Experimental Mathematics in dynamical Systems

Roberto Barrio’

TComputational Dynamics group, Dept. Applied Mathematics — University of Zaragoza,
SPAIN

rbarrioQunizar.es, http://cody.unizar.es/

In collaboration with:

David H. Bailey (Lawrence Berkeley National Laboratory, USA),
Jonathan M. Borwein (University of Newcastle, Australia),
M. Lefranc (University of Lille, France),

A. Shilnikov, T. Xing (Georgia State University, Atlanta),

D. Wilczak (Jagiellonian University, Krakow, Poland),

J. T. Lazaro, J.R. Pacha (Universidad Politécnica de Catalufa, Spain),
Sergio Serrano, Marcos Rodriguez, M. A. Martinez, Angeles Dena
(Universidad de Zaragoza, Spain)

DDAYS’14, Badajoz
12-14 November, 2014

R. Barrio (University of Zaragoza, Spain) Experimental Mathematics DDAYS'’14, Badajoz

1/67



» Our point of view and a fast review of our current research

0 Numerical techniques to explore complex behaviors

e Experimental mathematics: high-precision and more ...

e Need to mixing techniques (so collaborations): “bailar juntos”
e Need to prove some results: CAP

e Need to use “problem”-specific techniques: kneading plots
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@ Numerical techniques to explore complex behaviors
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Numerical tools (the need of a lot of techniques ...)

@ General chaos indicators:
MLE, Lyapunov exponents,
@ Computation of invaria

FIOFLI2, FMA ...

ROUSCOPE (Abad, B. and Dena, 2012)
es CAP: Rigorous DATA BASE of periodic orbits
B., Dena, Tucker, 2014), Hyperchaos (2014), ...
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What is TIDES?

: a Taylor series Integrator for Differential EquationS

@ Taylor series method using Variable-Stepsize Variable-Order formulation
and extended formulas for the variational equations.

@ Free numerical software based on extended Taylor series method:
TIDES*.

o Extremely easy to use via a MATHEMATICA preprocessor.
NOW INCLUDED IN SAGE (2014)!!!

@ Automatic construction of Fortran or C codes for solving ODEs

@ Automatic construction of C codes for solving solutions of ODEs and
variational equations up to any order (and sensitivities with respect to
any parameter up to any order)

@ Easy to use arbitrary precision (do you need 500 digits?, 10007?)

Where?: http://cody.unizar.es/software
oremail: tides.taylor@gmail.com, rbarrio@unizar.es

*A. Abad, R. Barrio, F. Blesa and M. Rodriguez, “Algorithm 924: TIDES, a Taylor series Integrator for Differential EquationS,’
ACM Trans. Math. Software, Volume 39(1), 2012
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e Experimental mathematics: high-precision and more ...
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Experimental mathematics in Dynamical Systems

Origin of the discipline in Spain
— Prof. Carles Simé (Universidad de Barcelona)
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Experimental mathematics (?)T

“Experimental mathematics” has emerged in the past 25 years or so to become a
competitive paradigm for research in the mathematical sciences.

So what exactly is “experimental mathematics”? While several definitions
have been offered, perhaps the most succinct definition is given in the
Borwein-Devlin book The Computer as Crucible:

Experimental mathematics is the use of a computer to run computa-
tions — sometimes no more than trial-and-error tests — to look for
patterns, to identify particular numbers and sequences, to gather
evidence in support of specific mathematical assertions that may
themselves arise by computational means, including search.

Here we should distinguish “experimental mathematics” from “computational
mathematics” and “numerical mathematics.” While there is no clear delin-
eation, the latter two terms generally encompass computational methods for
concrete applied mathematics and engineering applications.

JrD.H. Bailey, R. Barrio, J.M. Borwein, High-precision computation: Mathematical physics and dynamics, Appl. Math.
Comput. 218(20), pp 10106-10121 (2012)
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Experimental mathematics: books
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Progress of Scientific Supercomputers:

Data from the Top500 List

Projected Performance Development
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Experimental math:
Discovering new mathematical results by computer

¢ Compute various mathematical entities (limits, infinite series sums,
definite integrals) to high precision, typically 100-1000 digits.

