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Outline

I Our point of view and a fast review of our current research

1 Numerical techniques to explore complex behaviors

2 Experimental mathematics: high-precision and more ...

3 Need to mixing techniques (so collaborations): “bailar juntos”

4 Need to prove some results: CAP

5 Need to use “problem”-specific techniques: kneading plots
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Numerical tools (the need of a lot of techniques ...)

General chaos indicators:
MLE, Lyapunov exponents, MEGNO, FLI, OFLI2, FMA ...
Computation of invariants

Continuation of periodic orbits, ...: MATCONT, AUTO,
CONTIDES (Abad, B., Dena and Rodríguez, 2012-13) ...
Bifurcation analysis: MATCONT, AUTO, ...

Particular chaos and dynamics indicators
Neurocomputing:
Spike-counting diag. (Storace, 2009, B. and Shilnikov, 2011),
Duty-cycle diagrams (B. and Shilnikov, 2011), ...
Specific phenomena: Shrimps and topological changes (B., Blesa,
Serrano and Shilnikov, 2011), T-points (B. and Shilnikov, 2011), ...

Detailed studies
Arbitrary-precision:
NUMERICAL MICROSCOPE (Abad, B. and Dena, 2012)
Rigorous studies CAP: Rigorous DATA BASE of periodic orbits
(CAPD) (B., Dena, Tucker, 2014), Hyperchaos (2014), ...

INSIGHT,

NOT JUST

NUMBERS!
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What is TIDES?
TIDES: a Taylor series Integrator for Differential EquationS

Taylor series method using Variable-Stepsize Variable-Order formulation
and extended formulas for the variational equations.

Free numerical software based on extended Taylor series method:
TIDES∗.

Extremely easy to use via a MATHEMATICA preprocessor.
NOW INCLUDED IN SAGE (2014)!!!

Automatic construction of Fortran or C codes for solving ODEs

Automatic construction of C codes for solving solutions of ODEs and
variational equations up to any order (and sensitivities with respect to
any parameter up to any order)

Easy to use arbitrary precision (do you need 500 digits?, 1000?)

Where?: http://cody.unizar.es/software
or email: tides.taylor@gmail.com, rbarrio@unizar.es
∗

A. Abad, R. Barrio, F. Blesa and M. Rodriguez, “Algorithm 924: TIDES, a Taylor series Integrator for Differential EquationS,”
ACM Trans. Math. Software, Volume 39(1), 2012
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Experimental mathematics in Dynamical Systems
Origin of the discipline in Spain

−→ Prof. Carles Simó (Universidad de Barcelona)
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Experimental mathematics (?)†

Opportunities and Challenges in 21st Century

Experimental Mathematical Computation:

ICERM Workshop Report

David H. Bailey∗ Jonathan M. Borwein† Ursula Martin‡

Bruno Salvy§ Michela Taufer¶

August 28, 2014

1 Executive summary

“Experimental mathematics” has emerged in the past 25 years or so to become a 
competitive paradigm for research in the mathematical sciences. 

So what exactly is “experimental mathematics”? While several definitions 
have been offered, perhaps the most succinct definition is given in the 
Borwein-Devlin book The Computer as Crucible:

Experimental mathematics is the use of a computer to run computa- 
tions — sometimes no more than trial-and-error tests — to look for 
patterns, to identify particular numbers and sequences, to gather 
evidence in support of specific mathematical assertions that may 
themselves arise by computational means, including search. 

Here we should distinguish “experimental mathematics” from “computational 
mathematics” and “numerical mathematics.” While there is no clear delin- 
eation, the latter two terms generally encompass computational methods for 
concrete applied mathematics and engineering applications.                                      
m usually applies more specifically to computations that

∗Lawrence Berkeley National Lab (retired), Berkeley, CA 94720 and University of Califor-
nia, Davis, Dept. of Computer Science, Davis, CA 95616, USA, david@davidhbailey.com.
†CARMA, University of Newcastle, NSW 2303, Australia, jon.borwein@gmail.com
‡Oxford University, Oxford OX1 2JD, UK, Ursula.Martin@cs.ox.ac.uk.
§INRIA and ENS-Lyon, Lyon, 69342, France, bruno.salvy@inria.fr.
¶University of Delaware, Dept. of Computer Science, Newark, DE 19716, taufer@udel.edu.

1

†
D.H. Bailey, R. Barrio, J.M. Borwein, High-precision computation: Mathematical physics and dynamics, Appl. Math.

Comput. 218(20), pp 10106-10121 (2012)
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Experimental mathematics: books
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Progress of Scientific Supercomputers:
Data from the Top500 List
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Experimental math:
Discovering new mathematical results by computer

11 

Experimental math: Discovering new 
mathematical results by computer 

  Compute various mathematical entities (limits, infinite series sums, 
definite integrals) to high precision, typically 100-1000 digits. 

  Use algorithms such as PSLQ to recognize these entities in terms of well-
known mathematical constants. 

  When results are found experimentally, seek to find formal mathematical 
proofs of the discovered relations. 

Many results have recently been found using this methodology, both in pure 
mathematics and in mathematical physics. 

“If mathematics describes an objective world just like physics, there is no 
reason why inductive methods should not be applied in mathematics just 
the same as in physics.” – Kurt Godel 

Mathematics Computer 
science 

Scientific 
computing Mathematics 

Decrease of log 10(min |yi |) in multipair PSLQ run
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Computing:
The Third Mode of Scientific Discovery
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Computing 

Theory Experiment 

Computing: 
The Third Mode of Scientific Discovery 
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Mathematical neuron models

The Hodgkin-Huxley model is a mathematical model that describes how action
potentials in neurons are initiated and propagated.
Alan Lloyd Hodgkin and Andrew Huxley described the model in 1952 to explain the
ionic mechanisms underlying the initiation and propagation of action potentials in the
squid giant axon. They received the 1963 Nobel Prize in Medicine for this work.

Other mathematical models:
FitzHugh-Nagumo model, Morris-Lecar model, Hindmarsh-Rose model (1984), ...
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The leech heart interneuron model‡

B

HN(L,7)

HN(L,5)

HN(R,5)

10 s
HN(R,7)

HN(L,3)

HN(R,3)

HN HNHN HN

silentsilent

A

switch

Peristaltic PeristalticSynchronous Synchronous

Synchronous

SynchronousPeristaltic

Peristaltic

Front Premotor
Interneurons,

Oscillator
Interneurons

Timing
Oscillator

Middle Premotor
Interneurons

Switch
Interneurons

‡
Weaver, A.L., Roffman, R.C., Norris, B.J., Calabrese, R.L. A role for compromise: synaptic inhibition and electrical coupling

interact to control phasing in the leech heartbeat CpG. Frontiers in behavioral neuroscience. 2010.
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The leech heart interneuron model
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The Hindmarsh and Rose model

The Hindmarsh and Rose model (1984)
A phenomenological system of ODEs for modeling bursting and
spiking oscillatory activities in isolated neurons:

ẋ = y − ax3 + bx2 − z + I
ẏ = c − dx2 − y
ż = ε(s(x − x0)− z)

(1)

x is treated as the membrane potential, while y and z describe
some fast and slow gating variables for ionic currents.
Slow “activation" of z is due to the small parameter 0 < ε� 1.
The parameters are typically set as a = 1, c = 1, d = 5, s = 4,
x0 = −1.6 and ε = 0.01.
A key parameter is the external applied current I.
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Fast-slow decomposition

September 12, 2008 8:50 02163

2150 A. Shilnikov & M. Kolomiets

the manifold Mlc. Its position depends on where the
slow nullcline z′ = 0 cuts Mlc through. By chang-
ing x0, we can find such periodic orbits at different
locations on the spiking manifold; more specifically
around the intersection points of the slow nullcline
with the average branch 〈x〉, as follows from Eq. (5).
While staying away from the “homoclinic” edge of
Mlc, the HR model has always the single stable peri-
odic orbit because there is always the single inter-
section point on the decreasing branch 〈x〉 with the
plane z′ = 0, see Fig. 7. This stable orbit corre-
sponds to the periodic tonic spiking activity in the
model. Its period can be roughly estimated as the
reciprocal of the imaginary part of the characteris-
tic exponents of the depolarized equilibrium state
of the fast subsystem.

