Recent Trends in Nonlinear Science

Tracing, mixing and entropy V

Piotr Oprocha

AGH
AGH University of Science and Technology, Kraków, Poland
RTNS 2022, Cullera, Spain, Jan 24-28, 2022

Graphs

By a graph we mean a pair $G=(V, E)$ of finite sets, where $E \subset V \times V$ (V - set of vertices, E - set of edges).
The graphs we consider are always edge surjective, i.e. for every $v \in V$ there are $u, w \in V$ such that $(u, v),(v, w) \in E$.

Graph homomorphisms

A map $\phi: V_{1} \rightarrow V_{2}$ is a graph homomorphism between graphs $\left(V_{1}, E_{1}\right)$, $\left(V_{2}, E_{2}\right)$ if for every $(u, v) \in E_{1}$ we have $(\phi(u), \phi(v)) \in E_{2}$.

Important property

A homomorphism ϕ is bidirectional if $(u, v),\left(u, v^{\prime}\right) \in E_{1}$ implies $\phi(v)=\phi\left(v^{\prime}\right)$ and $(w, u),\left(w^{\prime}, u\right) \in E_{1}$ implies $\phi(w)=\phi\left(w^{\prime}\right)$.

bd-covers

If ϕ is a bidirectional map between edge-surjective graps then we call it bd-cover.

Construction inspired by (Akin, Glasner, Weiss, 2008)

Let $\mathcal{G}=\left\langle\phi_{i}\right\rangle_{i=0}^{\infty}$ be a sequence of bd-covers $\phi_{i}:\left(V_{i+1}, E_{i+1}\right) \rightarrow\left(V_{i}, E_{i}\right)$, and let

$$
V_{\mathcal{G}}=\lim _{\leftrightarrows}\left(V_{i}, \phi_{i}\right)=\left\{x \in \Pi_{i=0}^{\infty} V_{i}: \phi_{i}\left(x_{i+1}\right)=x_{i} \text { for all } i \geq 0\right\}
$$

be the inverse limit defined by \mathcal{G}.
Set

$$
E_{\mathcal{G}}=\left\{e \in V_{\mathcal{G}} \times V_{\mathcal{G}}: e_{i} \in E_{i} \text { for each } i=1,2, \ldots\right\}
$$

As usual, V_{i} is endowed with discrete topology and $\mathbb{X}=\prod_{i=0}^{\infty} V_{i}$ is endowed with product topology.

Lemma (Shimomura, 2014)

Let $\mathcal{G}=\left\langle\phi_{i}\right\rangle$ be a sequence of bd-covers $\phi_{i}:\left(V_{i+1}, E_{i+1}\right) \rightarrow\left(V_{i}, E_{i}\right)$. Then $V_{\mathcal{G}}$ is a zero-dimensional compact metric space and the relation $E_{\mathcal{G}}$ defines a homeomorphism.

Applications

Shimomura's approach provides very effective tool for description or construction of Cantor systems. It leads to huge simplifications in proofs and arguments.

Example: odometer

- G_{0} has a cycle c_{0}.
- $\varphi_{n}: G_{n+1} \rightarrow G_{n}$ is defined by,

$$
\phi_{n}\left(c_{n+1}\right)=a_{n} \cdot c_{n}
$$

Example: transitive non-minimal system

- G_{0} has two cycles $c_{0,1}, c_{0,2}$.
- $\varphi_{n}: G_{n+1} \rightarrow G_{n}$ is defined, for $i=1,2$,

$$
\phi_{n}\left(c_{n+1,1}\right)=3 c_{n, 1}, \quad \phi_{n}\left(c_{n+1,2}\right)=2 \cdot c_{n, 1}+2 \cdot c_{n, 2}+c_{n, 1} .
$$

Minimal systems - Gambaudo-Martens approach

(1) Ecah graph G_{i} has special vertex $v_{i, 0}$.
(2) Each vertex in G_{i} has at least one outgoing edge but ony $v_{i, 0}$ can have ore than one
(3) Eeach G_{i} is strongly connected (there is a path between two vertices)
(9) $\varphi_{i}\left(v_{i, 0}\right)=v_{i-1,0}$ for every $i \geq 1$,

(6) the cycle $c_{i, j}$ in G_{i} can be written as $v_{i, 0}=v_{i, j, 0}, v_{i, j, 1}, v_{i, j, 2}, \ldots, v_{i, j, l(i, j)}=v_{i, 0}$ with the length $l(i, j) \geq 1$,
(1) $\varphi_{i}\left(v_{i, j, 1}\right)=v_{i-1,1,1}$ for $i \geq 1$ and $j=1,2, \ldots, r_{i}$.