¢ Use algorithms such as PSLQ to recognize these entities in terms of well-
known mathematical constants.

¢ When results are found experimentally, seek to find formal mathematical
proofs of the discovered relations.

Many results have recently been found using this methodology, both in pure
mathematics and in mathematical physics.

Decrease of log 10(min |y;|) in multipair PSLQ run

~100

~200 ‘
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Computing:
The Third Mode of Scientific Discovery

Mathematics - Computer - Scientific - Mathematics
science computing

Experiment

Computing
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e Need to mixing techniques (so collaborations): “bailar juntos”
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Mathematical neuron models

The Hodgkin-Huxley model is a mathematical model that describes how action
potentials in neurons are initiated and propagated.

Alan Lloyd Hodgkin and Andrew Huxley described the model in 1952 to explain the
ionic mechanisms underlying the initiation and propagation of action potentials in the
squid giant axon. They received the 1963 Nobel Prize in Medicine for this work.

NN A

Other mathematical models:

FitzHugh-Nagumo model, Morris-Lecar model, Hindmarsh-Rose model (1984), ...
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The leech heart interneuron model*
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iWeaver, A.L., Roffman, R.C., Norris, B.J., Calabrese, R.L. A role for compromise: synaptic inhibition and electrical coupling
interact to control phasing in the leech heartbeat CpG. Frontiers in behavioral neuroscience. 2010.
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The leech heart interneuron model
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@ Onion-like structures.
@ Spike-adding bifurcations — UPOs foliated in the attractor — ?7?
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The Hindmarsh and Rose model

The Hindmarsh and Rose model (1984)

A phenomenological system of ODEs for modeling bursting and
spiking oscillatory activities in isolated neurons:

X = y—ax®+bx®—z+1
y = c—adx®—y (1)
z = e(s(x—x)—2)

@ Xx is treated as the membrane potential, while y and z describe
some fast and slow gating variables for ionic currents.

@ Slow “activation” of z is due to the small parameter 0 < ¢ <« 1.

@ The parameters are typically setasa=1,c=1,d =5, s = 4,
Xo=—-1.6and e =0.01.

@ A key parameter is the external applied current /.
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Fast-slow decomposition
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Fast-slow decomposition

Bursting classification (Rinzel-1zhikevich)

bifurcations of limit cycles
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But ... why and where is the chaotic behavior?

parameter |
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Scheme of the macroscopic chaotic structures (Ve)

symbolic sequences opened
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The Hindmarsh and Rose model: bifurcation analysis

coexistence
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Codimension-two homoclinic bifurcation points
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The Hindmarsh and Rose model
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Hindmarsh and Rose: bifurcation sketch

spike-adding region
(coexistence)
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(d)

[b]
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Topological templates

Given a three-dimensional (3D) hyperbolic chaotic flow ®;, Birman and
Williams define the following equivalence relation which identifies
points of the invariant set A having the same asymptotic future:

Vx,yeN, x~y& tlim [|®i(x) — Pe(y)|| =0
—00

The Birman-Williams theorem states:

@ Inthe set of equivalence classes, the hyperbolic flow ®; induces a
semi-flow ®; on a branched manifold K. The pair (¢, K) is called
a template, or knot-holder

© Unstable periodic orbits of ®; in A are in one-to-one
correspondence with unstable periodic orbits of (¢ in K).

Moreover, every link of unstable periodic orbits of (¢, A) is
isotopic to the corresponding link of (®;, K).

