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GOALS:

1. How to implement Computer Assisted Proofs of
FHIT.

2. Show that CAPs of FHIT can be performed in
an accurate manner.

2 / 68



Outline.
Set up.

Validation algorithm.
Fourier models.

Example 1.
Example 2.

Conclusions and final words

We will see that with the help of Analysis CAPs can be performed
with very accurate results.

But not everyone agree...

I was once visiting Krakow and said:

“ Analytical tools can produce finer results than
topological methods.”

Anonymous

And someone in the audience replied:

“ And tell me, friend, when did Saruman the Wise
abandon reason for madness?”

Gandalf the Gray.
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We will see that our results can be only improved with technology,
but not with mathematics.
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FHIT in skew-products.

A skew-product over a rotation is a smooth map of the form

Rn × Td −→ Rn × Td(
z
θ

)
−→

(
F (z , θ)
θ + ω

)
,

where ω is the rotation vector.
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FHIT. Dynamical definition.

A FHIT is a graph of a continuous map K : Td → Rn such that:

1. Invariance: K (θ + ω) = F (K (θ), θ), ∀θ ∈ Td .

2. Hyperbolicity: The fiber bundle Rn × Td decomposes in a
continuous invariant Whitney sum E s ⊕ Eu such that DzF|Eu

is invertible and there exist 0 < λ < 1 and C > 0 for which
I If (v , θ) ∈ E s and m > 0, then

||DzF
m(K (θ), θ)v || < Cλm||v ||.

I If (v , θ) ∈ E u and m < 0, then

||DzF
m(K (θ), θ)v || < Cλ−m||v ||.
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FHIT. Functional definition.

A FHIT is a graph of a continuous map K : Td → Rn such that:

1. Invariance: K is a zero of

F : C(Td ,Rn) −→ C(Td ,Rn)
K −→ F (K (θ − ω), θ − ω)− K (θ)

.

2. Hyperbolicity: The transfer operator

DF : C(Td ,Rn) −→ C(Td ,Rn)
σ −→ DzF (K (θ − ω), θ − ω)σ(θ − ω)

.

is hyperbolic, i.e. the unit circle is contained in its resolvent.
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Validation algorithm.

We use algorithms based on an adaptation of the
Newton-Kantorovich theorem to the problem. See

A. Haro and R. de la Llave.
A parameterization method for the computation of invariant tori
and their whiskers in quasi periodic maps: numerical algorithms.
Discrete and Continuous Dynamical Systems. Serie B 6-(6): 1261-1300,
2006.
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The core: Newton-Kantorovich theorem.

Theorem’s: Let F : Ω ⊂ B → B be a C2 operator on a Banach space.
Let B(x0, r) ⊂ Ω. Suppose that:

I DF(x0) has a continuous inverse.

I ||DF−1(x0) · F(x0)|| ≤ ε.

I ||DF−1(x0) · D2F(x)|| ≤ β, for x ∈ B(x0, r).

Suppose also that
h = εβ ≤

1

2
,

and define the constants

r0 =
1−
√

1− 2h

h
ε, r1 =

1 +
√

1− 2h

h
ε.

Then, if r0 < r < r1 the map F has a zero in the ball B(x0, r0) and it is
unique in the ball B(x0, r).
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Validation algorithm. Step 0 of 5.

0.1.- Compute the initial data:
Ask Àlex Haro!

I An approximate invariant torus K : Td → Rn.

I Two continuous matrix-valued maps P1,P2 : Td → GL(n,R), where
P1 has in its columns an approximation of the invariant subbundles
and P2 is an approximate inverse of P1.

I A continuous block diagonal matrix-valued map Λ: Td → GL(n,R)
which satisfies, approximately

P2(θ + ω)DzF (K (θ), θ)P1(θ) ' Λ(θ) =

(
Λns (θ) 0

0 Λnu (θ)

)
.

Λ modelizes approximately the dynamics on the invariant
subbundles.
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Validation algorithm. Step 1 of 5.

