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Insight?

INSIGHT: Visión interna, percepción, (Gestalt) comprensión.
STRUCTURAL INSIGHT = conocimiento consciente o
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medio de la unión de estructuras

Computational Tools DS Group Sevilla

I Normal Forms.
I Numerical Continuation of solutions

with AUTO.
I Symbolic and numerical

Computations for PWLS.
I Hamiltonian systems (JGV)
I Numerical Methods for PDEs (BGA,

RTNS2015)
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Continuation of periodic orbits in Hamiltonian systems



What is the best computational approach?

Skilled programmer and/or long term project

Be a man and write your own code!

or

The wimpy approach

Use a (good) black box code, but
understand what you are doing and be careful.
In our case AUTO.
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One idea and three examples

ẋ = f (x , λ)

F (x , λ) = E

1. How do we continue solution in the E parameter?
2. A simple example.
3. Continuation in conservative systems or continuation

without parameters; an alternative to reduction methods.
4. Three examples with insight.



One idea and three examples
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ẋ = f (x , λ)

F (x , λ) = E

1. How do we continue solution in the E parameter?

2. A simple example.
3. Continuation in conservative systems or continuation

without parameters; an alternative to reduction methods.
4. Three examples with insight.



One idea and three examples
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The best-seller in mathematical modelling

Galileo’s pendulum
I 3 parameters: L,m,g

I Newton’s second law:

mLθ̈ + mg sin θ = 0

I
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The best-seller in mathematical modeling

Galileo’s pendulum

I Rescaling time with τ =
√

L
g .

I Newton’s second law:

Galileo’s Pendulum Equation

θ̈ + sin θ = 0

I One dof ODE without
parameters with two equilibria:
θ = 0 (S) and θ = π (U) and a
one parameter family of
periodic orbits.
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Phase portrait of Galileo’s pendulum
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The reduction method

I Position and velocity are not independent of each other.

I The system has a first integral or conserved quantity:

E =
θ̇2

2
+ 1− cos θ.

I The dimension of the problem can be reduced by
eliminating the velocity:

θ̇ =
√

2(E − 1 + cosθ).

I We have introduced now E as an internal parameter that
can be used for continuation (and lowered the dimension).
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The general picture for Hamiltonian systems
U open set in R2n, H ∈ C1(U) con J =

(
0 In
−In 0

)
.

u′ = J∇H(u)

I ODE without explicit parameters.
I H is a conserved quantity.
I Periodic orbits are not isolated (cylinder theorem).



Geometrical picture: Cylinder Theorem



Geometrical picture: Reduction



Alternative method: Increase the dimension!
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Alternative method: positive dissipation
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Alternative: negative dissipation
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The idea: θ̈ + αθ̇ + sin θ = 0

α > 0 

α = 0

α < 0



AUTO results
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Remarks

1. It is straightforward to implement
(if we know the unfolding term ) [Physica D 181 (2001)].

2. It can be extended to k independent conserved quatities.
3. Bifurcations can be detected and followed.
4. We can detect homo- and heteroclinic connections.
5. The computation preserves the simplectic character of the

problem (Hamiltonian case).
6. For reversible system there are further simplifications.
7. AUTO is parallelized (Openmp and MPI)



Theory: BVP Formulation

u′ = T (J∇H(u(t)) + α∇H(u(t))), u(1) = u(0). (1)

with u, α and T as unknowns. Finding a T -periodic orbit of
u′ = J∇H(u) is equivalent to finding a solution of (1) if α = 0.
We have to include a phase condition to fix the time origin.

(u(0)− u0(0))∗u′0(0) = 0. (2)



Continuation theorem with 1 conserved quantity

Theorem
Let u0(t) be a periodic solution with period 0 < T0 < +∞
whose monodromy matrix has 1 as an eigenvalue with
geometric multiplicty one or algebraic multipicity two.
Then, there existis a unique branch of solutions of (1) and (2) in
a neighbourhood of (u,T , α) = (u0,T0,0). Moreover, along the
branch α = 0.

