i,$$

6 (C_i, T^k) is topologically mixing for each *i*.

Sets C_i are called elementary sets.

A result by Richeson and Wiseman

Remark (Expansive dynamics is very special)

- It is well known that any equicontinuous system on the Cantor set has the shadowing property.
- Map with shadowing can have infinitely many chain-recurrent classes (e.g. identity on Cantor set).

Theorem (Richeson and Wiseman)

Suppose that (X, T) is chain transitive. Then one of the following assertions hold:

- there exists n > 0 such that (X, T) permutes cyclically n closed and open chain-recurrent classes of (X, Tⁿ) and (X, Tⁿ) is chain mixing on each of these classes;
- (X, T) factors onto odometer.

- 31

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Generalizations of expansivity

- Let $T: X \to X$ be a homeomorphism.
- Olearly, T is expansive iff there is λ > 0 such that Γ_λ(x) = {x} for every x.
- T is *N*-expansive if for some λ all $\Gamma_{\lambda}(x)$ have at most *N*-elements.

Shadowing and odometers

- x is regularly recurrent if for every open neighborhood U of x there exists $k \in \mathbb{N}$ such that $T^{kn}(x) \in U$ for all $n \in \mathbb{N}_0$
- In the following conditions are equivalent:
 - (X, T) is an odometer
 - (X, T) is minimal, equicontinuous and every point is regularly recurrent.
- If (X, T) is minimal with a regularly recurrent point then it is almost 1-1 extension of odometer (extension with residual set of singleton fibres)

Theorem

If (X, T) has shadowing and x is a recurrent point, then for every $\varepsilon > 0$ there is an odometer (Λ, T) such that $d_H(\omega_T(x), \Lambda) < \varepsilon$.

Map f has the **(periodic) specification property** if, for any $\delta > 0$, there is a positive integer N_{δ} such that for any integer $s \ge 2$, any set $\{y_1, \ldots, y_s\}$ of s points of X, and a sequence $0 = j_1 \le k_1 < j_2 \le k_2 < \cdots < j_s \le k_s$ of 2s integers with $j_{m+1} - k_m \ge N_{\delta}$ for $m = 1, \ldots, s - 1$, there is a point $x \in X$ such that, for each positive integer $m \le s$ and all integers i with $j_m \le i \le k_m$, two following conditions hold:

2) $f^n(x) = x$, where $n = N_{\delta} + k_s$ (periodicity condition).

We say about weak specification property in case that both conditions hold only for s = 2.

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

Map f has the **(periodic) specification property** if, for any $\delta > 0$, there is a positive integer N_{δ} such that for any integer $s \ge 2$, any set $\{y_1, \ldots, y_s\}$ of s points of X, and a sequence $0 = j_1 \le k_1 < j_2 \le k_2 < \cdots < j_s \le k_s$ of 2s integers with $j_{m+1} - k_m \ge N_{\delta}$ for $m = 1, \ldots, s - 1$, there is a point $x \in X$ such that, for each positive integer $m \le s$ and all integers i with $j_m \le i \le k_m$, two following conditions hold:

2 $f^n(x) = x$, where $n = N_{\delta} + k_s$ (periodicity condition).

We say about weak specification property in case that both conditions hold only for s = 2.

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

- Severy mixing interval map has periodic specification property
- Every mixing map with shadowing has specification property (not necessary periodic points)
 - if additionally expansive then it is periodic specification property
- In subshifts, weak specification implies specification property
 - Equivalently, there is N such that for any admissible words u, v there is w with |w| = N such that uwv is admissible.

7 / 26

イロト イポト イヨト イヨト

Transitivity and shadowing - a step further...

Theorem

If (X, T) is a dynamical system with the shadowing property, then the following conditions are equivalent:

- (X, T) is totally transitive,
- **2** (X, T) is weakly mixing,
- \bigcirc (X, T) is mixing,
- T is surjective and (X, T) has the specification property,

If any of the above conditions is satisfied and (X, T) is expansive then it has the periodic specification property.

Theorem (Mai & Ye)

- The only minimal (X, T) with the shadowing property are odometers.
- Transitive + shadowing but not minimal implies PTE.