We would like to stress here that the branch 〈x〉
connects the AH and homoclinic bifurcation, and
thus the ranges of the variables in Eq. (5) are set
accordingly. Note here that if the slow equation were
not linear in x, then the crossing point of this aver-
age branch and the slow nullcline would no longer
be the “center of gravity” of the selected periodic
orbit; since 〈x2〉 �= 〈x〉2 in general. This fact has
been often ignored in studies of various neuronal

models with nonlinear slow nullclines. Instead one
has to examine the so-called average slow nullclines
introduced originally in [Cymbalyuk & Shilnikov,
2005; Shilnikov et al., 2005; Shilnikov & Cymba-
lyuk, 2005] that give the correct information for
localizing periodic orbits and for detecting their
bifurcations, local and global, on the spiking mani-
fold Mlc.

In the end we would like to make another
important conclusion: a simple, round periodic
solution of the HR model at small ε is known
to be ε-close to the spiking manifold Mlc intro-
duced from the fast subsystem. Its location on Mlc

depends on x0. By varying x0 we make it slide
along Mlc. Thus, to localize the manifold Mlc we
continue perimetrically the corresponding branch
foliated by the periodic orbits of the full system
instead. This means that to localize and exam-
ine both slow motion manifolds Meq and Mlc in
a given model one needs no slow-fast decomposi-
tion but continue the corresponding branches of
equilibria and periodic orbits of the given system.
Again, this approach works especially well for the
high-dimensional models [Shilnikov & Kolomiets,
2008] including the 14D canonical leech heart

Fig. 7. 3D version of Fig. 6(a). The blue point is the center of gravity of the stable periodic orbit of the HR model, which is
depicted on the tonic spiking manifold Mlc at x0 = 1.8. It is located around the intersection point of the slow nullcline z′ = 0
with the average space curve 〈x〉. The phase point, while turning around Mlc, is pushed by the flow rightward as long as it
is above the nullcline where z′ > 0, and pushed back to left when it goes below the nullcline. When these opposite forces are
canceled out, the phase point spins around the “center of the gravity”, i.e. stays on the desired periodic orbit.
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Fast-slow decomposition

Bursting classification (Rinzel-Izhikevich)

fold/
homoclinic

Square-wave bursting (fold/hom bursting)
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But ... why and where is the chaotic behavior?
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Scheme of the macroscopic chaotic structures (∀ε)

chaotic-layers

spike-adding
bifurcations

chaotic-layers

B(2)B(3)B(4)B(n)

symbolic sequences opened 
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The Hindmarsh and Rose model: bifurcation analysis
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Codimension-two homoclinic bifurcation points

• Inclination flip
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The Hindmarsh and Rose model

2.92 2.94 2.96 2.98 3 3.02 3.04 3.06 3.08 3.1

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

 

 

I

b

PD

SN

SN

PD

PD

PD
SN

OF

R. Barrio (University of Zaragoza, Spain) Experimental Mathematics DDAYS’14, Badajoz 25 / 67



Hindmarsh and Rose: bifurcation sketch
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Topological templates

Given a three-dimensional (3D) hyperbolic chaotic flow Φt , Birman and
Williams define the following equivalence relation which identifies
points of the invariant set Λ having the same asymptotic future:

∀x , y ∈ Λ, x ∼ y ⇔ lim
t→∞
||Φt (x)− Φt (y)|| = 0

The Birman-Williams theorem states:
1 In the set of equivalence classes, the hyperbolic flow Φt induces a

semi-flow Φ̄t on a branched manifold K. The pair (Φ̄t ,K) is called
a template, or knot-holder

2 Unstable periodic orbits of Φt in Λ are in one-to-one
correspondence with unstable periodic orbits of (Φ̄t in K).
Moreover, every link of unstable periodic orbits of (Φt ,Λ) is
isotopic to the corresponding link of (Φ̄t ,K).
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Topological templates

6 Marc Lefranc / The Topology of Deterministic Chaos: Stretching, Squeezing and Linking

trefoil knot

trivial knot

Left: two periodic orbits of periods 1 and 4 embedded in a strange attractor; Right: a link of two
knotsthat is equivalent to the pair of periodic orbits up to continuous deformations without crossings.

one is a trivial loop while the other is a realization of the simplest non-trivial curve, the
trefoil knot. More refined invariants can also be used to characterize knots and links [13],
but linking numbers and recent generalizations of them, relative rotation rates [14, 15],
are already sufficient to provide us with key dynamical information.

What makes knot theory dynamically relevant is determinism. Indeed, two trajecto-
ries cannot intersect in phase space: otherwise, the common point would have two fu-
tures. As a result, knots and links formed by periodic orbits are well defined. Further-
more, changing a control parameter generally deforms continuously the orbit, but without
having it intersect itself, so that its knot type is not modified. Thus, the knot invariants of
a periodic orbit are constant over its entire domain of existence and are real fingerprints.

Even if they have a dynamical significance, knot types and link invariants can only
be useful in experiments if they can reliably be estimated from time series. By searching
for close returns we only obtain trajectory segments which approach periodic orbits but
are not exactly closed. We then make a knot out of this segment by closing the small gap.
In doing so, we assume that in a small neighborhood of the almost closed orbit we have
observed, there is a true periodic orbit with the same knot type. This is most certainly
true when the distance of close return is small compared to the average distance between
strands of the knot, so that the deformation from the segment observed to the neighboring
periodic orbit cannot possibly induce self-intersections. Similarly, knot invariants are
very robust to noise, whose effect can be considered to be a small deformation of the
orbit. In any case, we shall see later that topological invariants of different periodic orbits
provide redundant information, so that we can verify that the set of numbers measured is
geometrically consistent.

2.4. Stretching and squeezing link periodic orbits

After having extracted some periodic orbits from a time series, embedded them in a re-
constructed phase space and computed their (self-) linking numbers and relative rotation
rates, we are left with possibly large tables of numbers. What do we do with this infor-
mation? As we shall see in the next section, the key property is that there is a systematic
organization in the knots and links formed by periodic orbits and that this organization
can be recovered through their invariants.
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Topological templates: subtemplates

Marc Lefranc / The Topology of Deterministic Chaos: Stretching, Squeezing and Linking 9

such template can be used as a model of the stretching and squeezing organizing the
strange attractor in which the orbits are embedded.

Experimental template determination therefore relies on solving the following prob-
lem: given a set of (self-) linking numbers, what is the simplest template with a set of
orbits having the same invariants?

t= 0

t= 1

t= 2

t= 3

t= 4

t= 0

t= 1

t= 2

t= 3

t= 4
0111 11010111 1011

t11

t11

t11

t11

l01

l01

Figure 9. Left: the structure of a template can be described algebraically using a small set of integer numbers.
Right: Linking numbers of two orbits can be computed by following itineraries on the template and counting
contributions from the different terms. Only branches are shown. Reprinted from [3].

This can be achieved by describing the geometry of the template with a small set
of integer numbers that specify the torsions of the branches, their linking numbers and
the order in which they are stacked at the branch line when then join again. These num-
bers can be grouped in two matrices, the template matrixt whose diagonal (resp., non-
diagonal) termstii (resp.,tij) are given by the torsions in half-turns (resp., twice the
linking number of the two branches), and the layering matrixl such thatlij = 1 when
the leftmost of the two branchesi andj falls under the other and−1 otherwise [3, 9].
The parities of branch torsions,πi = tii mod 2, play an important rôle. (Self-) linking
numbers of periodic orbits then have the general form

I =
∑

i≤j αijtij +
∑

i<j Πij(π0, π1, . . . , πn−1)× lij (2)

= L(tij) +N(πi, lij)

where coefficientsαij and polynomial functionsΠij depend only on the symbolic codes
of the orbits, and characteristic numberstij , πi and lij depend only on the template
structure. Expressions (2) are almost linear with respect to the characteristic numbers and
are thus relatively easy to solve for the template structure. For example, let us assume
that we have obtained the orbits and invariants shown in Table 1.

