Insight; not just numbers

Numerical continuation of solutions in conservative systems

Jorge Galán Vioque

Departamento de Matemática Aplicada & Instituto de Matemáticas de la Universidad de Sevilla (IMUS)

with E. Freire (Sevilla), F. J. Muñoz-Almaraz (Cardenal Herrera, Valencia), E. Doedel (Concordia, Montreal) and A. Vanderbauwhede (Ghent), A. Bengochea and E. Pérez-Chavela (UAM).

Ddays 2014 Badajoz, 13th November 2014

INSIGHT: Visión interna, percepción, (Gestalt) comprensión.

Computational Tools DS Group Sevilla

- Normal Forms.
- Numerical Continuation of solutions with AUTO.
- Symbolic and numerical Computations for PWLS.

Computational Tools DS Group Sevilla

- Normal Forms.
- Numerical Continuation of solutions with AUTO.
- Symbolic and numerical Computations for PWLS.
- Hamiltonian systems (JGV)

Computational Tools DS Group Sevilla

- Normal Forms.
- Numerical Continuation of solutions with AUTO.
- Symbolic and numerical Computations for PWLS.
- Hamiltonian systems (JGV)
- Numerical Methods for PDEs (BGA, RTNS2015)

Continuation of periodic orbits in Hamiltonian systems

U C C

Continuation of periodic orbits in Hamiltonian systems

Skilled programmer and/or long term project

Skilled programmer and/or long term project

Be a man and write your own code!

or

Skilled programmer and/or long term project

Be a man and write your own code!

or

The wimpy approach

Skilled programmer and/or long term project

Be a man and write your own code!

or

The wimpy approach

Use a (good) black box code, but

Skilled programmer and/or long term project

Be a man and write your own code!

or

The wimpy approach

Use a (good) black box code, but understand what you are doing and be careful. In our case AUTO.

References

 Crash Course on Numerical Continuation: see article by E. Doedel in Scholarpedia

References

- Crash Course on Numerical Continuation: see article by E. Doedel in Scholarpedia
- Crash Course on using AUTO: The 4.5 minutes guide to AUTO by F. Schilder.

References

- Crash Course on Numerical Continuation: see article by E. Doedel in Scholarpedia
- Crash Course on using AUTO: The 4.5 minutes guide to AUTO by F. Schilder.

$$\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x},\lambda)$$

$$\dot{x} = f(x, \lambda)$$

$$F(x,\lambda) = E$$

$$\dot{x}=f(x,\lambda)$$

$$F(x,\lambda) = E$$

1. How do we continue solution in the E parameter?

$$\dot{x} = f(x, \lambda)$$

$$F(x,\lambda) = E$$

- 1. How do we continue solution in the E parameter?
- 2. A simple example.

$$\dot{x}=f(x,\lambda)$$

$$F(x,\lambda) = E$$

- 1. How do we continue solution in the E parameter?
- 2. A simple example.
- 3. Continuation in conservative systems or continuation without parameters; an alternative to reduction methods.

$$\dot{x}=f(x,\lambda)$$

$$F(x,\lambda) = E$$

- 1. How do we continue solution in the E parameter?
- 2. A simple example.
- 3. Continuation in conservative systems or continuation without parameters; an alternative to reduction methods.
- 4. Three examples with insight.

The best-seller in mathematical modelling

Galileo's pendulum

► 3 parameters: *L*, *m*, *g*

The best-seller in mathematical modelling

Galileo's pendulum

- ▶ 3 parameters: *L*, *m*, *g*
- Newton's second law:

 $mL\ddot{\theta} + mg\sin\theta = 0$

The best-seller in mathematical modeling

Galileo's pendulum

- ► 3 parameters: *L*, *m*, *g*
- Newton's second law:

$$\ddot{\theta} + \frac{g}{L}\sin\theta = 0$$

The best-seller in mathematical modeling

Galileo's pendulum

- Rescaling time with $\tau = \sqrt{\frac{L}{q}}$.
- Newton's second law:

Galileo's Pendulum Equation

 $\ddot{\theta} + \sin \theta = 0$

The best-seller in mathematical modeling

Galileo's pendulum

- Rescaling time with $\tau = \sqrt{\frac{L}{g}}$.
- Newton's second law:

Galileo's Pendulum Equation

 $\ddot{\theta} + \sin\theta = \mathbf{0}$

 One dof ODE without parameters with two equilibria: θ = 0 (S) and θ = π (U) and a one parameter family of periodic orbits.