Simple Gambaudo-Martens coverings

A GM-covering is called simple if, for $i \geq 1$, there exists $m>i$ such that

$$
E\left(\varphi_{m, i}\left(c_{m, j}\right)\right)=E\left(G_{i}\right)
$$

for each cycle $c_{m, j}$ in G_{m}.

Lemma

A zero-dimensional dynamical system is minimal if and only if it can be represented as the inverse limit of a simple GM-covering.

Minimal systems - old in new language

Over the years several techniques were obtained to construct minimal systems with desired properties.

- There are several general methods, which are modifications of celebrated Jewett-Krieger theorem. They provide many examples with desired dynamical properties (as a consequence of properties of selected invariant measure).
- But techniques that may be directly applied in various context (e.g. to detect dynamical properties in concrete cases) are also of interest.
(1) Examples of weakly mixing minimal system
- If (X, T) is transitive and there is a point x with dense orbit such that
- for each open $U \ni x$ there is n such that
- $T^{n}(U) \cap U \neq \emptyset$ and $T^{n+1}(U) \cap U \neq \emptyset$
- Then (X, T) is weakly mixing.
(2) Examples of minimal systems with positive entropy

Krieger's Marker Lemma (Downarowicz's version)

(1) (X, T) - a zero-dimensional system.
(2) By an n-marker we mean a clopen set $F \subset X$ such that:

- no orbit visits F twice in n steps (i.e. $F, T^{-1}(F), \ldots, T^{-(n-1)}(F)$ are pairwise disjoint)
- every orbit visits F at least once (by compactness, this implies that for some $N \in \mathbb{N}$, we have $\left.F \cup T^{-1}(F) \cup \ldots \cup T^{-(N-1)}(F)=X\right)$.

Theorem (Krieger's Marker Lemma, aperiodic case)

If (X, T) is an aperiodic zero-dimensional system then for every $n \in N$ there exists an n-marker. The parameter N in above can be selected equal to $N=2 n-1$.

- If we fix any clopen set U, then in Krieger's Marker Lemma we may require that $F \cap U \neq \emptyset$.

Examples of applications of Marker Lemma

Avoiding stacking of markers

Acyclic graph by breaking *

Shadowing in Cantor systems (Good, Meddaugh)

- An inverse system (of spaces or of dynamical systems) satisfies the Mittag-Leffler condition provided that for all $i \geq 0$ there exists $j \geq i$ such that for every $k \geq j$ we have $\varphi_{k, i}\left(X_{k}\right)=\varphi_{j, i}\left(X_{j}\right)$.
- if φ_{i} are injective, they satisfy Mittag-Leffler condition.

Theorem (Simplified version)

Let X be the Cantor set, or indeed any compact, totally disconnected metric space. The map $T: X \rightarrow X$ has shadowing if and only if (T, X) is conjugate to the inverse limit of a sequence satisfying the Mittag-Leffler condition and consisting of shifts of finite type.

Typical homeomorphisms on Cantor set

(1) There exists a residual set $\mathcal{R} \subset \mathcal{H}(C)$ such that if $T, S \in \mathcal{R}$ then $(C, T),(C, S)$ are conjugate.
(2) First proof by Kechris and Rosendal on existence of \mathcal{R}.
(3) Akin, Glasner and Weiss - proof with complicated construction of an element
(9) Bernardes, Darji - nice characterization via graph covers (for homeomorphisms and continuous surjections)

Theorem (Bernardes, Darji)

The set of all $T \in \mathcal{H}(C)$ with the following property is a residual conjugacy class of $\mathcal{H}(C)$. For every $m \in \mathbb{N}$, there are a partition P of C of mesh $<1 / m$ and a multiple $q \in \mathbb{N}$ of m such that every component of $G_{T}(P)$ is a balanced dumbbell with plate weight q ! that contains both a left and a right loop of T.

A representative of conjugacy class

(1) Roughly speaking:
attractor-repellor pair of two odometers \times identity on Cantor set
(2) Properties of maps in the class include:

- Zero (sequence) entropy
- Shadowing property
- Lack of periodic points
- $\operatorname{Rec}(T)$ is a Cantor set with empty interior
- ...