Orbit 1 01 0111 01010111

1 0

01 1 1

0111 2 3 5

01010111 4 6 13 23

Table 1. (Self-) linking numbers of 4 orbits extracted from an experiment.

sists of a large number of symbol sequences. This num-
ber grows with the length of the sequence. For example,
to length four the alphabet might be 01, 011, and 0111.
In general, as longer and longer symbol sequences oc-
cur, new inadmissible sequences appear. We can take
this into account by increasing the number of letters in
the alphabet of allowed symbols as the length of the
symbol sequence grows (an alternative possibility, in-
volving Markov partitions, is indicated below). Each let-
ter in the alphabet (A,B,C, . . . ) then corresponds to one
branch of a template. In this representation (a) every
possible sequence of letters is allowed, (b) a template
typically has an infinite number of branches, and (c) the
number of branches corresponding to symbol sequences
of length <P is finite. We do not regard this as an el-
egant or even convenient way to describe strange attrac-
tors for dynamical systems.

We now describe an alternative way to describe the
dynamics. This is shown in Fig. 25(b) for the Rössler
strange attractor, for which the symbol sequence 00 is

forbidden. Here we begin with the Rössler template and
impose the condition that the transition 0→0 is forbid-
den @M(0,0)50# . This requires that the flow not even
reach the left quarter of the branch at the bottom. To
ensure this condition, we propagate this quarter branch
backwards 1,2, . . . iterations, and eliminate those parts
of the template that eventually feed this segment. Each
backward iteration has two preimages, since two
branches join at the branch line. In this way, we inter-
pret the flow as confined to what is left of the original
template (shown in white). That is, the template descrip-
tion (template matrix and array) remains unchanged,
but the Markov transition matrix changes

from M5F1
1

1
1 G to M5F0

1
1
1 G . (4.7)

In this interpretation we regard the simple Rössler
template with branches 0, 1 as generating a ‘‘covering’’
symbolic dynamics. That is, there is a 1-1 correspon-
dence between all the unstable periodic orbits in the
hyperbolic Rössler attractor and all the unstable peri-
odic orbits in the template. There is a 1-1 correspon-
dence between the unstable periodic orbits in a typical
nonhyperbolic strange attractor for the Rössler equa-
tions and a subset of unstable periodic orbits in the tem-
plate with two branches. The missing orbits have been
‘‘pruned away’’ (Cvitanovic, Gunaratne, and Procaccia,
1988).

A second example involves the Lorenz template. In-
tegrating the Lorenz-like Shimizu-Morioka (1980) equa-
tions (Shil’nikov, 1993)

ẋ5y ,

ẏ5x2ly2xz ,

ż52az1x2, (4.8)

for (a ,l)5(0.5,0.85) produces the attractor shown in
Fig. 26. The two options are again: (a) To construct the
template for the attractor, as shown in Fig. 27(a) (it is a
subtemplate of the Lorenz template) and (b) to regard
the flow as restricted to a subset of the Lorenz template
[this interpretation is shown in Fig. 27(b)].

FIG. 25. Rössler template. (a) Template describing a strange
attractor generated by the Rössler equations, but containing
only unstable periodic orbits built up from the symbols 01 and
1. (b) For this attractor the flow is restricted to a portion of the
original template. This subset is obtained by removing the
pieces of the branch corresponding to forbidden transitions, in
this case 0→0, that correspond to the left quarter of the
branch line. All parts of the branch line that eventually flow
into this segment must also be removed. They are determined
by finding all preimages of this segment.

FIG. 26. Lorenz-like strange attractor generated by integrating
the Shimizu-Morioka (1980) equations.

1473Robert Gilmore: Topological analysis of chaotic dynamical systems
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The Hindmarsh and Rose model: chaotic attractors
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Topological templates: Hindmarsh and Rose model

Marc Lefranc / The Topology of Deterministic Chaos: Stretching, Squeezing and Linking 7

“Combing” the intertwined periodic orbits (left) reveals their systematic organization (right) created
by the stretching and squeezing mechanisms.

As any trajectory on the attractor, periodic orbits experience the stretching and
squeezing mechanisms that organize the chaotic dynamics. However, because they are
closed trajectories, they bear the mark of these mechanisms in their own way. More pre-
cisely, they are knotted and braided in a way that depends directly on how stretching and
squeezing act on phase space. It should thus be possible with continuous deformations
to bring a link of periodic orbits in a configuration where the effect of stretching, folding
and squeezing is easily visualized (Fig. 7). This is a difficult problem that is elegantly
solved by means of branched manifolds thanks to the Birman Williams theorem [16].

3. Branched manifolds

3.1. The Birman–Williams theorem

A strange attractor is a complex object because it has a fractal structure which stems from
the repeated action of stretching and folding. Roughly speaking, the strange attractor
may be viewed as an infinitely folded two-dimensional surface tangent to the unstable
direction and to the flow direction, with the fractal structure being observed in the stable
direction, along which squeezing occurs. Thus, the attractor would collapse to a much
simpler object if we could somehow squeeze it along the latter direction. This is exactly
what the Birman–Williams achieves by identifying points whose orbits converge to each
other as time goes by and are eventually indistinguishable.

Given a three-dimensional (3D) hyperbolic chaotic flowΦt, Birman and Williams
define the following equivalence relation which identifies points of the invariant setΛ
having the same asymptotic future:

∀x, y ∈ Λ, x ∼ y ⇔ lim
t→∞

||Φt(x)− Φt(y)|| = 0, (1)

whereΦt(x) is the time-timage ofx under the flowΦ. The Birman–Williams then
consists of two main statements [16,17]:

1. In the set of equivalence classes of relation (1), the hyperbolic flowΦt induces a
semi-flowΦ̄t on a branched manifoldK. The pair(Φ̄t,K) is called atemplate, or
knot-holder, for a reason that the second statement makes obvious.
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Topological templates: Hindmarsh and Rose model

6

parameter b
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Figure 5. Plotting all attractors together we appreciate the
evolution along the parameter b

had been found using only SD method since the Newton
method do not converge even for points very near to the
solution.

Using all POs found in this section we can built the
topological templates as we will explain in the next sec-
tion.

IV. TOPOLOGICAL TEMPLATES

The topological analysis identify the stretching and
squeezing mechanism that act to create a strange attrac-
tor and organize all the unstable periodic orbits in this
attrator in a unique way2.

Knot holders (also called branched manifold) were con-
structed by Birman and Williams8 to describe the en-
semble of unstable periodic orbits in a strange attractor
as well as the topological organization of those periodic
orbits. This turns out to be a version of the dynami-
cal system in the limit of infinite dissipation. With this
branched manifolds we built the topological templates
which consist on: branch-twisting, crossing information,
the order in which branches are squeezed together and
the branch transition matrix2.

In Fig 6 we make a representation of how the ”clove”

chaotic-layers

spike-adding

SPIKING

BURSTING

Figure 6. Representation of how the ”clove” in the chaotic
region corresponds to different layers that go out all from
the same point. Above the chaotic region it is shown spiking
behavior while bursting is presented bellow. Since the tran-
sition between these both fenomena take place in the chaotic
region? it will be faster for smaller b values where all layers
comes together.

Figure 7. We show for different attractors in the lower part
of the chaotic structure, their equivalents in the upper part.
This equivalence comes because of the same number of peri-
odic orbits (at least at low multiplicities).

in the chaotic region corresponds to different layers that
go out all from the same point. Above the chaotic region
it is shown spiking behavior while bursting is presented
bellow. Since the transition between these both fenom-
ena take place in the chaotic region? it will be faster for
smaller b values where all layers comes together than for
larger b values where the ”clove” are well separated.

The number of Unstable Periodic Orbits determines
the structure of the chaotic attractor. Taking into ac-
count the ”onion” structure, each ”teeth” (or part of it)
in the low right side of the chaotic structure (bigger b val-
ues) will have an equivalent in the upper left side (smaller
b values), the point is that while in the lower part the
”teeth” are well separated, in the upper part they will
be all crammed. In Fig 7 we show for different attractors

The topological template for the HR model
is the Smale’s horseshoe template

but with forbidden “lanes”.

The templates follows the “onion” structure.

sists of a large number of symbol sequences. This num-
ber grows with the length of the sequence. For example,
to length four the alphabet might be 01, 011, and 0111.
In general, as longer and longer symbol sequences oc-
cur, new inadmissible sequences appear. We can take
this into account by increasing the number of letters in
the alphabet of allowed symbols as the length of the
symbol sequence grows (an alternative possibility, in-
volving Markov partitions, is indicated below). Each let-
ter in the alphabet (A,B,C, . . . ) then corresponds to one
branch of a template. In this representation (a) every
possible sequence of letters is allowed, (b) a template
typically has an infinite number of branches, and (c) the
number of branches corresponding to symbol sequences
of length <P is finite. We do not regard this as an el-
egant or even convenient way to describe strange attrac-
tors for dynamical systems.