Shadowing in tent maps (Coven & Yorke)

$$T_s(x) = egin{cases} sx & ,0 \leq x < 1 \ s(2-x) & ,1 \leq x \leq 2. \end{cases}$$

- T_s has shadowing for almost every $s \in (\sqrt{2}, 2]$.
- Shadowing fails on uncountable, dense set of parameters.
- Solution Each T_s is mixing on the core $[2s s^2, s]$

Sufficient condition for shadowing in dimension one

Definition

Let $f: X \to X$ be continuous and let $\varepsilon > 0$. A point $x \in X$ is ε -linked to a point $y \in X$ by f if there exists an integer $m \ge 1$ and a point z such that $f^m(z) = y$ and $d(f^j(x), f^j(z)) \le \varepsilon$ for j = 0, ..., m. We say $x \in X$ is linked to $y \in X$ by f if x is ε -linked to y by f for every $\varepsilon > 0$. A set $A \subset X$ is linked by f if every $x \in A$ is linked to some $y \in A$ by f.

• The following is generalization of result by Coven, Kan and Yorke for tent maps (note that C(f) contains endpoints).

Theorem (Chen)

Suppose $f : [0,1] \rightarrow [0,1]$ is a map that is conjugate to a continuous piecewise linear map with a constant slope s > 1. Then f has the shadowing property if and only if set of local extrema C(f) is linked by f.

Piotr Oprocha (AGH)

Tracing, mixing and entropy

Finitely many pieces of monotonicity are essential

• Example from joint work with C. Good and M. Puljiz

Use to construct transitive not mixing example with linking.

```
Piotr Oprocha (AGH)
```

Tracing, mixing and entropy

Prohorov metric D is defined by

$$\begin{array}{ll} {\color{black} \textit{D}(\mu,\nu) = \inf \left\{ \varepsilon \colon & \mu(A) \leq \nu(A^{\varepsilon}) + \varepsilon \text{ and } \nu(A) \leq \mu(A^{\varepsilon}) + \varepsilon \\ & \text{for any Borel subset } A \subset X \end{array} \right\} } \end{array}$$

for $\mu, \nu \in M(X)$.

- Interpology induced by D coincides with the weak*-topology
- **③** In practice, it is enough to use for any $\mu, \nu \in M(X)$,

 $D(\mu,\nu) = \inf\{\varepsilon \colon \mu(A) \le \nu(A^{\varepsilon}) + \varepsilon \text{ for all Borel subsets } A \subset X\}.$

12 / 26

Approximation of measures

- Assume that diam X = 1 (for simplicity of calculations)
- Obenote $\mathbf{m}_n(x) = \frac{1}{n} \sum_{i=0}^{n-1} \delta_{\mathcal{T}^i(x)}$.
- **3** If $0 \le k < n \le m$ then $D(\mathbf{m}_m(x), \mathbf{m}_{n-k}(T^k(x)) \le (m-n+k)/n$
- If $d_n(x,y) < \varepsilon$ and $n \le k \le (1 + \varepsilon)n$ then $D(\mathbf{m}_n(x), \mathbf{m}_k(y)) < \varepsilon$.

$$D((1-\alpha)\mu+\alpha\nu,\mu) \leq \min\{D(\mu,\nu),\alpha\}.$$

- for every ergodic µ and ε > 0 there is x and n such that D(m_s(x), µ) < ε for every s ≥ n.
- for every $\mu \in M_T(X)$ and $\varepsilon > 0$ there are ergodic μ_1, \ldots, μ_k and $\alpha_1, \ldots, \alpha_k$ such that

$$D(\mu,\sum_{i=1}^{\kappa}\alpha_{i}\mu_{i})<\varepsilon$$

・ロト ・ 一日 ・ ・ ヨ ト ・ 日 ・ うのつ

- Siegmund was first to develop approximation technique for density of some measures
- **2** Generic points with tracing can be used to approximate measures.

Theorem

If (X, T) has periodic specification property then for any measure $\mu \in M_T(X)$ and any $\varepsilon > 0$ there is a periodic point p and measure $\nu \in M_T(X)$ supported on p such that $D(\mu, \nu) < \varepsilon$. In other words, ergodic measures supported on periodic points are dense in $M_T(X)$.

A step further...

- Measure µ ∈ M_T(X) is entropy approachable by ergodic measures, if for every h^{*} < h_µ(T) and every neighborhood U of µ there is an ergodic measure ν ∈ U with h_ν(T) > h^{*}.
- (X, T) is entropy dense if every invariant measure is entropy approachable.
- If (X, T) has the specification property then it is entropy-dense [Eizenberg, Kifer, Weiss].
- If µ → h_µ(T) is upper semicontinuous then a measure of maximal entropy exists.
- Sowen proved that specification+expansive ⇒ unique measure of maximal entropy.

