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\ Computational Tools DS Group Sevilla

» Normal Forms.

» Numerical Continuation of solutions
with AuTo.

» Symbolic and numerical
Computations for PWLS.

» Hamiltonian systems (JGV)

» Numerical Methods for PDEs (BGA,
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What is the best computational approach?

Skilled programmer and/or long term project
Be a man and write your own code!

or

The wimpy approach

Use a (good) black box code, but
understand what you are doing and be careful.
In our case AUTO.
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One idea and three examples

x = f(x, )
F(x,\)=E

1. How do we continue solution in the | E | parameter?
2. A simple example.

3. Continuation in conservative systems or continuation
without parameters; an alternative to reduction methods.

4. Three examples with insight.
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The best-seller in mathematical modeling

Galileo’s pendulum

> Rescaling time with = , / 2.

» Newton’s second law:

Galileo’s Pendulum Equation

6+sinf=0

» One dof ODE without
parameters with two equilibria:
0=0(S)and =7 (U)and a
one parameter family of
periodic orbits.




Phase portrait of Galileo’s pendulum

Galileos pendulum
T
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The reduction method

v

Position and velocity are not independent of each other.
The system has a first integral or conserved quantity:

v

02
E:?+1—cose.

v

The dimension of the problem can be reduced by
eliminating the velocity:

0 = \/2(E — 1 + cosb).

v

We have introduced now E as an internal parameter that
can be used for continuation (and lowered the dimension).

5
3



The general picture for Hamiltonian systems
U open setin R?", H € C'(U) con J = (_O,n {g) :

U = JVH(u)

» ODE without explicit parameters.
» His a conserved quantity.

» Periodic orbits are not isolated (cylinder theorem).

03



Geometrical picture: Cylinder Theorem
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Geometrical picture: Reduction
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Alternative method: Increase the dimension!

Galileos pendulum
T




Alternative method: positive dissipation
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Alternative: negative dissipation

Galileos pendulum
T




The idea: 6 + af +sinf =0

a<0
-

@

a>0




AUTO results
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Remarks

ok~ wn

N o

. It is straightforward to implement

(if we know the unfolding term ) [Physica D 181 (2001)].
It can be extended to k independent conserved quatities.
Bifurcations can be detected and followed.

We can detect homo- and heteroclinic connections.

The computation preserves the simplectic character of the
problem (Hamiltonian case).

For reversible system there are further simplifications.
AUTO is parallelized (Openmp and MPI)



Theory: BVP Formulation

u' = T(JVH(u(t)) + aVH(u(t))), u(1) = u(0). (1)

with u,« and T as unknowns. Finding a T-periodic orbit of
v = JVH(u) is equivalent to finding a solution of (1) if « = 0.
We have to include a phase condition to fix the time origin.

(u(0) — to(0))"tp(0) = 0. )



Continuation theorem with 1 conserved quantity

Theorem

Let up(t) be a periodic solution with period 0 < Ty < +o0
whose monodromy matrix has 1 as an eigenvalue with
geometric multiplicty one or algebraic multipicity two.
Then, there existis a unique branch of solutions of (1) and (2) in
a neighbourhood of (u, T, «) = (up, Tp, 0). Moreover, along the
branch a = 0.

» The proof is a direct application of IFT and the fact that
H(u(t)) is constant along the periodic orbit.



Generalization

» Let Wp = {VF(p) : F first ontegral of x = f(x)},
dim(p) = K, ¢t(X, a) the flow and orb,(p) the orbit.

» X =f(xX) = Xx=FfX)+yVF(x)+...+axVF(x),

Proposition
Letp € R" s. t. orb,(p) be T—periodic. It holds that
Im(D¥7(p) — /) + Rf(p) € Wy



General results

Definition (Normal periodic orbit)

Let p € R” such that the orbit orb,(p) is periodic with period
T > 0 and p is not an equilibrium of z = f(z). We say that
orb,,(p) is @ normal periodic orbit of e z = f(z) if

Im(D¥7(p) — 1) + Rf(p) = Wy

Theorem (Continuation with k conserevd quantities)

Letp € R" be a point that generates a normal periodic orbit of
x = f(x) with period T > 0. Then there exists a neighbourhood
of T > 0 such that the set of points that generate periodic orbits
whose period is in that neighbourhood of T is locally a
submanifold at p.



Example 1: Chaos in a mean field quantum system

Jona-Lasinio et al', studied numerically the time-evolution of a
wave packet in a triple quantum well with electrostatic
interaction just in the narrow central well in the mean field
approximation (Hartree) and found chaotic behavior.

B B
1 PT 2
U
K K K

oo

a b C d
1 s . ; T
G. Jona-Lasinio, C. Presilla and F. Capasso, Chaotic Quantum Lo

Phenomena without classical counterpart. Phys. Rev. Lett. 68 2269 (1992)



Continuum model: localized NLSE

SOVt R PV(x1)

ot “om ox2 + [V(x) + aQ(t)x (X)W (X, t)

v

V(x) is the potential profile.