We now describe an alternative way to describe the
dynamics. This is shown in Fig. 25(b) for the Rössler
strange attractor, for which the symbol sequence 00 is

forbidden. Here we begin with the Rössler template and
impose the condition that the transition 0→0 is forbid-
den @M(0,0)50# . This requires that the flow not even
reach the left quarter of the branch at the bottom. To
ensure this condition, we propagate this quarter branch
backwards 1,2, . . . iterations, and eliminate those parts
of the template that eventually feed this segment. Each
backward iteration has two preimages, since two
branches join at the branch line. In this way, we inter-
pret the flow as confined to what is left of the original
template (shown in white). That is, the template descrip-
tion (template matrix and array) remains unchanged,
but the Markov transition matrix changes

from M5F1
1

1
1 G to M5F0

1
1
1 G . (4.7)

In this interpretation we regard the simple Rössler
template with branches 0, 1 as generating a ‘‘covering’’
symbolic dynamics. That is, there is a 1-1 correspon-
dence between all the unstable periodic orbits in the
hyperbolic Rössler attractor and all the unstable peri-
odic orbits in the template. There is a 1-1 correspon-
dence between the unstable periodic orbits in a typical
nonhyperbolic strange attractor for the Rössler equa-
tions and a subset of unstable periodic orbits in the tem-
plate with two branches. The missing orbits have been
‘‘pruned away’’ (Cvitanovic, Gunaratne, and Procaccia,
1988).

A second example involves the Lorenz template. In-
tegrating the Lorenz-like Shimizu-Morioka (1980) equa-
tions (Shil’nikov, 1993)

ẋ5y ,

ẏ5x2ly2xz ,

ż52az1x2, (4.8)

for (a ,l)5(0.5,0.85) produces the attractor shown in
Fig. 26. The two options are again: (a) To construct the
template for the attractor, as shown in Fig. 27(a) (it is a
subtemplate of the Lorenz template) and (b) to regard
the flow as restricted to a subset of the Lorenz template
[this interpretation is shown in Fig. 27(b)].

FIG. 25. Rössler template. (a) Template describing a strange
attractor generated by the Rössler equations, but containing
only unstable periodic orbits built up from the symbols 01 and
1. (b) For this attractor the flow is restricted to a portion of the
original template. This subset is obtained by removing the
pieces of the branch corresponding to forbidden transitions, in
this case 0→0, that correspond to the left quarter of the
branch line. All parts of the branch line that eventually flow
into this segment must also be removed. They are determined
by finding all preimages of this segment.

FIG. 26. Lorenz-like strange attractor generated by integrating
the Shimizu-Morioka (1980) equations.
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Topological templates: successive Cantor structures

0          0
Forbidden0    0 1    0    0

0111

0111

1101

1101

1110

1110

1011

1011

0 1

z Theoretical framework
for the “onion-bulb” chaotic structures
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Outline

1 Numerical techniques to explore complex behaviors

2 Experimental mathematics: high-precision and more ...

3 Need to mixing techniques (so collaborations): “bailar juntos”

4 Need to prove some results: CAP

5 Need to use “problem”-specific techniques: kneading plots
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Experimental Hyperchaos

Electronic circuits
T. Kapitaniak, L. Chua, G. Zhong, Experimental Hyperchaos in Coupled Chua’s Circuits, IEEE Transactions on Circuits and

Systems, 41 (7), 1994.

I 
IEEE TRANSACI’IONS ON CIRCUITS AND SYSTEMS-I FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 41, NO. 7, JULY 1994 499 

Express Letters 

Experimental Hyperchaos in Coupled Chua’s Circuits 

Tomasz Kapitaniak, Leon 0. Chua, and Guo-Qun Zhong 

Abstract-In this letter we report experimental observation of hyper- 
chaotic attractors in open and closed chains of Chua’s circuits. 

I. INTRODUCTION 
In the last 20 years it has been shown that chaotic behavior is 

typical for three dimensional systems [ 11-[3]. In higher (at least four) 
dimensional systems, besides chaotic attractors characterized by one 
positive Lyapunov exponent, it is possible to find hyperchaotic attrac- 
tors with two (or more) positive Lyapunov exponents. Hyperchaotic 
attractors have been observed in a number of numerical studies 
[4]-[8]. Laboratory experiments have also revealed the existence of 
hyperchaos in hydrodynamic systems [20] and semiconductor device 
WI. 

II. HYPERCHAOTIC ATTRACTDRS 
In what follows we investigate the hyperchaotic attractors in a 

chain of coupled identical Chua’s circuits, as shown in Fig. 1. The 

Each Chua’s circuit [9], [lo] contains three linear energy-storage 
elements (an inductor and two capacitors), a linear resistor, and 
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Fig. 1. Five identical coupled Chua’s circuits forming a ring. 

a single nonlinear resistor NR. namely, Chua’s diode [lo] with a 
three-segment linear characteristic defined by 

1 
2 f ( V R )  = mOVR + -(ml - mO)[lvR -k Bpl - IvR - B ~ l l  (2) 

where the slopes in the inner and outer regions are mo and ml, 
respectively, and fB, denotes the breakpoints. Each Chua’s circuit 
is coupled to the next one in such a way that the difference between 
the signals vgC1) and v g l  

d ( t )  = K ( v p  - vga> (3) 

is introduced into each ith circuit as a negative feedback current. 
K > 0 is the stiffness of the perturbation, which we consider as a 
control parameter. In our experiments we took C1 = 10 nF, B, = 1 
V, Cz = 99.34 nF, ml = -0.76 mS, mo = -0.41 mS, L = 18.46 
mH, R = 1.64 KC2, i.e., we assume that each Chua’s circuit operates 
on the chaotic double-scroll Chua’s attractor [lo], [ 111. 

System (1) is a 15-dimensional dynamical system and its behavior 
is characterized by 15 Lyapunov exponents. Due to our assumption 
that each Chua’s circuit operates on the chaotic double-scroll Chua’s 
attractor, system (1) can have from one to five positive Lyapunov 
exponents depending on the value of coupling stiffness K,. For 
experimental observation of hyperchaotic attractors we exploit some 
results from chaos synchronization theory [ 121-[18]. When both 
Chua’s circuits are. operating in a chaotic regime, it is possible to 
achieve synchronization [8], [18] using the above coupling. It was 
shown by de Sousa et al. [14] that the boundary of the possible 
synchronization (according to the definition by Pecora and Carroll 
[12]) and nonsynchronization is strictly connected to the transition 
from chaotic to hyperchaotic behavior. This result can be generalized 

1057-7122/94$04.00 0 1994 IEEE 
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(C) 

Fig. 2. Experimental two-dimensional projections of hyperchaotic attractors: Ii1-5 = 0.01; (a) U,$: versus U,$!, Horizontal axis is u g i ,  1 V/div; Vertical 
axis is U$?!, 1 V/div, (b) u g i ,  versus ugi, Horizontal axis is U,$;, 200 mV/div; Vertical axis is u g i ,  200 mV/div, (c) U$: versus U,$:, Horizontal 
axis is U,$?, 1 V/div; Vertical axis is U$,), 200 mV/div. 

to the following conjecture: If in a 3N-dimensional chain of Chua’s 
circuits (1)  no two circuits synchronize with each other, then system 
(1) has a hyperchaotic attractor with N positive Lyapunov exponents. 
This property suggests that we observe the system behavior of ugi  
versus U:!, where i $ j , i ,  j = 1 ,2  ,..., 5, plots. If two of the 
Chua’s circuits i and j synchronize with each other, the plot U$! 
versus L I ~ !  will be a straight line. On the other hand, if all such plots 
exhibit complicated structures, we have a hyperchaotic attractor with 
five positive Lyapunov exponents. 