A step further...

- **1** Measure $\mu \in M_T(X)$ is entropy approachable by ergodic measures, if for every $h^* < h_{\mu}(T)$ and every neighborhood U of μ there is an ergodic measure $\nu \in U$ with $h_{\nu}(T) > h^*$.
- **2** (X, T) is entropy dense if every invariant measure is entropy approachable.
- If (X, T) has the specification property then it is entropy-dense [Eizenberg, Kifer, Weiss].
- **9** If $\mu \mapsto h_{\mu}(T)$ is upper semicontinuous then a measure of maximal entropy exists.
- **Solution** Bowen proved that specification+expansive \Rightarrow unique measure of maximal entropy.

Katok entropy formula

Matok entropy formula states the following:

$$h_{\mu}(T) = \lim_{\varepsilon \to 0} \lim_{n \to \infty} \frac{1}{n} \log N_{T}^{\mu}(n, \varepsilon, \delta),$$

where $N^{\mu}_{\tau}(n,\varepsilon,\delta)$ denotes the smallest number of (n,ε) -Bowen balls covering a subset in X of μ -measure at least $(1 - \delta)$ for some ergodic measure μ and an arbitrary $\delta > 0$.

2 Ergodic decomposition for entropy provides for every $\mu \in M_T(X)$ and $\varepsilon > 0$ ergodic μ_1, \ldots, μ_k (not necessarily distinct) such that (for case $h_{\mu}(T) < \varepsilon$

•
$$D(\frac{1}{k}\sum_{i=1}^{k}\mu_i,\mu)<\varepsilon$$
,

•
$$\left|\frac{1}{k}\sum_{i=1}^{k}h_{\mu_i}(T)-h_{\mu}(T)\right|<\varepsilon.$$

 \bigcirc If (X, T) is transitive with shadowing then we may approximate any $\mu \in M_T(X)$ by ergodic ν with close entropy.

16 / 26

Results of Pfister and Sullivan - a "weak specification"

Definition

We say that a dynamical system (X, T) has the approximate product structure if for any $\varepsilon > 0$, $\delta_1 > 0$ and $\delta_2 > 0$ there exists an integer N > 0such that for any $n \ge N$ and $\{x_i\}_{i=1}^{\infty} \subset X$ there are $\{h_i\}_{i=1}^{\infty} \subset \mathbb{N}$ and $y \in X$ satisfying $h_1 = 0$, $n \le h_{i+1} - h_i \le n(1 + \delta_2)$ and

$$\left\{0 \leq j < n :
ho(T^{h_i+j}(y), T^j(x_i)) > \varepsilon
ight\} \left| \leq \delta_1 n ext{ for all } i \in \mathbb{N}.$$

Theorem (Pfister & Sullivan)

If (X, T) has approximate product property then ergodic measures are entropy dense.

Remark

If transitive (X, T) has shadowing property, then it has approximate product property.

Piotr Oprocha (AGH)

Tracing, mixing and entropy

Cullera, Jan 2022 17 / 26

Results of Pfister and Sullivan - a "weak specification"

Definition

We say that a dynamical system (X, T) has the approximate product structure if for any $\varepsilon > 0$, $\delta_1 > 0$ and $\delta_2 > 0$ there exists an integer N > 0 such that for any $n \ge N$ and $\{x_i\}_{i=1}^{\infty} \subset X$ there are $\{h_i\}_{i=1}^{\infty} \subset \mathbb{N}$ and $y \in X$ satisfying $h_1 = 0$, $n \le h_{i+1} - h_i \le n(1 + \delta_2)$ and

$$\left\{0 \leq j < n :
ho(T^{h_i+j}(y), T^j(x_i)) > \varepsilon
ight\} \right| \leq \delta_1 n ext{ for all } i \in \mathbb{N}.$$

Theorem (Pfister & Sullivan)

If (X, T) has approximate product property then ergodic measures are entropy dense.

Remark

If transitive (X, T) has shadowing property, then it has approximate product property.