Q(t) = fW2 |W(x, t)[2dx is the electronic charge in the
central well (w»).

» Y is a characteristic function which is one within well w»
and zero elsewhere.

« measures the electrostatic coupling.

v

v



Minimal discrete model

K fvm E
Wi W W3

iKb
iKa +iKc
iKb +iKd —iUcc?
iKe

Q- O T W
I

The wavefunction is |V >=|ab ¢ d >c C*.



Classical Hamiltonian formulation

Reparameterizing time and the variables:

a ib

b = ia +ic

¢ = ib +id  —icc?

d ic

8H(z Z)
- 0z
_ o (cc)?
H(z,Z) = (ab+ab+ bc + bc+ cd +¢d) — 5

z =(a,b,c,d). Itis autonomous, reversible (H(z,z) = H(z, z))
and invariant under diagonal rotations in C* (z — ze'?) — two
conserved quantities.



Numerical evidence of chaotic behavior
Numerical integration: Fourier spectrum and Lyapunov exp.
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FIG. 2. Numerical results by simulation of (4), K = 1 and the same initial conditions. The upper row is the linear case
(U = 0), the middle row is for U = 4 and the lower one for U = 16. The left column is the temporal evolution of the charge
on the third site; |¢(t)|*. The central column is the Fourier spectrum of the signal and the right one shows the eight Lyapunov
exponents. For U = 0 the system is quasiperiodic, whereas for U = 4 and U = 16 it is chaotic.



Insight: Origin of chaos and role of the Hartree states

» What is the origin of the chaotic behavior?
» What is the role of the Hartree solutions in the global
picture?
» Are they stable?
» Are they the best solutions in the variational sense?

» Can we learn something new from the Hamitonian
formulation?



Insight: Relative equilibria: Hartree selfconsistent state:

In a rotating frame (w # 0)

O W >
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The equilibria correspond to symmetric periodic orbits.
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The four families of the Lyapunov center theorem
The sign of w indicates the orientation of the orbit.
» g(w) > 0 — U > 0 repulsive case.
» g(w) < 0 — U < 0 attractive case.




Stability of the second branch: loxodromic bifurcations




Stability: the four branches

branch 2

branch 1

Arg(u)

. branch 4
T T




Can we lower the dimension?

— 2
H(Z,Z):ab+éb—|b2| Z:(a,b) 6((:2‘
» Reversible and
symmetric z — ez

_ U » Two conserved
B B quantities; H and
' MF F=lzP.
wp W2 » Integrable
U a = ib
K L . ey 2
o—o b = ia —ibb°.
a b



Relative equilibria and “bridges”

» z = (0,0) unique equilibrium — two Lyapunov families.
» In a rotating frame we can compute the Floquet multipliers

_ iT, /w2435 2y 1+
pa=jia=e V' —e oA

Arg(p,)
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Rotation Number

» Let us consider the flow induced by the symmetry as the
cross section (X).

» Choose an initial point x € ¥ and let it flow.
» Look for the next intersection and measure the time T

Phro(X) = P ().

‘ . o4(p) ]

u¥



Global reduction

Following global reduction techniques 2 we can write the
rotation number as

1 [ur H+“72 du

=%, 2aF-u) Jau)

where

2
Qu) = F? - <H+ L:) —(F—2u)

=5
2R. Cushman & M. Bates, Global aspects of classical integrable systems. 4@

Birkhauser, 1997



The rotation number is constant along the bridge

Theorem:

1.0

3/7

0.5 —

-a17

-1.0




What are the bridges is this case?

branch 1

Arg(u)

branch 2




Example 2: Elastic Pendulum

')

q1

Adimensional parameter A = X

mg
Equilibria{ (0,—\—1) Stable

(0,A—1) Unstable (A > 1)

2 >
P P 1 2, 2 12 1
H=Z+5 +5(/a+aG - A)"+g+A+



Reversibility continuation: Normal modes
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Vertical Nonlinear Normal Mode: Period Doubling

- arg(X)

L loa(al)




Period doubled branch

arg(X;)
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Period doubled branch

C ==

Re(2)

Im(z)
|2] =1




Schematic bifurcation diagram
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Reversibility continuation

Definition: We say that R € L(R") is a reversibility for the
system x = f(x), if Rf(x) = —f(RX) for all x € R".

@ +p3

Plano de puntos fijos de Ry

Example: in a mechanical system changing the sign to all
velocities and integrate in negative time we get another
solution.

] Poetic definition: In an reversible system the future is the pastefa
T




Reversibility continuation: R1

L. L,
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Reversibility continuation: R2

AQ2

ot (%) Rap(x)



Reversibility continuation: reversible orbits
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Reversibility continuation: non reversible orbits
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Insight: Reversibility continuation results

\

W/

2




Horseshoe (exchange) solution of the 2k+1 BP

] Not enough insight yet\

7 N
N

No overtaking condition




5 body exchange orbit

(a)

(b)

()




5 body exchange orbits

00




5 body exchange orbit connected to Euler-like solution
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