R. Barrio (University of Zaragoza, Spain) Experimental Mathematics DDAYS’14, Badajoz 28/67



Topological templates

trivial knot

trefoil knat_/

Left: two periodic orbits of periods 1 and 4 embedded in a strange attractor; Right: a link of two
knotsthat is equivalent to the pair of periodic orbits up to continuous deformations without crossings.
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Topological templates: subtemplates
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The Hindmarsh and Rose model: chaotic attractors

I b=3.05 W b=287 M b=269 b=2.635
<

<

parameter b

X 0F

R. Barrio (University of Zaragoza, Spain) Experimental Mathematics DDAYS’14, Badajoz



Topological templates: Hindmarsh and Rose model
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Topological templates: Hindmarsh and Rose model
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Topological templates: Hindmarsh and Rose model

b M1 M2 M3 M4 M5

The topological template for the HR model

306 1. 1 O 1 0 . .
305 1 1 lo 1v2 is the Smale’s horseshoe template
298 1 1 v2 1,2 H H “ ”
Y97 1 1 o .1Va but with forbidden “lanes”.
2915 1 1 2 l3 4
287 1 1 2 3 6>
2.629 1 1 2 3,6
262851 1 2 ,3 14 BREER
2628 1 1 2 Tl T4
2627 1 1 TZ 112
2626 1 1 lo 1 Tz —
2625 1 1 0 1 lo o / .
The templates follows the “onion” structure.

& Proper grammar of the symbolic sequences

— (forbidden symbolic sequences)
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Topological templates: successive Cantor structures

0—>0

0111 11011110 1011

Y« Theoretical framework
for the “onion-bulb” chaotic structures
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0 Need to prove some results: CAP
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Playing with hyperchaos

Classical hyperchaos was invented by Sinai (around 1978). He showed that
billiards colliding in 3D produce maximal chaos, that is, possess n— 1 positive
Lyapunov characteristic exponents.

Ya.G. Sinai, Appendix to the translation of S. Krylov, Works on the Foundations of Statistical Physics, Princeton University Press,

Princeton, 1980.

For simple dissipative system with hyperchaos, that is, more than one
direction of divergence of trajectories the first system was introduced by
O. Rossler (1979).

O. E. Rossler, An equation for hyperchaos, Physics Letters A, 71, 155-157, 1979.

The occurrence of hyperchaotic behavior has been found in an electronic
circuit (Matsumoto et al, 1986), NMR laser (Stoop et al, 1988), in a
semi-conductor system (Stoop et al, 1989) and in a chemical reaction system
(Eiswirth et al, 1992).

M. Eiswirth, Th.-M. Kruel, G. Ertl and F. W. Schneider, Hyperchaos in a chemical reaction, Chemical Physics Letters, 193 (4),
305, 1992.

T. Matsumoto, L. O. Chua and K. Kobayashi, Hyperchaos: laboratory experiment and numerical confirmation, 'IEEE Transactions
on Circuits and Systems, CAS-33 (11), 1143-1147, 1986.

R. Stoop, J. Peinke, J. Parisi, B. Rohricht and R. P.Hubener, A p-Ge semiconductor experiment showing chaos and hyperchaos,

Physica D, 35, 425-435, 1989.
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Experimental Hyperchaos

Electronic circuits

T. Kapitaniak, L. Chua, G. Zhong, Experimental Hyperchaos in Coupled Chua’s Circuits, IEEE Transactions on Circuits and
Systems, 41 (7), 1994.

Fig. 1. Five identical coupled Chua’s circuits forming a ring. o
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Playing with hyperchaos

But ... in several simulations 8 ALWAYS (?) quite noisy
0.6

; ; : 0.6
1st Lyapung h

03 — (. B
-4 -2

@ So, chaotic?
@ Hyperchaotic?
@ WHAT?

§F’. Rech, Chaos and hyperchaos in a Hopfield neural network, Neurocomputing, 2011.
R. Barrio (University of Zaragoza, Spain)
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Playing with hyperchaos

Biparametric study of the 4D Rdssler system

X=-(y+2),
y=x+ay+w,
zZ=b+ xz,

W= —cz+ dw,

where we fix the values of parameters b=3.0 and d=0.05, and we allow the
values of g and ¢ change. v, \

-2
|
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Playing with hyperchaos

Biparametric study of the 4D Rdssler system (Lyapunov exponents
based)

0-290.264 0.268 5 0272 0.276 0.28

D limit cycle - “big” hyperchaos - chaos
[ “small” hyperchaos
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Playing with hyperchaos

Biparametric study of the 4D Réssler system (Lyapunov exponents
based)

