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Why the size of certain populations fluctuate?
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Intrinsic to the species. Science (1974), Nature (1976).

review article

Simple mathematical models with very

complicated dynamics
Robert M. May*
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Is there chaos in real ecology?
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Hassel and May (1976).
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Hassel and May (1976).
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More examples

Costantino et al. Flour beetle (1997) Science.

Cousin et al. Soay Sheep (2001) Science.
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And even more...

Becks et al. Microbial food web (2005) Nature.

Beninca et al. Plankton community (2008) Nature.
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Why control chaotic fluctuations?
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Evolution of population size

Discrete population model

X = f(X-1)
@ Xx; population size
@ f describes the population production
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Evolution of population size

Discrete population model

X = f(X-1)
@ Xx; population size
@ f describes the population production

Ao

Generation, ¢

Population size, z;
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How is f in overcompensatory models?

Q@ f: R, — R, continuous, f(0) = 0 and f(x) > 0 for x > 0.

@ f has a unique positive equilibrium K, f(x) > x for
x € (0,K), and f(x) < x for x > K.

© There exists d < K such that f is increasing in (0, d) and
decreasing elsewhere.
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How is f in overcompensatory models?

X
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Chaos control problem (stabilization)

@ Fluctuating population

@ Transform it in a (more) stable population

@ How?

@ Small perturbations of f are not considered suitable, e.g.
OGY method
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Chaos control problem (stabilization)

@ Fluctuating population

@ Transform it in a (more) stable population

@ How?

@ Small perturbations of f are not considered suitable, e.g.
OGY method

Adding / Stocking
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Chaos control problem (stabilization)

@ Fluctuating population

@ Transform it in a (more) stable population

@ How?

@ Small perturbations of f are not considered suitable, e.g.
OGY method

Removing / Harvesting
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Chaos control problem (stabilization)

@ Fluctuating population

@ Transform it in a (more) stable population

@ How?

@ Small perturbations of f are not considered suitable, e.g.
OGY method

Mixing both
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Chaos control problem (stabilization)

@ Fluctuating population

@ Transform it in a (more) stable population

@ How?

@ Small perturbations of f are not considered suitable, e.g.
OGY method

Constant harvesting,

Stabilization,

Limiter
controls, Target oriented
controls, Pulse strategies,...

Generated risks (Allee effects),
Cost, Initial transient,...
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Constant control

Constant immigration

Xn+1 :f(Xn)+C, C>0

McCallum (1992) J. Theor. Biol.; Parthasarathy & Sinha (1995) Phys. Rev. E; Stone & Hart (1999) Theor. Pop. Biol;
Wieland (2002) Phys. Rev. E.
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Population maps and GAS

Global stability?
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Population maps and GAS

Local dynamics drive global dynamics for S-unimodal maps!
D. Singer (1978) SIAM J. Appl. Math.

© f satisfies Sf < 0 with

111 1 2
(5000 := ") - 5 (5ed)
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Constant control

Harvesting a constant quota

Xnt1 = f(xn) — C, c>0

Gueron (1998) Phys. Rev. E ; Schreiber (2001) J. Math. Biol.; Liz (2010) Theor. Ecol.
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Constant control
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Constant control

Xn+1 = max{0, f(x,) — C}, C>0

@ Extinction
@ Essential extinction
@ Bistability

Schreiber (2001) J. Math. Biol.
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Proportional Control

Harvesting with constant effort

Xn+1 = (1 - "y)f(Xn), RAS (07 1)

Guémez & Matias (1993) Phys. Lett. A; Liz (2010) Phys. Lett. A
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Proportional Control

x
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Proportional Control

Harvesting before reproduction,

Xn+1 = f((1 - ’Y)Xn)7 AS (0, 1))

discloses an interesting effect.
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Proportional Control
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Proportional Control

Proportional immigration

Xn1 = H(1 +7)Xn), 7 € (0,00).

Carmona & Franco. (2011) Nonlinear Anal. R.W.A.
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Target oriented control

Xn+1 = f(7T+ (1 - ’Y)Xn)7 QS (07 1)
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Target oriented control

Xn+1 = f(7T+ (1 - ’Y)Xn)7 QS (07 1)

Dattani et al. (2011) Phys. Lett. A; Franco & Liz (2013) Int. J. Bifurcations and Chaos

@ There is not danger of extinction.
@ ltis able to remove an Allee effect.
@ LS implies GAS.
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Limiter controls

Description

@ Defines certain threshold (the limiter)
@ Acts when the population surpasses the limiter
@ Sends the population back to the limiter
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Limiter controls

Description

Limiter constant over time

Population size, x

Generation. t
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Avoiding crashes
Adaptive limiter control (ALC)