In Fig. 2(aXc) we have shown some two-dimensional projections 
of the attractor of system (1) for the case where no two Chua’s 
circuits synchronize with each other. Our experimental results are 
in good agreement with the numerical simulations of (I), as can be 
seen in Fig. 3 ( aHc)  where we have presented the simulated results 
corresponding to Fig. 2(a)-(c) plots obtained using the software 
INSITE [ 191. Calculation of Lyapunov exponents showed that the 
attractors of Figs. 2 and 3 are characterized by five positive Lyapunov 
exponents: XI = 0.44, XZ = 0.43, X3 = 0.43, X4 = 0.41, 
A5 = 0.41, Xg = 0, X7 = 0, Xg = 0, Xs z= -0.1, X 10 = -0.1, 
A11 = -3.60,  XI^ = -3.69, X i 3  = -3.73, A14 = -3.79, 

A15 = -3.88. Hyperchaotic attractors with five positive, three zero 
and seven negative Lyapunov exponents are robust in system (1) and 
we can observe them for A-z < 0.016. 

Hyperchaotic attractors can also be observed in the case of an open 
chain of unidirectionally coupled Chua’s circuits (i.e., h‘s = 0 in 
(l)), as shown in Fig. 4. In this case, we also observed hyperchaotic 
attractors with five positive Lyapunov exponents for Kl-4 < 0.21. 
For example, for KI-4 = 0.01 we have an attractor with the 
following Lyapunov exponents: XI = 0.43, Xz = 0.42, XB = 0.41, 
A4 = 0.41, A5 = 0.40, Xg = 0, X, = 0, Xs = 0, Xs = 0, 
XIO = 0, A11 = -3.80, X i 2  = -3.82, X i 3  = -3.82, X i 4  = -3.83, 
Xis = -3.84. 

The difference in the numbers of zero and negative Lyapunov 
exponents in the spectrum of hyperchaotic attractors associated with 
the open and closed chains, respectively, of Chua’s circuits suggests 
different topological structures of these attractors. Unfortunately, due 
to the high-dimensionality of our system we are unable to observe 
these differences on two-dimensional projections of the attractor: in 
both cases these projections are similar and indistinguishable. As an 
example compare Fig. 5 with Fig. 2(a). 
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Playing with hyperchaos

But ... in several simulations § ALWAYS (?) quite noisy

a very large number of points in each one. For this, two
parameters are simultaneously varied every time, while the other
is kept fixed. We claim that these three two-dimensional para-
meter-space plots can represent the parameter-space as a whole
in the investigated parameters range. Furthermore, three-dimen-
sional phase-space plots are used to corroborate conclusions
obtained from parameter-space plots.

The paper is organized as follows. In Section 2 we investigate
in details the (a, b) parameter-space, with g kept fixed in �3.0. In
this same Section 2 are shown panels displaying the (a, g)
parameter-space, with b¼ 0:2, and the (b, g) parameter-space,
with a¼�3:0. Finally, some concluding remarks are given in
Section 3.

2. Parameter-space analysis

Two parameter-space plots are shown in Fig. 1, displaying
different dynamical behaviors for system (2). Both panels were
obtained by computing Lyapunov exponents l on a 500�500 grid
of parameters (a, b), and were constructed for fixed g¼�3:0,
�4rar�2, �0:3rbr0:6. In Fig. 1(a) is considered the largest
Lyapunov exponent, while Fig. 1(b) considers the second largest
Lyapunov exponent. In these and further similar panels, system
(2) was always integrated with a fourth-order Runge–Kutta
algorithm with a step size equal to 10�3, and considering
500�103 steps to compute each Lyapunov exponent. Integrations
were performed along lines of constant parameter b, starting
always at the minor value of a from the initial condition P0¼(x10,
x20, x30, x40) ¼(0.14,�0.14,0.27,1.76), calculating Lyapunov expo-
nents subsequently. While calculating Lyapunov exponents along
lines of constant b, the initial value P¼P0 was utilized only to
begin integrations at the small value of a. To begin integrations
for each increased value of a, we use the last value of P obtained
with the anterior value of a, as the initial condition for the newly
increased a, i.e., we follow the attractor.

In each panel of Fig. 1, colors are associated with the magni-
tude of the Lyapunov exponent. White for more negative, black
for zero, and red for more positive. Indeed, a negative exponent is
indicated by a continuously changing white–black scale, while a
positive exponent is indicated by a continuously changing yel-
low–red scale. Note that the color scale of each one diagram was
redefined in each individual plot: in plot shown in Fig. 1(a)
�0:8olo0:6, while in Fig. 1(b) �1:6olo0:2.

As is well known [5], a negative largest Lyapunov exponent
indicates a stable equilibrium point, a zero largest Lyapunov
exponent indicates a stable periodic attractor (or a quasiperiodic
attractor, when the second largest Lyapunov exponent is also
equal to zero), and a chaotic attractor has a positive largest
Lyapunov exponent. Now we concentrate our attention in the
last case, that is, when the largest Lyapunov exponent is greater
than zero, which is corresponding to the yellow–red region in the

parameter-space of Fig. 1(a). In consequence, there are only two
possibilities to the second largest Lyapunov exponent, once the
third largest Lyapunov exponent is null, and the minor is
negative: a positive value, which indicates hyperchaotic motion
with two positive Lyapunov exponents, and a zero value indicat-
ing chaotic motion.

Therefore, from above said, we conclude that the points with
yellow–red color in parameter-space of Fig. 1(b) are characterized
by hyperchaotic motion. In other words, we here numerically
characterize hyperchaotic behavior in the parameter-space of
system (2), by looking for the positive second largest Lyapunov
exponent. For all set of parameters (a, b) that this exponent is
greater than zero, the motion is hyperchaotic. Note that the set of
points with yellow–red color in Fig. 1(b) is a subset of the set of
points with the same shading in Fig. 1(a). It is a consequence of the
fact that if the second largest Lyapunov exponent is greater than
zero then the largest Lyapunov exponent also is greater than zero.

It is important to note that three detached regions exist in the
parameter-space of Fig. 1(a): a periodic or quasiperiodic region in
black, a chaotic or hyperchaotic region in yellow–red, and an
equilibrium point region in gray. The decision between periodic-
quasiperiodic and chaotic-hyperchaotic depends, for each point in
the parameter-space, on the behavior of the second Lyapunov
exponent, i.e., depends on the color of the point in Fig. 1(b). For
instance, it is clear by inspection in panels of Fig. 1 that chaotic
and hyperchaotic regions are not well-defined in parameter-space
of system (2), once the region that is clearly yellow–red in
Fig. 1(a), appears yellow–red but riddled by several black points
in Fig. 1(b).

Fig. 2 shows three-dimensional projections of typical attractors
for system (2) that are corresponding to four of the five points
marked in panels of Fig. 1. Fig. 2(a), constructed with parameters
corresponding to point A, illustrates an attractor whose Lyapunov
exponents are 0.20, 0.03, 0.00, and �101. Fig. 2(b), corresponding
to point B, shows an attractor with Lyapunov exponents 0.28, 0.04,
0.00, and �105. In both cases there are two positive Lyapunov
exponents and, therefore, system (2) is hyperchaotic for para-
meters (a, b, g)¼(�3.0,0.0,�3.0) and (a, b, g)¼(�3.0,0.25,�3.0).
The first result is in accordance with that one reported in Ref. [3],
where other parameter, p, was varied, with a, b, g kept fixed.
Comparison is made with the case p¼0.0. Otherwise, the second
result is in accordance with that one reported in Section 2.1 of
Ref. [4], where only b was varied. This time the comparison is
made with the case b¼ 0:25.

Fig. 2 also shows three-dimensional projections of typical qua-
siperiodic and periodic attractors for system (2), corresponding to
points C and D in panels of Fig. 1, respectively. In Fig. 2(c) is shown a
quasiperiodic attractor with Lyapunov exponents 0.00, 0.00, �0.25,
and �73, while Fig. 2(d) shows a periodic attractor with Lyapunov
exponents 0.00, �0.04, �0.05, �74. The corresponding points in
the parameter-space, C and D, are (a, b, g)¼(�3.0,�0.11,�3.0) and
(a, b, g)¼(�3.0,�0.25,�3.0).

Fig. 1. Regions and colors in (a, b) parameter-space of system (2), for g¼�3:0. (a) The largest Lyapunov exponent. (b) The second largest Lyapunov exponent. In each plot

colors represent the magnitude of the Lyapunov exponent, as shown in the respective column at right. About the points marked in panels, see the text. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article.)

