Recent Trends in Nonlinear Science

Tracing, mixing and entropy V

Piotr Oprocha

AGH University of Science and Technology, Kraków, Poland

RTNS 2022, Cullera, Spain, Jan 24-28, 2022

Piotr Oprocha (AGH)

Tracing, mixing and entropy

Cullera, Jan 2022

1 / 12

Graphs

By a graph we mean a pair G = (V, E) of finite sets, where $E \subset V \times V$ (V - set of vertices, E - set of edges).

The graphs we consider are always edge surjective, i.e. for every $v \in V$ there are $u, w \in V$ such that $(u, v), (v, w) \in E$.

Graph homomorphisms

A map $\phi: V_1 \to V_2$ is a graph homomorphism between graphs (V_1, E_1) , (V_2, E_2) if for every $(u, v) \in E_1$ we have $(\phi(u), \phi(v)) \in E_2$.

Important property

A homomorphism ϕ is bidirectional if $(u, v), (u, v') \in E_1$ implies $\phi(v) = \phi(v')$ and $(w, u), (w', u) \in E_1$ implies $\phi(w) = \phi(w')$.

bd-covers

If ϕ is a **bidirectional** map between **edge-surjective graps** then we call it **bd-cover**.

Piotr Oprocha (AGH)

Tracing, mixing and entropy

Construction inspired by (Akin, Glasner, Weiss, 2008)

Let $\mathcal{G} = \langle \phi_i \rangle_{i=0}^{\infty}$ be a sequence of bd-covers $\phi_i : (V_{i+1}, E_{i+1}) \to (V_i, E_i)$, and let

$$V_{\mathcal{G}} = \varprojlim(V_i, \phi_i) = \{ x \in \prod_{i=0}^{\infty} V_i : \phi_i(x_{i+1}) = x_i \text{ for all } i \ge 0 \}$$

be the inverse limit defined by \mathcal{G} . Set

$$E_{\mathcal{G}} = \{ e \in V_{\mathcal{G}} \times V_{\mathcal{G}} : e_i \in E_i \text{ for each } i = 1, 2, \dots \}$$

As usual, V_i is endowed with discrete topology and $\mathbb{X} = \prod_{i=0}^{\infty} V_i$ is endowed with product topology.

Lemma (Shimomura, 2014)

Let $\mathcal{G} = \langle \phi_i \rangle$ be a sequence of bd-covers $\phi_i : (V_{i+1}, E_{i+1}) \rightarrow (V_i, E_i)$. Then $V_{\mathcal{G}}$ is a zero-dimensional compact metric space and the relation $E_{\mathcal{G}}$ defines a homeomorphism.

Piotr Oprocha (AGH)

Cullera, Jan 2022 3 / 12

(日) (同) (目) (日)

Applications

Shimomura's approach provides **very effective** tool for description or construction of Cantor systems. It leads to huge simplifications in proofs and arguments.

Example: odometer

- G_0 has a cycle c_0 .
- $\varphi_n: G_{n+1} \to G_n$ is defined by,

$$\phi_n(c_{n+1}) = a_n \cdot c_n.$$

Example: transitive non-minimal system

- *G*⁰ has two cycles *c*_{0,1}, *c*_{0,2}.
- $\varphi_n: G_{n+1} \rightarrow G_n$ is defined, for i = 1, 2,

 $\phi_n(c_{n+1,1}) = 3c_{n,1}, \quad \phi_n(c_{n+1,2}) = 2 \cdot c_{n,1} + 2 \cdot c_{n,2} + c_{n,1}.$

Piotr Oprocha (AGH)

- 3

Minimal systems - Gambaudo-Martens approach

- Ecah graph G_i has special vertex $v_{i,0}$.
- Each vertex in G_i has at least one outgoing edge but ony v_{i,0} can have ore than one
- See Eeach G_i is strongly connected (there is a path between two vertices)

•
$$\varphi_i(\mathbf{v}_{i,0}) = \mathbf{v}_{i-1,0}$$
 for every $i \ge 1$,

• the cycle $c_{i,j}$ in G_i can be written as $v_{i,0} = v_{i,j,0}, v_{i,j,1}, v_{i,j,2}, \dots, v_{i,j,l(i,j)} = v_{i,0}$ with the length $l(i,j) \ge 1$, • $\varphi_i(v_{i,j,1}) = v_{i-1,1,1}$ for $i \ge 1$ and $j = 1, 2, \dots, r_i$. A GM-covering is called simple if, for $i \ge 1$, there exists m > i such that

$$E(\varphi_{m,i}(c_{m,j}))=E(G_i),$$

for each cycle $c_{m,j}$ in G_m .