Limiter variable over time
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Avoiding crashes
Adaptive limiter control (ALC)

Limiter variable over time

Ty > C-Tp—1

Population size, x4
\

Previous population size, z¢_1
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Avoiding crashes
Adaptive limiter control (ALC)

Limiter variable over time
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Limiter variable over time
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Avoiding crashes
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Limiter variable over time
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Avoiding crashes
Adaptive limiter control (ALC)

Limiter variable over time
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Atypical control
Adaptive limiter control (ALC)

Sah, Salve and Dey (J. Theor. Biol. 2013)
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Atypical control
Adaptive limiter control (ALC)

Sah, Salve and Dey (J. Theor. Biol. 2013)

f > CX;_
Mathematical model X1 = { (xt), Xt = CX—1

f(exi—1), Xt < CXp—1
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Atypical control
Adaptive limiter control (ALC)

Sah, Salve and Dey (J. Theor. Biol. 2013)

Numerical simulations

Population sizes

0 0.2 04 0.6 08 1
Control parameter, ¢
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Atypical control
Adaptive limiter control (ALC)

Sah, Salve and Dey (J. Theor. Biol. 2013)

Empirically tested
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Analytical results
Effect of increasing the ALC intensity

For a general family population maps (Franco & Hilker (2013) J.
Theor. Biol. ):
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Analytical results
Effect of increasing the ALC intensity

For a general family population maps (Franco & Hilker (2013) J.
Theor. Biol. ):
@ ALC is not able to stabilise an equilibrium
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Adaptive limiter control

Analytical results
Effect of increasing the ALC intensity

For a general family population maps (Franco & Hilker (2013) J.
Theor. Biol. ):

© ALC globally confines the population in a trapping region
with size tending to 0 as ¢ increases
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Adaptive limiter control

Analytical results
Effect of increasing the ALC intensity

For a general family population maps (Franco & Hilker (2013) J.
Theor. Biol. ):
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Adaptive limiter control

Application

How to choose the ALC intensity

Recipes for:
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Adaptive limiter control

Application

How to choose the ALC intensity

Recipes for:

@ Avoid dropping =Y |
below a minimum I
value.
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Adaptive limiter control

Application

How to choose the ALC intensity

Recipes for:

@ Avoid surpassing a
maximum value.
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Adaptive limiter control

Application

How to choose the ALC intensity

(a)
Recipes for: M '\/\W\W“\W“WW
(b)
i W"/W\/W"'“/\W"\Ar
© Guarantee the ©
fluctuations have I
certain diameter. /\/\“J\’\WV\“\W«
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Adaptive limiter control

Main tool

Importance of intra-generation variations

@ Correct mathematical model a;, 1 = max{f(a;), ca;}
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Importance of intra-generation variations
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Adaptive limiter control

Main tool

Importance of intra-generation variations

@ Correct mathematical model a;, 1 = max{f(a;), ca;}
@ When ALC acts we have two population sizes b; and a;
@ We must choose one to define the limiter in t + 1
@ In experiments and numeric simulations a; was selected
°

bti1, b1 >c-ar

bri1 = f(ar) and a1 =
c-a, b1 <c-a
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Adaptive limiter control

Main tool

Importance of intra-generation variations

@ Correct mathematical model a;, 1 = max{f(a;), ca;}

bti1, b1 >c-ar
bri1 = f(ar) and a1 =
c-a, b1 <c-a
flar), f(a;)>c-a

c-a, fla)<c-a
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Adaptive limiter control

Main tool

Importance of intra-generation variations

@ Correct mathematical model a;, 1 = max{f(a;), ca;}

flar), f(a;)>c-a

c-a, fla)<c-a
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Activation threshold

There exists a unique A7 such that a;,1 = {

fla), ar < Ar,
c-a;, a> Ar,
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Adaptive limiter control

Activation threshold

. . f(ar), ar < Ar,
There exists a unique A7 such that a;,1 =
c-a;, a> Ar,
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Effort

Measured as the number of individuals added

Population sizes

0.4 0.6 0.8 1
Control parameter, ¢
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Adaptive limiter control

Effort

Measured as the number of individuals added

ALC

1000 |

500 |

Number of individuals added
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Control narameter. ¢
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Adaptive limiter control

Effort

Measured as the number of individuals added

Classic Limiter Control
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Control parameter, ¢
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Adaptive limiter control

Effort

Measured as the number of individuals added

LC vs ALC
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Control parameter, ¢

Importance of initial transients
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Adaptive limiter control

Effort

Measured as the number of interventions

Number or consecutive interventions

ALC never acts consecutively inside the trapping region.
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What happens if we use b;?