P.C. Rech / Neurocomputing 74 (2011) 3361–33643362

1st Lyapunov 
exponent

2nd Lyapunov
exponent

So, chaotic?
Hyperchaotic?
WHAT?

§
P. Rech, Chaos and hyperchaos in a Hopfield neural network, Neurocomputing, 2011.
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Playing with hyperchaos
Biparametric study of the 4D Rössler system





ẋ = −(y + z),
ẏ = x + ay + w ,
ż = b + xz,
ẇ = −cz + dw ,

where we fix the values of parameters b=3.0 and d=0.05, and we allow the
values of a and c change.
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Playing with hyperchaos

Biparametric study of the 4D Rössler system (Lyapunov exponents
based)
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Playing with hyperchaos

Biparametric study of the 4D Rössler system (Lyapunov exponents
based)
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... and now some theorems (CAP)

Extensive numerical studies yield us to find many approximate periodic orbits
for P. For some pairs of these orbits we could find approximate heteroclinic
connections on which we will built chaotic dynamics.

p8
1 = (−104.32937253702462, 0.028756669726685443, 44.645081351998819),

p8
2 = (−104.26664163365506, 0.028773972266421831, 44.640115482927115),

p8
3 = (−104.42324539012806, 0.028730815749171541, 44.678254866134068),

p16
4 = (−104.39575243552828, 0.028738382959034744, 44.666264617071981),

q12
1 = (−103.69667754570543, 0.028932144798038389, 44.407870627484129),

q14
2 = (−103.37098255164607, 0.029023312473829044, 44.284349486019579).

The points pj
i are approximate periodic points for P of period j with

one-dimensional unstable manifold. The points q j
i are approximate periodic

points of period j with two-dimensional unstable manifold.
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... and now some theorems (CAP)

This numerical study −→ generates hypothesis and conjectures

Now it is time to state results :-)

Defining the Poincaré section

Π = {(x ,0, z,w) ∈ R3; ẏ = x + z < 0}

and P : Π→ Π, the associated Poincaré map, and fixing the
parameter values a = 0.27857, b = 3, c = 0.3 and d = 0.05.
Using rigorous ODE solvers for the systems and variational
equations (CAPD library¶ of the CAPD group (Krakow))

¶Free-software: http://http://capd.ii.uj.edu.pl/
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... and now some theorems (CAP)

Theorem
For each uj ∈ {p8

1,p
8
2,p

8
3,p

16
4 ,q

12
1 ,q14

2 } there is a unique periodic orbit v for P
of the principal period j in the ball B(uj ,10−8) in the maximum norm.
Moreover, the resulting periodic points close to pj

i have one-dimensional
unstable manifold and those corresponding to q j

i have two-dimensional
invariant manifold.
Proof Let us fix uj ∈ {p8

1, p8
2, p8

3, p16
4 , q12

1 , q14
2 } and define F : Πj → Πj by

Fj (v1, v2, . . . , vj ) = (v1 − P(vj ), v2 − P(v1), . . . , vj − P(vj−1)).

Solutions to Fj (v1, v2, . . . , vj ) = 0 correspond to j-periodic orbits for P provided vi 6= vc for i 6= c.
Put

z0 = (v1, v2, . . . , vj ) = (uj
, P̂(uj ), P̂2(uj ), . . . , P̂ j−1(uj )),

where by P̂(u) we denote an approximate value of P(u) obtained by nonrigorous numerical method.
Let Z = B(z0, 10−8) be the ball centered at z0 in the maximum norm. Using rigorous solvers for ODEs and variational
equations from the CAPD library we computed the interval Newton operator

N(Fj , Z , z0) = z0 − [DFj (Z )]−1 · Fj (z0)

and obtained that N(Fj , Z , z0) ⊂ int(Z ). This proves that Fj has unique zero (v1, . . . , vj ) in Z . Moreover, this zero belongs to

N(Fj , Z , z0) which in most cases had diameter less than 10−9. From these estimation we could conclude that uj has principal

period j .
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... and now some theorems (CAP)

Then we computed rigorous bounds for DP j (v1) ∈ DP j (B(uj ,10−10)) and we
could check the hyperbolicity type of uj by analysis of the spectrum of the
obtained interval matrix. The actual bounds for eigenvalues {λ1, λ2, λ3} are
the following

orbit λ1 λ2 λ3 return time

p8
1 2.76

4 −0.166
4 [−1,1] · 10−11 56.58553193757

00

p8
2 −3.991

89 −0.547
4 [−5,5] · 10−12 56.5983225273

61

p8
3 −1.91

88 0.366
4 [−1,1] · 10−11 56.59393191

89

p16
4 [−3.30,−2.96] [−0.05,0.26] + [−0.13,0.13]i 113.185361

59

q12
1 −22.31

28 −3.14
06 [−8,8] · 10−11 85.088381236

29

q14
2 −4.47

39 + 5.48
36i −4.47

39 − 5.48
36i [−5,5] · 10−11 99.297373853

34

�
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... and now some theorems (CAP)

We have also proved that:

there is an explicitly given trapping region B ⊂ Π for P, i.e.
P(B) ⊂ B,
the maximal invariant set A =inv(P,B) contains three invariant
sets, say S1, S2, S3, on which the dynamics is Σ2 chaotic, i.e. it is
semiconjugated to the Bernoulli shift on two symbols,
S1 is hyperchaotic set with two positive Lyapunov exponents,
S2 and S3 are chaotic sets with one positive Lyapunov exponent,
there is a countable infinity of heteroclinic connections linking S1
with S2, S2 with S3 and S1 with S3,
there is countable infinity of periodic orbits and
heteroclinic/homoclinic orbits inside each horseshoe.
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Outline

1 Numerical techniques to explore complex behaviors

2 Experimental mathematics: high-precision and more ...

3 Need to mixing techniques (so collaborations): “bailar juntos”

4 Need to prove some results: CAP

5 Need to use “problem”-specific techniques: kneading plots
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The Lorenz model

The Lorenz model
dx
dt

= −σ x + σ y ,
dy
dt

= −xz + r x − y ,
dz
dt

= xy − b z,

Three dimensionless control parameters:
σ Prandtl number,
b a positive constant,
r relative Rayleigh number.

The Saltzman values: σ = 10, b = 8/3, r = 28

R. Barrio (University of Zaragoza, Spain) Experimental Mathematics DDAYS’14, Badajoz 51 / 67



The Lorenz model: Three-parametric analysis

800
400

emarap r ret

b rete
mara

p

σretemarap

Theorem
For a given fixed r > 1 the region where chaos is possible is bounded
in b, and if b ≥ ε > 0 then the region is bounded in σ too. To be
precise, outside a bounded region every positive semiorbit of the
Lorenz system converges to an equilibrium.
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The Lorenz model: bifurcation analysis

l3

l 5
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parameter r

(L.P. Shilnikov, 1980)
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The Lorenz model: but that’s all?

More T-points: the Lorenz model
Location of T-points in the Lorenz system is a quite complex task.
And, what about locating all the T-points automatically?

In this case, the T-points are a kind of codimension-two heteroclinic
loop. It connects a homoclinic curve with another spiral homoclinic
curve.

480 Glendinning and Sparrow 

t ~ - oo and the other as t --, oo ). A heteroclinic loop is a set of heteroclinic 
orbits between stationary points AI and A2, A2 and A3 ..... An_l and A,, 
and finally A, and A1. The Lorenz equations are invariant under the sym- 
metry 

(x, y , z ) -~( -x ,  - y , z )  (2) 

and, over a large region of parameter space, there are three unstable 
stationary points: the origin, 0, and C+=E_+ b x / g ~ - l ) ,  _+ b x / g ~ - l ) ,  
r - 1 ]  which are mapped onto each other by the symmetry. In a two- 
parameter numerical study m in which a was kept fixed, a = 10, it has been 
shown that there are particular parameter values (r _~ 30.475, b ~ 2.623) for 
which each branch of the unstable manifold of the origin coincides with a 
branch of the stable manifold of C + or C -  giving the configuration shown 
schematically in Fig. 1. Such points in a two-dimensional parameter space 
will be referred to as T points. This follows Ref. 1 where such a point was 
referred to as a terminal point, but which could also stand for codimension 
two point. 