1.1.- Compute the upper bounds:

I

||P2(θ + ω)DzF (K (θ), θ)P1(θ)− Λ(θ)||∞ ≤ σ

I

||P2(θ)P1(θ)− Id||∞ ≤ τ

I

max
{
||Λns (θ)||∞, ||Λnu (θ)−1||∞

}
≤ λ

1.2.- Check λ+ σ + τ < 1. If not, validation fails.
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Validation algorithm. Step 2 of 5.

2.1.- Compute the upper bound:

||P2(θ) (F (K (θ − ω), θ − ω)− K (θ)) ||∞ ≤ ρ

2.2.- Compute the upper bound:

ρ

1− (λ+ σ + τ)
≤ ε.
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Validation algorithm. Step 3 of 5.

3.1.- Compute the upper bound:∣∣∣∣P2(θ + ω)D2
z F (z(θ), θ) [P1(θ)·,P1(θ)·]

∣∣∣∣
∞ ≤ b

for z(θ) ∈ B(K (θ), 2(1 + τ)ε).

3.2.- Compute the uppers bounds:

b

1− (λ+ σ + τ)
≤ β, βε ≤ h.
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Validation algorithm. Step 4 of 5.

4.1.- If h < 1
2 there exists an invariant torus K∗ : T→ Rn with

||P1(θ)−1 (K∗(θ)− K (θ)) ||∞ < r0

where
1−
√

1− 2h

h
· ε ≤ r0.

Moreover, this invariant torus is unique in the ball centered at the
approximate invariant torus K0 and radius

r1 ≤
1 +
√

1− 2h

h
· ε.
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Validation algorithm. Step 5 of 5.

5.1.- Compute the upper bounds:

I ||Λ(θ)||∞ ≤ λ̂.

I
λ

1− λ2

1

1− τ

(
br0 + σ + λ̂τ

)
≤ µ.

5.2.- If µ < 1
4 then:

I The distance between the bundles is smaller than
µ√

1− 4µ
.

I

||Λ∗(θ)− Λ(θ)||∞ ≤
1

1− τ

(
br0 + σ + λ̂τ

)(
1 +

µ√
1− 4µ

)
,
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Validation procedure.

The validation procedure is:

1. Obtain initial data via some (non-rigorous) numerical method.

2. Transform initial data to Fourier model.

3. Perform the validation algorithm with the Fourier model data.

19 / 68



Outline.
Set up.

Validation algorithm.
Fourier models.

Example 1.
Example 2.

Conclusions and final words

Fourier models.
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Fourier models.

There are several ways we can rigorously represent on a computer
periodic functions:

I Interpolation polynomials.

I Cubic splines.

I Piece-wise Taylor models.

I Fourier polynomials.

I ...
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Fourier models.

We have chosen Fourier polynomials because they are the most
suitable in the context of skew-products over rotations.

Important property: The operator
Sω : L2(T,R)→ L2(T,R), (Sωf )(θ) = f (θ + ω) diagonalizes.
That is,

e2πkiθ → e2πikωe2πkiθ

22 / 68
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Fourier models.

Definition: A (real) Fourier model of order N consists of two
sequences of real intervals {ak}Nk=0, {bk}Nk=1 and an additional real
interval R.
We will say that a continous function f : T→ R is enclosed by the
Fourier model if, ∀θ ∈ T

f (θ) ∈ a0 +
N∑

k=1

ak cos(2πkθ) +
N∑

k=1

bk sin(2πkθ) +R.

Remark: The interval R is used to check the growth of error on
the operations.
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Fourier models’ computations.

Let F and G be two N-order Fourier models and let J be any
interval.

For our purposes we have implemented, in C++, the following
operations between Fourier models:

I Evaluation F (J).

I ||F ||∞.

I F ± G , J · G .

I Translation F (θ + J).

I F · G .

I sin(F ), cos(F ).
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Example 1.
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Quasiperiodic standard map.