Phase portrait of Galileo's pendulum

Position and velocity are not independent of each other.

- Position and velocity are not independent of each other.
- The system has a first integral or conserved quantity:

$$E=\frac{\dot{\theta}^2}{2}+1-\cos\theta.$$

- Position and velocity are not independent of each other.
- The system has a first integral or conserved quantity:

$$E=\frac{\dot{\theta}^2}{2}+1-\cos\theta.$$

The dimension of the problem can be reduced by eliminating the velocity:

$$\dot{\theta} = \sqrt{2(E-1+\cos\theta)}$$

- Position and velocity are not independent of each other.
- The system has a first integral or conserved quantity:

$$E=\frac{\dot{\theta}^2}{2}+1-\cos\theta.$$

The dimension of the problem can be reduced by eliminating the velocity:

$$\dot{\theta} = \sqrt{2(E-1+\cos\theta)}$$

We have introduced now E as an internal parameter that can be used for continuation (and lowered the dimension).

The general picture for Hamiltonian systems

U open set in \mathbb{R}^{2n} , $H \in \mathcal{C}^1(U)$ con $J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$.

 $u' = J \nabla H(u)$

- ODE without explicit parameters.
- H is a conserved quantity.
- Periodic orbits are not isolated (cylinder theorem).

Geometrical picture: Cylinder Theorem

Geometrical picture: Reduction

Alternative method: Increase the dimension!

Alternative method: positive dissipation

Alternative: negative dissipation

The idea: $\ddot{\theta} + \alpha \dot{\theta} + \sin \theta = 0$

AUTO results

Remarks

- It is straightforward to implement (if we know the unfolding term) [Physica D 181 (2001)].
- 2. It can be extended to *k* independent conserved quatities.
- 3. Bifurcations can be detected and followed.
- 4. We can detect homo- and heteroclinic connections.
- 5. The computation preserves the simplectic character of the problem (Hamiltonian case).
- 6. For reversible system there are further simplifications.
- 7. AUTO is parallelized (Openmp and MPI)

Theory: BVP Formulation

$$u' = T(J \nabla H(u(t)) + \alpha \nabla H(u(t))),$$
 $u(1) = u(0).$ (1)

with u, α and T as unknowns. Finding a T-periodic orbit of $u' = J \nabla H(u)$ is equivalent to finding a solution of (1) if $\alpha = 0$. We have to include a phase condition to fix the time origin.

$$(u(0) - u_0(0))^* u_0'(0) = 0.$$
 (2)

Continuation theorem with 1 conserved quantity

Theorem

Let $u_0(t)$ be a periodic solution with period $0 < T_0 < +\infty$ whose monodromy matrix has 1 as an eigenvalue with **geometric multiplicty one** or **algebraic multiplicity two**. Then, there exist is a unique branch of solutions of (1) and (2) in a neighbourhood of $(u, T, \alpha) = (u_0, T_0, 0)$. Moreover, along the branch $\alpha = 0$.

The proof is a direct application of IFT and the fact that H(u(t)) is constant along the periodic orbit.

Generalization

► Let
$$\mathcal{W}_{\mathbf{p}} = \{\nabla F(\mathbf{p}) : F \text{ first ontegral of } \dot{x} = f(x)\},\$$

dim $(\mathcal{W}_{\mathbf{p}}) = k, \varphi_t(\mathbf{x}, \alpha)$ the flow and $\operatorname{orb}_{\varphi}(\mathbf{p})$ the orbit.

$$\dot{\mathbf{x}} = f(\mathbf{x}) \quad \rightarrow \quad \dot{\mathbf{x}} = f(\mathbf{x}) + \alpha_1 \nabla F_1(\mathbf{x}) + \ldots + \alpha_k \nabla F_k(\mathbf{x}),$$

Proposition

Let $\mathbf{p} \in \mathbb{R}^n$ s. t. $\operatorname{orb}_{\varphi}(\mathbf{p})$ be T-periodic. It holds that $\operatorname{Im}(D\varphi_T(\mathbf{p}) - I) + \mathbb{R}f(\mathbf{p}) \subseteq W_{\mathbf{p}}^{\perp}$.