We look at the simple heteroclinic and homoclinic orbits in a 
neighborhood of a T point. Although the results will be phrased in terms of 
systems with symmetry like the Lorenz equations, many remain true (with 
minor reinterpretation, see Ref. 3) for any family of systems with a 

\\. / i / i "-.-/ / /  

- \  I I - - ~ l  I 

Fig. 1. The heteroclinic loop, showing the surfaces Xl, Z2, X3, and Z 4 used to construct the 
return map S. The symmetric image of this loop is shown with a broken line. R. Barrio (University of Zaragoza, Spain) Experimental Mathematics DDAYS’14, Badajoz 54 / 67



The Lorenz model: T-points
A new computer technique: more and more T-points
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The Lorenz model: T-points
A new computer technique: more and more T-points

Kneading sequence {κn(O+)} defined (Milnor and Thurston, 1980)

κn(O+) =





+1, if T n(O+) > 0,
−1, if T n(O+) < 0,
0, if T n(O+) = 0;

here T n(O+) is the n-th iterate of the right separatrix O+ of the origin. The
condition T n(O+) = 0 is interpreted as a homoclinic loop, i.e. the separatrix
returns to the origin after n steps.

−20 −15 −10 −5 0 5 10 15 20 25−50
0

50
0

10

20

30

40

50

60

{+1,-1,-1,+1,+1,+1,+1,...,+1,...}

−20 −15 −10 −5 0 5 10 15 20 25−50

0

50
0

10

20

30

40

50

60
{+1,-1,-1,-1,-1,-1,-1,...,-1...}

-1 +1 -1 +1

A B

O
O

The kneading invariant for the separatrix is defined in the form of a formal
power series:

P(q) =
∞∑

n=0

κn qn.

Then we define the bi-parametric mapping: (r , σ)→ P50(q) with some
appropriately chosen q
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The Shimizu-Morioka modelT-points in the Shimizu-Marioka system

A Shilnikov, LP Shilnikov, D Turaev,  Bifurcations and Chaos, 1993

A Shilnikov, Physica D 1993

Gonchenko S, Ovsyannikov I, Simo C, Turaev D, Bifurcation and 
Chaos, 2005 
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The Shimizu-Morioka model
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6 Xing, Barrio and Shilnikov

(a)

α

λ

α

λ

(b)

(c)

Figure 5: (a) (α, λ)-sweep of the SM model using the {5− 15}-kneading range. Solid-color regions, associated with constant
values of the kneading invariant, correspond to simple dynamics dominated by stable equilibria (blue and red) or stable periodic
orbits (light blue). The borderline between blue and red/light blue region corresponds to the bifurcation curve, HB, of the
homoclinic butterfly. The merger point corresponding to a resonant saddle of codimension-two gives rise to loci of bifurcation
curves bounding and foliating the region of the Lorenz attractor. This region contains a variety of swirls of various scales
centered around Bykov T-points for heteroclinic connections as well as the saddles separating them. The line, 2HB, represents
a bifurcation curve of a double-pulsed [10] homoclinic loop with codimension-two inclination-switch point, A=0, on it. (b)
Note saddles bounding codimension-two points in the diagram. High-resolution sweep of {12 − 22}-kneading range revealing
fine foliation of the chaos region by homoclinic curves before the primary T-point at (0.3903, 0.7805). Complex organization of
multi-fractal swirls only appears noisy due to superabundant color variations in the given range. (c) Magnification depicting
a plethora of embedded homoclinic swirls around T-points of various scales.

increases by one with each turn of the spiral approaching to the T-point. The line, l1, originating from
the T-point corresponds to homoclinics of the saddle-focus satisfying the Shilnikov condition [Shilnikov,
1965, 1970; Shilnikov & Shilnikov, 2007], and hence leading to the existence of a denumerable set of saddle
periodic orbits nearby [Shilnikov, 1967a]. Turning points (labeled by M’s) on the primary spiral correspond
to inclination-switch homoclinic bifurcations of the saddle [Shilnikov et al., 1993, 1998,2001]. Each such
homoclinic bifurcation point gives rise to the occurrence of saddle-node and period-doubling bifurcations
of periodic orbits of the same symbolic representation. The central T-point gives rise to countably many
subsequent T-points with similar bifurcation structures on smaller scales in the parameter plane. In addition
to the indicated curves in the unfolding of a generic T-point, the unfolding of a T-point in a Z2-symmetric
system has other bifurcation curves, for example, corresponding to heteroclinic connections between both
saddle-foci [Bykov, 1980; Glendinning & Sparrow, 1986; Bykov, 1993].

R. Barrio (University of Zaragoza, Spain) Experimental Mathematics DDAYS’14, Badajoz 60 / 67



The Shimizu-Morioka model
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Symbolic quest into homoclinic chaos 3

Figure 2: Sketch of a partial bifurcation unfolding of a Bykov T-point (from [Bykov, 1980]) corresponding to a codimension-
two heteroclinic connection between a saddle of the (2,1)-type and a saddle-focus of the (1,2)-type. It features the characteristic
spirals corresponding to homoclinic bifurcations of the saddle. Turning points (labeled by M’s) on the spiral are codimension-
two points of inclination-switch bifurcations giving rise to stable periodic orbits through saddle-node and period-doubling
bifurcations (lm-curves) and subsequent spiral structures of smaller scales between spiral’s scrolls.

structurally unstable dynamics – the precursors of deterministic chaos. In 1968, L.P. Shilnikov published
a paper proving the existence and uniqueness of a saddle periodic orbit emerging through a homoclinic
bifurcation of a saddle in R3 and higher dimensions [Shilnikov, 1968a]. In this paper he introduced the con-
ditions giving rise to the novel bifurcations of codimension-two termed as orbit-flip and inclination-switch
(Fig. 3). 1 This result (as well as ones above, treated as scientific folklore, i.e. without acknowledging his
original papers), along with the widely-known Shilnikov saddle-focus [Shilnikov, 1965, 1967a, 1970] and a
less known Shilnikov saddle-node [Shilnikov, 1969; Shilnikov & Shilnikov, 2008], constituted his thesis for a
degree of Doctor of Science. The degree was never granted because of intrigues of his former graduate tutor
Y.Neimark, who had managed his network connections within the Soviet science establishment to obstruct
such an original and independent researcher as L.P. Shilnikov of 35 years old. That unfortunate episode did
not affect his stellar carrier of an academician, so L.P. Shilnikov had never considered a re-application for
that degree. Mid 1970’s and early 80’s were just the beginning of the new – his era of Poincaré’s qualitative
theory of differential equations and bifurcations with the emphasis upon complex dynamics, the field that
is known today as the advanced dynamical systems theory.

In this paper we would like to re-discover the wonder of systems with Lorenz-like attractors, which are
viewed not only through the prism of the elegant complexity of the trajectories’ behavior in the phase space,
but also by disclosing a plethora of generic fractal-hierarchical organizations of the parameter space. Our
work is aimed at illustrating the richness of homoclinic bifurcations underlying the magic metamorphoses of
chaos in the exemplary Shimizu-Morioka models and like systems. It is an extension of the ideas introduced
in the earlier paper “Kneadings, Symbolic Dynamics and Painting Lorenz Chaos” by R. Barrio, A. Shilnikov
and L. Shilnikov [Barrio et al., 2012]. The original computational approaches that we have been developing
for studying systems with complex dynamics capitalize on the key property of deterministic chaos – the
sensitive dependence of solutions in such a system on variations of bifurcation parameters. In particular, for

1Upon fulfillment of certain conditions these bifurcations can lead to the onset of complex dynamics in Z2-symmetric systems,
specifically, to the appearance of the Lorenz attractor [Shilnikov, 1981].
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The Shimizu-Morioka model: more and more T-points
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The Shimizu-Morioka model: fractal structure (Bykov)
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(a)

(b)

(c)