The quasiperiodic standard map is defined as the skew-product
x̄ = x + ȳ
ȳ = y − κ

2π sin(2πx)− ε sin(2πθ)
θ̄ = θ + ω (mod 1)

.

We fix κ > 0 and ω the golden mean.
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Quasiperiodic standard map.

When ε = 0 and κ > 0 the dynamics on the fiber is uncoupled
from the torus. The system has the FHIT{(

1

2
, 0, θ

)
| θ ∈ T

}
.

We have continued numerically the torus through ε and computed
its maximal Lyapunov multiplier and the distance between its
invariant subbundles.
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Numerical exploration κ = 1.3.

Figure: x-projection invariant torus. κ = 1.3, ε = 0.0.
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Numerical exploration κ = 1.3.

Figure: x-projection invariant torus. κ = 1.3, ε = 0.5.
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Numerical exploration κ = 1.3.

Figure: x-projection invariant torus. κ = 1.3, ε = 1.0.
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Numerical exploration κ = 1.3.

Figure: x-projection invariant torus. κ = 1.3, ε = 1.2.
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Numerical exploration κ = 1.3.

Figure: x-projection invariant torus. κ = 1.3, ε = 1.235.
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Numerical exploration κ = 1.3.

Figure: x-projection invariant torus. κ = 1.3, ε = 1.235275.
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Numerical exploration κ = 1.3.

Figure: Invariant bundles. κ = 1.3, ε = 0.0.
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Numerical exploration κ = 1.3.

Figure: Invariant bundles. κ = 1.3, ε = 0.5.
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Numerical exploration κ = 1.3.

Figure: Invariant bundles. κ = 1.3, ε = 1.2.
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Numerical exploration κ = 1.3.

Figure: Invariant bundles. κ = 1.3, ε = 1.235.
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Numerical exploration κ = 1.3.

Figure: Invariant bundles. κ = 1.3, ε = 1.235275.
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Numerical exploration κ = 1.3.

Figure: Distance between subbundles for κ = 1.3.
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Numerical exploration κ = 1.3.

Figure: Lyapunov multiplier for κ = 1.3.
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Numerical exploration κ = 1.3.

Numerator Denominator εc Λc

610 987 1.235277250097 1.417569758833
987 1597 1.235276717863 1.427183182503

.

.

.

.

.

.

.

.

.

.

.

.
514229 832040 1.235275526885 1.439118021353
832040 1346269 1.235275526763 1.439124814800

1346269 2178309 1.235275526763 1.439124666214
2178309 3524578 1.235275526763 1.439124723263
3524578 5702887 1.235275526763 1.439124701574

Table: Critical εc where the transition occur and their Lyapunov multiplier Λc for each of the partial
convergents of the golden mean with denominator less than 6 · 106. κ = 1.3.

By the above table we obtain that the breakdown value, εc , is near

1.235275526763.
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Validation results for κ = 1.3.

Figure: Number of nodes used on the validation.
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Validation results for κ = 1.3.

Figure: h value of the validation.
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Validation results for κ = 1.3.

Figure: r0 and r1 values of the validation.
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Validation results for κ = 1.3.

Figure: Observables distance values of the validation.
46 / 68



Outline.
Set up.

Validation algorithm.
Fourier models.

Example 1.
Example 2.

Conclusions and final words

Validation results for κ = 1.3, near breakdown.

We have validated the existence of FHIT until ε = 1.235275.

The maximum difference between the biggest predicted breakdown
value and the last validation is less than

5.27 · 10−7

ε h r0 r1 Number of nodes comp. time(min)
1.235270 2.853269e − 03 1.302039e − 07 9.100589e − 05 5802 100
1.235273 8.140590e − 03 2.490723e − 07 6.069352e − 05 7918 153
1.235275 8.928078e − 02 1.035418e − 06 2.107294e − 05 27692 1094

Table: Validation results near the breakdown predicted value
εc ' 1.235275526763

The growth of the number of nodes is due to the wildness of the
invariant bundles!
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Number of nodes vs Time computation.