Lemma

A zero-dimensional dynamical system is minimal if and only if it can be represented as the inverse limit of a simple GM-covering.

6 / 12

・ 戸 ト ・ ヨ ト ・ ヨ ト

Minimal systems - old in new language

Over the years several techniques were obtained to construct minimal systems with desired properties.

- There are several general methods, which are modifications of celebrated Jewett-Krieger theorem. They provide many examples with desired dynamical properties (as a consequence of properties of selected invariant measure).
- But techniques that may be directly applied in various context (e.g. to detect dynamical properties in concrete cases) are also of interest.
- Examples of weakly mixing minimal system
 - If (X, T) is transitive and there is a point x with dense orbit such that
 - for each open $U \ni x$ there is n such that
 - $T^n(U) \cap U \neq \emptyset$ and $T^{n+1}(U) \cap U \neq \emptyset$
 - Then (X, T) is weakly mixing.
- 2 Examples of minimal systems with positive entropy

Krieger's Marker Lemma (Downarowicz's version)

- \bigcirc (X, T) a zero-dimensional system.
- 2 By an *n*-marker we mean a clopen set $F \subset X$ such that:
 - no orbit visits F twice in n steps (i.e. $F, T^{-1}(F), \ldots, T^{-(n-1)}(F)$ are pairwise disjoint)
 - every orbit visits F at least once (by compactness, this implies that for some $N \in \mathbb{N}$, we have $F \cup T^{-1}(F) \cup \ldots \cup T^{-(N-1)}(F) = X$).

Theorem (Krieger's Marker Lemma, aperiodic case)

If (X, T) is an aperiodic zero-dimensional system then for every $n \in N$ there exists an *n*-marker. The parameter N in above can be selected equal to N = 2n - 1.

• If we fix any clopen set U, then in Krieger's Marker Lemma we may require that $F \cap U \neq \emptyset$.

8 / 12

Examples of applications of Marker Lemma

Acyclic graph by breaking *

9 / 12

Shadowing in Cantor systems (Good, Meddaugh)

- An inverse system (of spaces or of dynamical systems) satisfies the Mittag-Leffler condition provided that for all i ≥ 0 there exists j ≥ i such that for every k ≥ j we have φ_{k,i}(X_k) = φ_{j,i}(X_j).
- if φ_i are injective, they satisfy Mittag-Leffler condition.

Theorem (Simplified version)

Let X be the Cantor set, or indeed any compact, totally disconnected metric space. The map $T: X \to X$ has shadowing if and only if (T, X) is conjugate to the inverse limit of a sequence satisfying the Mittag-Leffler condition and consisting of shifts of finite type.

Typical homeomorphisms on Cantor set

- There exists a residual set $\mathcal{R} \subset \mathcal{H}(\mathcal{C})$ such that if $T, S \in \mathcal{R}$ then (C, T), (C, S) are conjugate.
- 2 First proof by Kechris and Rosendal on existence of \mathcal{R} .
- Akin, Glasner and Weiss proof with complicated construction of an element
- Bernardes, Darji nice characterization via graph covers (for homeomorphisms and continuous surjections)

Theorem (Bernardes, Darji)

The set of all $T \in \mathcal{H}(C)$ with the following property is a residual conjugacy class of $\mathcal{H}(C)$. For every $m \in \mathbb{N}$, there are a partition P of C of mesh < 1/m and a multiple $q \in \mathbb{N}$ of m such that every component of $G_{T}(P)$ is a balanced dumbbell with plate weight q! that contains both a left and a right loop of T.

< 🗗 🕨

Roughly speaking:

attractor-repellor pair of two odometers \times identity on Cantor set

Properties of maps in the class include:

- Zero (sequence) entropy
- Shadowing property
- Lack of periodic points
- Rec(T) is a Cantor set with empty interior
- ...