...and now with a long transient time + larger precision +
+ 189 days

0.35|

0290264 0.268 5 0.272 0.276 0.28 0.290.264 0.268 5 0.272 0.276 0.28
[ timit cycle [l “big” hyperchaos [l chaos [ timitcycle [l “big” hyperchaos [l chaos [l torus
[ “small” hyperchaos [ “small” hyperchaos
STILL NOISY !il!
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... and now some theorems (CAP)

Extensive numerical studies yield us to find many approximate periodic orbits
for P. For some pairs of these orbits we could find approximate heteroclinic
connections on which we will built chaotic dynamics.

p18 = (—104.32937253702462, 0.028756669726685443, 44.645081351998819),
pg = (—104.26664163365506, 0.028773972266421831, 44.640115482927115),
pg = (—104.42324539012806, 0.028730815749171541, 44.678254866134068),
pls = (—104.39575243552828, 0.028738382959034744, 44.666264617071981),
q}z = (—103.69667754570543, 0.028932144798038389, 44.407870627484129),
q;4 = (—103.37098255164607, 0.029023312473829044, 44.284349486019579).

The points pj are approximate periodic points for P of period j with
one-dimensional unstable manifold. The points q{ are approximate periodic
points of period j with two-dimensional unstable manifold.
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... and now some theorems (CAP)

This numerical study — generates hypothesis and conjectures

Now it is time to state results :-)
@ Defining the Poincaré section
N={(x,0,z,w) eR% y =x+z <0}

and P : 1 — I, the associated Poincaré map, and fixing the
parameter values a = 0.27857, b= 3, c = 0.3 and d = 0.05.

@ Using rigorous ODE solvers for the systems and variational
equations (CAPD library¥ of the CAPD group (Krakow))

YFree-software: http://http://capd.ii.uj.edu.pl/

R. Barrio (University of Zaragoza, Spain) Experimental Mathematics DDAYS’14, Badajoz 45/ 67



... and now some theorems (CAP)

Theorem
Foreach u' € {p?,p8,p8,pi%, q{%, qi*} there is a unique periodic orbit v for P
of the principal period j in the ball B(w/,10~8) in the maximum norm.
Moreover, the resulting periodic points close to pf have one-dimensional
unstable manifold and those corresponding to g have two-dimensional
invariant manifold.
Proof Letus fix &/ € {p8, p§, pS, pl®, g2, g3*} and define F: 1V — M/ by

Fivi, v,y ooy vy) = (v — P(v)), va — P(vq), ..., vj — P(vj_4)).

Solutions to Fj(vy, V2, . . ., v;) = 0 correspond to j-periodic orbits for P provided v; # vc for i # c.
Put
o i a2, i1, i
29 = (v, vp, ..., vp) = (U, P(U), PP, . PR,

where by P(u) we denote an approximate value of P(u) obtained by nonrigorous numerical method.
Let Z = B(zy, 10~8) be the ball centered at z, in the maximum norm. Using rigorous solvers for ODEs and variational
equations from the CAPD library we computed the interval Newton operator

—1

N(Fj, Z, z9) = zo — [DFj(2)] " - Fi(z0)
and obtained that N(F;, Z, zp) C int(Z). This proves that F; has unique zero (vq, . . ., v;) in Z. Moreover, this zero belongs to
N(Fj, Z, zg) which in most cases had diameter less than 10~9. From these estimation we could conclude that &/ has principal

period j.
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... and now some theorems (CAP)

Then we computed rigorous bounds for DP/(vq) € DP/(B(#/,107'7)) and we
could check the hyperbolicity type of ¢/ by analysis of the spectrum of the
obtained interval matrix. The actual bounds for eigenvalues {\1, A2, A3} are

the following

orbit A Ao A3 return time
Joit 2.7¢ -0.168 [-1,1]-10~"" | 56.585531937§]
o3 —3.938 —0.54] [-5,5]-107'2 | 56.59832252%3
Jo -1.3 0.36¢ [-1,1]-10~" 56.5939313]
pi® | [-3.30,-2.96] | [-0.05,0.26] + [—0.13,0.13]/ 113.1853%]
Q2 —2231 3.8 [-8,8]- 107" | 85.088381235
@t | 430 +5580 | —43] 548 | [-5,5]-10~" | 99.297373833
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... and now some theorems (CAP)