General results

Definition (Normal periodic orbit)

Let $\mathbf{p} \in \mathbb{R}^n$ such that the orbit $\operatorname{orb}_{\varphi}(\mathbf{p})$ is periodic with period T > 0 and \mathbf{p} is not an equilibrium of $\dot{\mathbf{z}} = f(\mathbf{z})$. We say that $\operatorname{orb}_{\varphi}(\mathbf{p})$ is a normal periodic orbit of e $\dot{\mathbf{z}} = f(\mathbf{z})$ if

$$\operatorname{Im}(D arphi_{\mathcal{T}}(\mathbf{p}) - l) + \mathbb{R}f(\mathbf{p}) = \mathcal{W}_{\mathbf{p}}^{\perp}.$$

Theorem (Continuation with *k* conserved quantities) Let $\mathbf{p} \in \mathbb{R}^n$ be a point that generates a **normal** periodic orbit of $\dot{\mathbf{x}} = f(\mathbf{x})$ with period T > 0. Then there exists a neighbourhood of T > 0 such that the set of points that generate periodic orbits whose period is in that neighbourhood of T is locally a submanifold at \mathbf{p} .

Example 1: Chaos in a mean field quantum system

Jona-Lasinio et al¹, studied numerically the time-evolution of a wave packet in a triple quantum well with electrostatic interaction just in the narrow central well in the *mean field* approximation (*Hartree*) and found chaotic behavior.

¹G. Jona-Lasinio, C. Presilla and F. Capasso, Chaotic Quantum Phenomena without classical counterpart. Phys. Rev. Lett. **68** 2269 (1992)

Continuum model: localized NLSE

$$i\hbar\frac{\partial\Psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi(x,t)}{\partial x^2} + [V(x) + \alpha Q(t)\chi(x)]\Psi(x,t)$$

- V(x) is the potential profile.
- $Q(t) = \int_{w_2} |\Psi(x, t)|^2 dx$ is the electronic charge in the central well (w_2) .
- α measures the electrostatic coupling.

Minimal discrete model

The wavefunction is $|\Psi \rangle = |a \ b \ c \ d \rangle \in \mathbb{C}^4$.

Classical Hamiltonian formulation

Reparameterizing time and the variables:

$$\dot{a} = ib$$

$$\dot{b} = ia +ic$$

$$\dot{c} = ib +id -i\overline{c}c^{2}$$

$$\dot{d} = ic .$$

$$\dot{z} = i\frac{\partial H(z,\overline{z})}{\partial \overline{z}}$$

$$H(z,\overline{z}) = (a\overline{b} + \overline{a}b + b\overline{c} + \overline{b}c + c\overline{d} + \overline{c}d) - \frac{(c\overline{c})^{2}}{2},$$

z = (a, b, c, d). It is autonomous, reversible $(H(z, \overline{z}) = H(\overline{z}, z))$ and invariant under diagonal rotations in C^4 $(z \to ze^{i\theta}) \to two$ conserved quantities.

Numerical evidence of chaotic behavior

Numerical integration: Fourier spectrum and Lyapunov exp.

FIG. 2. Numerical results by simulation of (4), K = 1 and the same initial conditions. The upper row is the linear case (U = 0), the middle row is for U = 4 and the lower one for U = 16. The left column is the temporal evolution of the charge on the third site $|c(t)|^2$. The central column is the Fourier spectrum of the signal and the right one shows the eight Lyapunov exponents. For U = 0 the system is quasiperiodic, whereas for U = 4 and U = 16 it is chaotic.