Piotr Oprocha (AGH)

Tracing, mixing and entropy

Cullera, Jan 2022 17 / 26

Entropy density - results with Jian Li

Let μ be any invariant measure for (X, T) When (X, T) has approximate product property then: lim_{n→∞} μ_n = μ, lim inf_{n→∞} h_{μn}(T) ≥ h_μ(T), for some ergodic μ_n (supp μ_n is ... ?). If additionally μ ↦ h_μ(T) is upper semicontinuous then: lim sup_{n→∞} h_{μn}(T) ≤ h_μ(T), so lim_{n→∞} h_{μn}(T) = h_μ(T).

Theorem (Li, O.)

Suppose that (X, T) has shadowing property and is transitive. In this case:

- invariant measures whose supports are odometers (this includes periodic orbits) are dense in M_T(X).
- there is a sequence of ergodic measures μ_n such that:
 - support of each μ_n is almost 1-1 extension of an odometer,
 - \bigcirc lim_{$n\to\infty$} $\mu_n = \mu_r$
 - $Iim_{n\to\infty} h_{\mu_n}(T) = h_{\mu}(T).$

Entropy density - results with Jian Li

Let μ be any invariant measure for (X, T)

- When (X, T) has approximate product property then:
 - $\lim_{n\to\infty}\mu_n=\mu,$
 - 2 lim inf $_{n\to\infty}h_{\mu_n}(T) \ge h_{\mu}(T)$,
 - **3** for some ergodic μ_n (supp μ_n is ... ?).
- If additionally $\mu \mapsto h_{\mu}(T)$ is upper semicontinuous then:
 - Im sup $_{n\to\infty}h_{\mu_n}(T) \leq h_{\mu}(T)$, so $\lim_{n\to\infty}h_{\mu_n}(T) = h_{\mu}(T)$.

Theorem (Li, O.)

Suppose that (X, T) has shadowing property and is transitive. In this case:

- invariant measures whose supports are odometers (this includes periodic orbits) are dense in M_T(X).
- @ there is a sequence of ergodic measures μ_n such that:
 - lacksim support of each μ_n is almost 1-1 extension of an odometer,
 - $2 \quad \lim_{n \to \infty} \mu_n = \mu,$

$$Iim_{n\to\infty} h_{\mu_n}(T) = h_{\mu}(T)$$

Entropy density - results with Jian Li

Let μ be any invariant measure for (X, T)

• When (X, T) has approximate product property then:

$$\lim_{n\to\infty}\mu_n=\mu,$$

- 2 lim inf $_{n\to\infty}h_{\mu_n}(T) \ge h_{\mu}(T)$,
- **3** for some ergodic μ_n (supp μ_n is ... ?).
- If additionally $\mu \mapsto h_{\mu}(T)$ is upper semicontinuous then:
 - Im sup $_{n\to\infty}h_{\mu_n}(T) \leq h_{\mu}(T)$, so $\lim_{n\to\infty}h_{\mu_n}(T) = h_{\mu}(T)$.

Theorem (Li, O.)

Suppose that (X, T) has shadowing property and is transitive. In this case:

- invariant measures whose supports are odometers (this includes periodic orbits) are dense in M_T(X).
- 2 there is a sequence of ergodic measures μ_n such that:
 - **1** support of each μ_n is almost 1-1 extension of an odometer,
 - $2 \ \lim_{n \to \infty} \mu_n = \mu,$

$$Iim_{n\to\infty} h_{\mu_n}(T) = h_{\mu}(T).$$

Irregular sets

• For dynamical system (X, T), continuous function $\Phi : X \to \mathbb{R}$ and $n \in \mathbb{N}$ we define the Birkhoff average:

$$\frac{1}{n}\sum_{i=0}^{n-1}\Phi(T^ix).$$

- The set of points for which the above sum converges is called $\Phi\text{-}\mathsf{regular}$
- The complementary set is called Φ -irregular, denoted $I_{\Phi}(T)$
- By irregular set we mean the union:

$$I(T) = \bigcup_{\Phi \in \mathcal{C}(X,\mathbb{R})} I_{\Phi}(T).$$

• clearly $\mu(I(T)) = 0$ for every (ergodic) invariant measure μ .