We have also proved that:
@ there is an explicitly given trapping region B C I for P, i.e.
P(B) C B,
@ the maximal invariant set A =inv(P, B) contains three invariant

sets, say Sy, S», Sz, on which the dynamics is ¥, chaotic, i.e. it is
semiconjugated to the Bernoulli shift on two symbols,

@ S; is hyperchaotic set with two positive Lyapunov exponents,

@ S, and S3 are chaotic sets with one positive Lyapunov exponent,

@ there is a countable infinity of heteroclinic connections linking S;
with 82, 52 with 53 and S1 with 83,

@ there is countable infinity of periodic orbits and
heteroclinic’homoclinic orbits inside each horseshoe.
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e Need to use “problem”-specific techniques: kneading plots
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The Lorenz model

The Lorenz model

=—XZ4+rx—y, —=xy—bz,

X
— =—0X+o0oYy, i

at at

Three dimensionless control parameters:
@ o Prandtl number,
@ b a positive constant,
@ r relative Rayleigh number.
The Saltzman values: 0 =10, b=8/3, r = 28
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The Lorenz model: Three-parametric analysis

—
[=1
(=]

parameter b
(8.
o

800

00 etef
parameter r 400 500 0 para\‘\’\

For a given fixed r > 1 the region where chaos is possible is bounded
in b, and if b > e > 0 then the region is bounded in o too. To be
precise, outside a bounded region every positive semiorbit of the
Lorenz system converges to an equilibrium.

R. Barrio (University of Zaragoza, Spain) Experimental Mathematics

DDAYS'14, Badajoz 52/67



The Lorenz model: bifurcation analysis
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(L.P. Shilnikov, 1980)
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The Lorenz model: but that’s all?

More T-points: the Lorenz model

Location of T-points in the Lorenz system is a quite complex task.
And, what about locating all the T-points automatically?

In this case, the T-points are a kind of codimension-two heteroclinic
loop. It connects a homoclinic curve with another spiral homoclinic
curve.

—

T-points
.P

1-hom;
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The Lorenz model: T-points

A new computer technique: more and more T-points
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The Lorenz model: T-points

A new computer technique: more and more T-points
Kneading sequence {x,(O")} defined (Milnor and Thurston, 1980)
+1, if T"(O") >0,
kp(OT) =< -1, if T"(OF) <0,
0, if T"(O")=0;
here T"(O") is the n-th iterate of the right separatrix O* of the origin. The

condition T"(O") = 0 is interpreted as a homoclinic loop, i.e. the separatrix
returns to the origin after n steps.
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The kneading invariant for the separatrix is defined in the form of a formal
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The Shimizu-Morioka model

Gonchenko S, Ovsyannikov I, Simo C, Turaev D, Bifurcation and
Chaos, 2005
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The Shimizu-Morioka model
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The Shimizu-Morioka model

Figure 2: Sketch of a partial bifurcation unfolding of a Bykov T-point (from [Bykov, 1980]) corresponding to a codimension-
two heteroclinic connection between a saddle of the (2,1)-type and a saddle-focus of the (1,2)-type. It features the characteristic
spirals corresponding to homoclinic bifurcations of the saddle. Turning points (labeled by M’s) on the spiral are codimension-
two points of inclination-switch bifurcations giving rise to stable periodic orbits through saddle-node and period-doubling
bifurcations (Im-curves) and subsequent spiral structures of smaller scales between spiral’s scrolls.
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The Shimizu-Morioka model: more and more T-points
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The Shimizu-Morioka model: fractal structure (Bykov)

kneading invariant
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The Shimizu-Morioka model

() g, E,n

1=0.79, 0=0.39 2=0.77, 0=0.39
12 14 16 18 2 22 12 14 16 18 2 22

R. Barrio (University of Zaragoza, Spain) Experimental Mathematics '14, Badajoz 64 /67



The Shimizu-Morioka model
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The Shimizu-Morioka model

@ Fractal structure: our “open-air” homoclinic mines
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