ALCa
b1, b1 >c-ar,
a1 =

c-a, b1 <c-ar

Franco & Hilker (2014) SIAM J. Appl. Dyn. Syst.
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Adaptive limiter control

What happens if we use b;?

ALCb
{ bH—17 bf+1 >C- bfa
aty1 =

C'bt7 bt+1 < C'bfa

Franco & Hilker (2014) SIAM J. Appl. Dyn. Syst.
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Adaptive limiter control

What happens if we use b;?

ALCb
{ bH—17 bf+1 >C- bfa
aty1 =

C'bt7 bt+1 < C'bfa

Together with b, o = f(as41)

Franco & Hilker (2014) SIAM J. Appl. Dyn. Syst.

Daniel Franco
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Adaptive limiter control

What happens if we use b;?

f(bt+1)7 bt+1 >cC- bta
bryo =
f(C’ bt), bt+1 <C- bt,

Franco & Hilker (2014) SIAM J. Appl. Dyn. Syst.
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What happens if we use b;?

f(bt+1)7 bt+1 >cC- bta
t+2 —
f(C’ bt), bt+1 <C- bt,

Model suggested for ALCa!

Franco & Hilker (2014) SIAM J. Appl. Dyn. Syst.
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Properties of ALCb

Similarities with ALCa

Proposition equilibria
ALCb it is not able to stabilize equilibria.
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Properties of ALCb

Similarities with ALCa

Proposition activating threshold

ALCb adds individuals in generation t with ¢ > 1 if and only if
bi_1 > Ar.

Daniel Franco
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Properties of ALCb

Similarities with ALCa

Proposition frequency
ALCb never acts in two consecutive generations.
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Properties of ALCb

Similarities with ALCa

Proposition trapping region

ALCDb confines the population sizes before intervention in an
interval around K which shrinks as ¢ grows.
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Properties of ALCb

Similarities with ALCa

180 T T T T T
Condition (3.1) holds

160 -

Population size

0.6
Control parameter, ¢
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Adaptive limiter control

Properties of ALCb

Difference with ALCa

Proposition trapping region

ALCDb confines the population sizes before intervention in an
interval around K which shrinks as ¢ grows, provided that the
initial population size by belongs to certain subinterval of the
trapping region.
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Properties of ALCb

Difference with ALCa
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Control parameter, ¢
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Global stability in higher order systems

1-D Ricker x4 = xp,e"~* (40 years ago)
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Global stability

Global stability in higher order systems

1-D Ricker x4 = xp,e"~* (40 years ago)

2-D Ricker x,,1 = x,e"~*-1 (1 year ago, computer aided
proof)
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Global stability in higher order systems

Juveniles and adults
{ Xep1,0 = F((1 = h2)xp2),
Xer12 = (1= h1)sixe1 + (1 — h2)Sox; 2,

(1)

X1 juveniles; x; » adults; hy, ho € [0, 1) harvest rates;
sy, Sp € (0, 1] survivorship rates; f(y) = aye~?¥ Ricker map
witha > 1, 8 > 0.

E. Liz & P. Pilarczyk. J. Theoret. Biol. (2012)

Using a result of . Gyéri & S. Trofimchuk, system (1) has a
positive global attractor for

1-— (1 = hg)Sg

Ina € (r0, 0+ 1], where rp := '”((1 — hy)(1 —h2)31)'

Daniel Franco



Global stability

General setting

X1 = Axe + bf(cT xp), (2)

with A a non-negative matrix in R™*"; b, ¢ € R’ \ {0}; and
f: Ry — Ry continuous, f(0) =0, and f(y) > 0,Vy € R, \ {0}.

Daniel Franco



Global stability

Absolute stability

Sector bound condition (Townley et. al. Systems & Control
Letters 2012)

There exists a unique y* > 0 so that f(y*) = py* and

f(y)—py* I <ply—y*|, yeR\{0,y"}
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Absolute stability
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Global stability

Absolute stability
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Absolute stability

0.5 1
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Global stability

Particular case

1—-0 0 O 0 by
a 0 O 0 0
A= 0 a 0 0, b=| 0 |,
S 0
0 ... 0 a4 O 0

where 0 <6 <1, and a;, by >0,

Results from EI-Morshedy and Jiménez-Lépez (2008) can be
adapted to show that the GAS of the map implies GAS for the
system.

Daniel Franco
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Consequence

System (1) has a positive global attractor for

1— (1 — hg)Sg )
(1—=h)(1 = h2)s”

Ina € (o, 10 +2], where rp:=1In(

Franco, Logemann & Peran (2014) System & Control Letters
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Global stability
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Summary

Summary

@ Analytical support for ALC and TOC.
@ New interesting properties of ALC and TOC.
© Recent global stability results improved.
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Summary

Hilker Logemann Peran
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