I The proof is a direct application of IFT and the fact that
H(u(t)) is constant along the periodic orbit.



Generalization

I LetWp = {∇F (p) : F first ontegral of ẋ = f (x)},
dim(Wp) = k , ϕt (x,α) the flow and orbϕ(p) the orbit.

I ẋ = f (x) → ẋ = f (x) + α1∇F1(x) + . . .+ αk∇Fk (x),

Proposition
Let p ∈ Rn s. t. orbϕ(p) be T−periodic. It holds that
Im(DϕT (p)− I) + Rf (p) ⊆ W⊥p .



General results

Definition (Normal periodic orbit)
Let p ∈ Rn such that the orbit orbϕ(p) is periodic with period
T > 0 and p is not an equilibrium of ż = f (z). We say that
orbϕ(p) is a normal periodic orbit of e ż = f (z) if

Im(DϕT (p)− I) + Rf (p) =W⊥p .

Theorem (Continuation with k conserevd quantities)
Let p ∈ Rn be a point that generates a normal periodic orbit of
ẋ = f (x) with period T > 0. Then there exists a neighbourhood
of T > 0 such that the set of points that generate periodic orbits
whose period is in that neighbourhood of T is locally a
submanifold at p.



Example 1: Chaos in a mean field quantum system

Jona-Lasinio et al1, studied numerically the time-evolution of a
wave packet in a triple quantum well with electrostatic
interaction just in the narrow central well in the mean field
approximation (Hartree) and found chaotic behavior.

a b c d

B1

w1 w2 w3

B2

K K K
U

1G. Jona-Lasinio, C. Presilla and F. Capasso, Chaotic Quantum
Phenomena without classical counterpart. Phys. Rev. Lett. 68 2269 (1992)



Continuum model: localized NLSE

i~
∂Ψ (x , t)

∂t
= − ~2

2m
∂2Ψ(x , t)
∂x2 + [V (x) + αQ(t)χ(x)]Ψ(x , t)

I V (x) is the potential profile.
I Q(t) =

∫
w2
|Ψ(x , t)|2dx is the electronic charge in the

central well (w2).
I χ is a characteristic function which is one within well w2

and zero elsewhere.
I α measures the electrostatic coupling.



Minimal discrete model

a b c d

B1

w1 w2 w3

B2

K K K
U

ȧ = iKb
ḃ = iKa +iKc
ċ = iKb +iKd −iUcc2

ḋ = iKc

The wavefunction is |Ψ >= |a b c d >∈ C4.



Classical Hamiltonian formulation

Reparameterizing time and the variables:

ȧ = ib
ḃ = ia +ic
ċ = ib +id −icc2

ḋ = ic .

ż = i
∂H(z, z)

∂z

H(z, z) =
(
ab + ab + bc + bc + cd + cd

)
− (cc)2

2
,

z = (a,b, c,d). It is autonomous, reversible (H(z, z) = H(z, z))
and invariant under diagonal rotations in C4 (z → zeiθ)→ two
conserved quantities.



Numerical evidence of chaotic behavior
Numerical integration: Fourier spectrum and Lyapunov exp.

a b c d

B1

w1 w2 w3

B2

K K K
U

40 60 80 100
time

0.0 0.5 1.0
frequency

0 1000 2000 3000 4000
steps

!0.05

0.00

0.05
!0.010

0.000

0.010

am
pli

tu
de

|c|
2

Ly
ap

un
ov

 ex
po

ne
nt

s

(au
)

(au
) 0

!1x10!10

!2x10!10

U=0

U=4

U=16

U = 0→ quasiperiodic solutions: 2φ, 2
φ , φ+ 1

φ and φ− 1
φ .

U 6= 0→ something else. Origin of this chaotic behavior?