Number of nodes comp. time(min)
40 0.458167

540 6.446334
1040 12.74084
1540 19.63984
2040 27.17817
2540 35.02600
3040 44.29384
3540 52.66734
4040 61.95984
4540 71.92917
5040 82.33534
5540 93.29884

Table: Validation time cost depends on the number of nodes.
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Example 2.
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Driven logistic map.

The driven logistic map is defined as the skew-product

f : R× T −→ R× T
(z , θ) −→ (a(1 + D cos(2πθ))z(1− z), θ + ω)

,

where ω =
√

5−1
2 ; and a and D are parameters. Along this example

we will fix D = 0.1 and let a vary.
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Numerical exploration. D = 0.1.

Numerical facts:

I It has a repellor curve for all a > 3.143.

I It has a 2 period attracting curve for 3.143 < a < 3.271383.

I For 3.143 < a < 3.17496 the attracting curve is reductible.

I For 3.17496 < a < 3.271383 the attracting curve is NOT
reductible, that is, is non-invertible.

I Aparently, at a ' 3.271383 the attracting curve suffers a
non-smooth bifurcation to a SNA.
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Numerical exploration. D = 0.1.

Figure: 2-period attracting curve for a = 3.24.
52 / 68



Outline.
Set up.

Validation algorithm.
Fourier models.

Example 1.
Example 2.

Conclusions and final words

Numerical exploration. D = 0.1.

Figure: 2-period attracting curve for a = 3.272.
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Numerical exploration. D = 0.1.

Figure: Lyapunov multiplier of the 2-periodic attracting curve.
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Validation results.

In order to validate the 2 period invariant torus, we use the
composition map and apply the validation algorithm explained
before.
The composition map is

F : R× T −→ R× T
(z , θ) −→ (f (f (z , θ), θ + ω), θ + 2ω)

.
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Validation results.

We have validated the 2 period attracting curve for several values
of a ∈ [3.143, 3.265], in particular, for a = 3.26 and a = 3.265. (In
this values it is not reductible).
Due to the non reductible nature, the slopes of some initial data
are quite high. For example, at a = 3.265, the maximum slope of
P1 is 4.3 · 104, and the maximum slope of the torus is 3 · 103.
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Maximum slopes data.

Figure: Maximum slopes of initial data depending on a.
57 / 68



Outline.
Set up.

Validation algorithm.
Fourier models.

Example 1.
Example 2.

Conclusions and final words

Validated torus a = 3.26.

Figure: 2 period attracting torus for a = 3.26.
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Validated torus a = 3.265.

Figure: 2 period attracting torus for a = 3.265.
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Validated torus a = 3.26.

Figure: Λ ”matrix” for a = 3.26.
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Validated torus a = 3.265.

Figure: Λ ”matrix” for a = 3.265.
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Validated torus a = 3.26.

Figure: P1 change of variables for a = 3.26.
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Validated torus a = 3.265.

Figure: P1 change of variables for a = 3.265.
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Validation results.

a 3.26 3.265
Number of nodes 2000 5000

h 1.055098e-05 4.684567e-05
r0 3.637170e-08 7.542679e-08
r1 6.894395e-03 3.220074e-03
||Λ||∞ 9.428802e-01 9.466133e-01

||Λ∗ − Λ||∞ 5.764746e-06 2.255056e-05

Table: Validation results of the period 2 invariant torus of the driven
logistic map with a = 3.26 and a = 3.265.
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These validations are very easy to carry on with the methodology
presented here.
Topological methods (Krakow) have not succeded in proving these
tori.
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Conclusions and final words:

I We apply the validation algorithm in two challenging
problems.

I The limitations of the algorithm are the wildness of the initial
data we want to validate.

I We have also implement the validation of families of FHIT.
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Thank you very much!

Jordi-Llúıs Figueras
Uppsala University

figueras@math.uu.se
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