Entropy of non-compact sets

- Let $E \subset X$,
- G_n(E, ε) be the collection of all at most countable covers of E by sets of the form B_u(x, ε) with u ≥ n. Put

$$C(E; t, n, \varepsilon, f) := \inf_{\mathcal{C} \in \mathcal{G}_n(E, \varepsilon)} \sum_{B_u(x, \varepsilon) \in \mathcal{C}} e^{-tu}$$

and

$$C(E; t, \varepsilon, f) := \lim_{n \to \infty} C(E; t, n, \varepsilon, f).$$

Then we define

 $h_{top}(E;\varepsilon,f) := \inf\{t : C(E;t,\varepsilon,f) = 0\} = \sup\{t : C(E;t,\varepsilon,f) = \infty\}$

• The Bowen topological entropy of E is

$$h_{top}(f, E) := \lim_{\varepsilon \to 0^+} h_{top}(E; \varepsilon, f).$$

Piotr Oprocha (AGH)

Image: A matrix

Irregular sets, specification and shadowing

Theorem (Chen, Tassilo, Shu; Li, Wu)

If (X, T) has the specification property then:

- when nonempty, $h_{top}(I(T)) = h_{top}(T)$.
- 2 I(T) is either empty or residual,

Theorem (Thompson)

If (X, T) has the (almost) specification property then for any Φ : **1** $I_{\Phi}(T) = \emptyset$ or **2** $h_{top}(I_{\Phi}(T)) = h_{top}(T)$.

Theorem (Dong, O., Tian)

if (X, T) has the shadowing property then one of the conditions hold:

$$\bullet h_{top}(T) = 0 \text{ and } I(T) = \emptyset,$$

3
$$h_{top}(T) > 0$$
, $I(T) \neq \emptyset$ and $h_{top}(I(T)) = h_{top}(T)$

Piotr Oprocha (AGH)

Work with Foryś-Krawiec, Kupka and Tian

Theorem

Assume (X, T) has the shadowing property and Y is chain recurrent class. If $I_{\Phi}(T) \cap Y \neq \emptyset$ for some $\Phi \colon X \to \mathbb{R}$ then:

 $h_{top}(I_{\Phi}(T)) \geq h_{top}(Y).$

As a consequence we obtian

$$h_{top}(I_{\Phi}(T)) \ge \sup\{h_{top}(Y) : Y \subseteq X, Y \cap I_{\Phi}(T) \neq \emptyset$$

and Y is a chain recurrent class}.

Theorem

Let (X, T) be a dynamical system with the shadowing property, $\Phi \colon X \to \mathbb{R}$ continuous. Then:

$$h_{top}(T, I_{\Phi}(T)) = \sup\{h_{top}(T, Y) : I_{\Phi}(T) \cap Y^{\omega} \neq \emptyset \text{ and} \\ Y \subseteq X \text{ is chain recurrent class }\}.$$

where

$$Y^{\omega} = \{x : \omega(x) \subset Y\}.$$

▲帰▶ ▲注▶ ▲注▶ - 注 - のへの

- Map f has almost specification if for any sequence of integers n_1, \ldots, n_k and numbers $\varepsilon_1, \ldots, \varepsilon_k > 0$:
 - for every sequence of orbits

$$x_1, f(x_1), \ldots, f^{n_1}(x_1), x_2, f(x_2), \ldots, x_k, f(x_k), \ldots, f^{n_k}(x_k)$$

2 there is a tracing point z which is further than ε from appropriate segment of orbit at no more than g(n_i, ε_i) positions, where g(·, ·) is a function (depending only on f) such that lim_ng(n, ε)/n = 0.

Why almost specification? - β -shifts

• β -transformation ($\beta > 1$):

 $T_{\beta} \colon x \mapsto \beta x \pmod{1}$

• β -shift X_{β} - shift defined by natural partition for T_{β} .

Theorem (Pfisfer & Sullivan, 2005; Buzzi, 1997)

Every (X_{β}, σ) has the almost specification property, but for some β (in fact set of full Lebesgue measure) the specification property is not satisfied.

Theorem (Pfisfer & Sullivan, 2007)

Specification \implies Almost specification

• Thompson proved full measure for irregular sets $I_{\Phi}(T)$ under almost specification.

Piotr Oprocha (AGH)

Theorem (Kulczycki, Kwietniak & O.)

If A contains the measure center and $f|_A$ has almost specification then f also has almost specification

Theorem (Wu, O. & Chen)

If f has almost specification then $f|_A$ has almost specification

- There are proximal systems (X, f) (and with singleton measure center) such that
 - (X, f) is transitive but not weakly mixing; or
 - **2** (X, f) is weakly mixing but not mixing; or
 - **3** (X, f) is mixing (but obviously cannot have specification property);