Figure 7: (a) Geometry of an inclination-switch homoclinic bifurcation causing the emergence of stable orbits near the
saddle with a saddle index ν < 1. Its core element is local expansion (d1 < d2 ∼ dν1) of an area, M between a 1D outgoing
separatrix Γ+ and a close trajectory. This is further followed by bending such that the global return map T takes a cross-
section Π, transverse to a 2D stable manifold of the saddle, becomes a contraction with stable fixed points, rather than an
expansion generating saddle fixed points. (b) 1D discontinuous Lorenz map (4) without and with bending, resp., prior to and
after the inclination-switch bifurcation. Progressive bending gives rise to a saddle-node bifurcation, followed by a cascade of
period-doubling bifurcations, followed by a secondary homoclinics as soon as the graph, TΠ1 lowers below the ξn-axis. (c)
The evolution of the cusp-shaped graph of the 1D-map generated by critical points of the z-coordinate of a chaotic trajectory
on the Lorenz attractor in the SM-model above and below the boundary A = 0, (Fig. 8) resulting in the formation of the
characteristic hook (bend).

stable foci through a a supercritical Andronov-Hopf curve, AH, into a single orbit (x, y)-projected as a
figure-eight (Fig. 5). To the left, the codimension-two point, σ = 0 (ν = 1) originates a loci (bundle) of
bifurcation curves that determine the dynamics of the Lorenz attractor and shape its existence region. The
bundle is bordered by two curves: LA, bounding the red region from below, corresponds to the formation of
the Lorenz attractor. The other curve, 2HB, on the border between the light-blue region and multi-colored
region of chaos, corresponds to a double pulsed homoclinic loop [Shilnikov, 1993; Shilnikov et al., 1993]. The
inclination-switch bifurcation of this loop plays a critical role in the transformation of the Lorenz attractor
with no stable periodic orbits into a quasi-hyperbolic one with stable orbits [in stability windows].

This diagram is a demonstration of this new computational approach. A feature of complex, struc-
turally unstable dynamics is a dense occurrence of homoclinic bifurcations, which are represented by curves
of various colors that foliate the chaotic region in the bi-parametric scan. We stress that given the depth
(10 kneadings) of the scanning and the resolution of the colormap, the diagram can potentially reveal up to
210 distinct bifurcation curves of homoclinic trajectories up to the indicated length. The top right picture
in Fig. 5 presents a bi-parametric sweep of the same region, using a longer tail, {12 − 20}, of the knead-
ing sequence. The sweep reveals fine organization structures foliating the existence region of the Lorenz
attractors with bifurcation bundles, as well as two pronounced saddles separating the loci that converge
to the primary T-point. They also show a “turbulent plume” made of swirling bifurcation structures orig-
inating from the primary T-point. The plume appears noisy due to color alternations and excess low-scale
details. In what follows, we will focus on the complex self-similar organization and interconnection of such
bifurcation structures centered around subsequent T-points.
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Figure 8: Biparametric LE-sweep superposed with homoclinic (black) and heteroclinic (red) bifurcation curves. Grey shades
and colors are associated with LE quantities: λ2 < λ1. Major Shilnikov flames containing stability windows adjacent to
codimension-two inclination-switch bifurcations (dots) on the [orange] curve, A=0, demarcating the boundary of the existence
region of the Lorenz attractor in the (α, λ)-parameter plane; the SN, PF and PD labels identify saddle-node, pitch-fork and
period-doubling bifurcations. Superimposed black lines are several principal bifurcations curves of separatrix loops, which are
obtained by the parameter continuation. Note a bifurcation pathway connecting two T-points.

5. Self-similarity of homoclinic swirls

The bi-parametric sweep in Fig. 6 explores a fractal self-similar organization of bifurcation swirls, which are
centered around subsequent T-points. These points, including the secondary one, T2 at (0.2784, 0.5543),
are parented by the primary one, T1(0.3903, 0.7805), located at right-top corner of the left panel. One can
see that the diagrams disclose all details of the bifurcation structures of the Bykov T-points [Bykov, 1980].
Fine structures of the bi-parametric scan can be enhanced further by examining longer tails of the kneading
sequences. This allows for the detection of smaller-scale swirling structures within the homoclinic scrolls, as
predicted by theory (Fig. 2). From it we know that the subsidiary/peripheral points, T1k, parented by the
primary one, T1, must nest within an ultra thin wedge bordered by the bifurcation curves corresponding
to an initial homoclinic loop of either saddle-focus and a heteroclinic connection between both saddle-
foci. To figure out a fractal hierarchy for the embedded swirls, we take a one-parameter sweep of the
kneading invariant along a T-point pathway. The result is shown in the bottom panel in Fig. 6. The right
end point at α = 0.3903 in the diagram corresponds to the primary T-point. In it, local maxima and
minima are associated to subsidiary T-points, while discontinuous points mark homoclinic bifurcations at
which the kneading abruptly jumps in value. This digram allows one to evaluate a renormalization factor
of the fractal line. We can conjecture that the turbulent transition of homoclinic swirls is imperative for
homoclinic bifurcation curves, which cannot cross each other, to embed into the compact region of chaotic
dynamics in the SM model. In this region chaotic dynamics in the SM model due to the Lorenz attractor
are additionally amplified by spiral chaos due to Shilnikov’s saddle-foci. Such chaos in the parameter space
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Fractal structure: our “open-air” homoclinic mines
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(a) (b)

Figure 12: Kneading surface depicting the vicinity of the primary T-point – a large vortex in the (α, λ, K)-parameter space,
whose basin is bounded by a saddle (white dot). (b) Magnified fragment of the bifurcation surface near the primary T-point
stirring the region of wild dynamics with multi-fractal organization; Here is the {5− 15}-kneading range.

A = 0. Loosely speaking, the physical length of homoclinic loops can be viewed as the order number of
the Shilnikov flames, which are bigger the lower the order number. Several such flames are revealed in
Fig. 8: the largest ones originate from the inclination-switch bifurcations (on A = 0) corresponding to the
shortest homoclinic loops, symbolically encoded as [10], [100], [10.01], etc. The left panel in Fig. 9 enlarges
the Shilnikov flame at the crossing of A = 0 and the [100]-homoclinic loop, while the right panel presents a
one-parameter bifurcation diagram along the vertical (red) λ-segment cross-cutting through the flame. Both
unambiguously reveal the inner bifurcation organization of the flame including saddle-node bifurcations
(Fig. 8) followed by a period-doubling cascade and secondary bifurcations of homoclinic loops, here [100.100]
and [100.001]. One can see from Fig. 8 that the homoclinic bifurcation curves spiral up onto the matching
T-points. The saddle-node bifurcations bound the margins of the stability windows, and a period-doubling
cascade within, which are all typical for quasi-attractors — where a complex hyperbolic trajectory structure
coexists or becomes intermittent with stable periodic orbits. These nonlocal bifurcation puzzles agree well
with the Bykov theory of T-points illustrated in Fig. 2 and the theory of codimension-two homoclinic
bifurcations [Shilnikov et al., 1993, 1998,2001]. As such, the curve A = 0 sets a borderline demarcating the
existence region of the Lorenz attractor from below in the (α, λ)-parameter space [Shilnikov, 1993].

8. Wild chaos in phase & parameter space

In the region below the curve A = 0, the dynamics of the SM-model becomes wildly unpredictable. Here,
we use two senses of the term “wild.” One is that the chaotic dynamics due to the Lorenz attractor are
amplified by spiral chaos due to the Shilnikov saddle-foci near the primary T-point pathway, SF, in the LE-
diagram in Fig. 8. This leads to onsets of quasi-chaotic attractors, the paradigm of which was introduced
and developed by L.P. Shilnikov within the framework of the mathematical Chaos theory [Afraimovich
& Shilnikov, 1983; Shilnikov, 1997, 2002]. Such a chaotic set is impossible to parameterize and hence to
fully describe its multi-component structure due to dense complexity of ongoing bifurcations occurring
within it [Bykov, 1993]. The complexity of the bifurcation structure of the Lorenz-like systems in regions
of quasi-attractors is a perfect illustration of this paradigm. This is a second sense of the term wild:
unlike the well-foliated existence region of the Lorenz attractor by bundles of bifurcation curves, the region
of quasi-attractors is intricately stirred by T-points of various scales, and mixed with stability windows
corresponding to stable periodic orbits emerging and vanishing as the parameters are varied.

In terms of the Lyapunov exponents quantifying instability of trajectory behaviors, the direct indication
of intensifying disorder is the presence of a red(ish) zone around the pathway where the positive (largest)
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