Insight: Origin of chaos and role of the Hartree states

I What is the origin of the chaotic behavior?
I What is the role of the Hartree solutions in the global

picture?
I Are they stable?
I Are they the best solutions in the variational sense?

I Can we learn something new from the Hamitonian
formulation?



Insight: Relative equilibria: Hartree selfconsistent states

In a rotating frame (ω 6= 0 )

z(t) = (a(t), b(t), c(t), d(t)) = eiωt (A(t), B(t), C(t), D(t)) ,

Ȧ = i (B − ωA)

Ḃ = i (A + C − ωB)

Ċ = i (B + D − ωC)− i (CC)C
Ḋ = i (C − ωD) .

The equilibria correspond to symmetric periodic orbits.

A0 =
C0

ω2 − 1
, B0 =

ω

ω2 − 1
C0, D =

C0

ω
, |C0|2 = −

(ω2 − φ2)(ω2 − 1
φ2 )

ω (ω2 − 1)
:= g(ω)



The four families of the Lyapunov center theorem
The sign of ω indicates the orientation of the orbit.

I g(ω) > 0→ U > 0 repulsive case.
I g(ω) < 0→ U < 0 attractive case.
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g(ω) > 0→ U > 0 repulsive case. g(ω) < 0→ U < 0 attractive
case.



Stability of the second branch: loxodromic bifurcations
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Stability: the four branches
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Can we lower the dimension?

H(z, z̄) = ab̄ + āb − |b|
2

2
z = (a,b) ∈ C2.

B1

w1 w2

K

ba

U

B
2

U

I Reversible and
symmetric z → eiθz.

I Two conserved
quantities; H and
F = |z|2.

I Integrable

ȧ = ib
ḃ = ia −ibb2.



Relative equilibria and “bridges”
I z = (0,0) unique equilibrium −→ two Lyapunov families.
I In a rotating frame we can compute the Floquet multipliers

µ3 = µ̄4 = eiT
√
ω2+ 3

ω2 = ei2π
√

1+ 3
ω4
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Rotation Number

I Let us consider the flow induced by the symmetry as the
cross section (Σ).

I Choose an initial point x ∈ Σ and let it flow.
I Look for the next intersection and measure the time T

ϕF
2πΘ(x) = ϕH

T (x).



Global reduction

Following global reduction techniques 2 we can write the
rotation number as

Θ =
1
π

∫ u+

u−

H + u2

2
2(F − u)

du√
Q(u))

.

where

Q(u) = F 2 −
(

H +
u2

2

)2

− (F − 2u)2.

2R. Cushman & M. Bates, Global aspects of classical integrable systems.
Birkhauser, 1997



The rotation number is constant along the bridge
Theorem:

3
7

= 1− 4
7
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What are the bridges is this case?
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Example 2: Elastic Pendulum

Adimensional parameter λ = lk
mg

Equilibria
{

(0,−λ− 1) Stable
(0, λ− 1) Unstable (λ > 1)

H =
p2

1
2

+
p2

2
2

+
1
2

(
√

q2
1 + q2

2 − λ)2 + q2 + λ+
1
2
.



Reversibility continuation: Normal modes



Vertical Nonlinear Normal Mode: Period Doubling



Period doubled branch



Period doubled branch



Schematic bifurcation diagram



Reversibility continuation

Definition: We say that R ∈ L(Rn) is a reversibility for the
system ẋ = f (x), if Rf (x) = −f (Rx) for all x ∈ Rn.

Example: in a mechanical system changing the sign to all
velocities and integrate in negative time we get another
solution.
Poetic definition: In an reversible system the future is the past of an alternative present.
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Reversibility continuation: R1



Reversibility continuation: R2



Reversibility continuation: reversible orbits



Reversibility continuation: non reversible orbits



Insight: Reversibility continuation results
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Horseshoe (exchange) solution of the 2k+1 BP

Not enough insight yet

No overtaking condition



5 body exchange orbit
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5 body exchange orbits



5 body exchange orbit connected to Euler-like solution