Insight: Origin of chaos and role of the Hartree states

- What is the origin of the chaotic behavior?
- What is the role of the Hartree solutions in the global picture?
 - Are they stable?
 - Are they the best solutions in the variational sense?
- Can we learn something new from the Hamitonian formulation?

Insight: Relative equilibria: Hartree selfconsistent states

In a rotating frame ($\omega \neq 0$)

 $z(t) = (a(t), b(t), c(t), d(t)) = e^{i\omega t} (A(t), B(t), C(t), D(t)),$

$$\dot{A} = i(B - \omega A)$$

$$\dot{B} = i(A + C - \omega B)$$

$$\dot{C} = i(B + D - \omega C) - i(C\overline{C})C$$

$$\dot{D} = i(C - \omega D)$$

The equilibria correspond to symmetric periodic orbits.

$$A_{0} = \frac{C_{0}}{\omega^{2} - 1}, \ B_{0} = \frac{\omega}{\omega^{2} - 1}C_{0}, \ D = \frac{C_{0}}{\omega}, \ |C_{0}|^{2} = -\frac{(\omega^{2} - \phi^{2})(\omega^{2} - \frac{1}{\phi^{2}})}{\omega(\omega^{2} - 1)}$$

The four families of the Lyapunov center theorem

The sign of ω indicates the orientation of the orbit.

- $g(\omega) > 0 \rightarrow U > 0$ repulsive case.
- $g(\omega) < 0 \rightarrow U < 0$ attractive case.

Stability of the second branch: loxodromic bifurcations

Stability: the four branches

Can we lower the dimension?

$$H(z,\bar{z}) = a\bar{b} + \bar{a}b - \frac{|b|^2}{2}$$

$$U$$

$$B_1$$

$$W_1$$

$$W_2$$

$$z = (a, b) \in \mathbb{C}^2.$$

- Reversible and symmetric $z \rightarrow e^{i\theta} z$.
- Two conserved quantities; *H* and $F = |z|^2$.
- Integrable

$$\dot{a} = ib$$

 $\dot{b} = ia -i\overline{b}b^2$

Relative equilibria and "bridges"

- ▶ z = (0, 0) unique equilibrium \longrightarrow two Lyapunov families.
- In a rotating frame we can compute the Floquet multipliers

$$\mu_{3} = \bar{\mu}_{4} = e^{iT\sqrt{\omega^{2} + \frac{3}{\omega^{2}}}} = e^{i2\pi\sqrt{1 + \frac{3}{\omega^{4}}}}$$

Rotation Number

- Let us consider the *flow induced by the symmetry* as the cross section (Σ).
- Choose an initial point $x \in \Sigma$ and let it flow.
- Look for the next intersection and measure the time T

$$\varphi_{2\pi\Theta}^F(x) = \varphi_T^H(x).$$

Global reduction

Following global reduction techniques ² we can write the rotation number as

$$\Theta = rac{1}{\pi} \int_{u_{-}}^{u_{+}} rac{H + rac{u^{2}}{2}}{2(F - u)} rac{du}{\sqrt{Q(u)}}$$

where

$$Q(u) = F^2 - \left(H + \frac{u^2}{2}\right)^2 - (F - 2u)^2.$$

The rotation number is constant along the bridge

Theorem:

$$\frac{3}{7}=1-\frac{4}{7}$$

What are the bridges is this case?

Example 2: Elastic Pendulum

$$\begin{array}{l} \mbox{Adimensional parameter } \lambda = \frac{lk}{mg} \\ \mbox{Equilibria} \left\{ \begin{array}{l} (0, -\lambda - 1) & \mbox{Stable} \\ (0, \lambda - 1) & \mbox{Unstable} \ (\lambda > 1) \end{array} \right. \\ \mbox{} H = \frac{p_1^2}{2} + \frac{p_2^2}{2} + \frac{1}{2} (\sqrt{q_1^2 + q_2^2} - \lambda)^2 + q_2 + \lambda + \frac{1}{2}. \end{array} \right.$$

Reversibility continuation: Normal modes

Vertical Nonlinear Normal Mode: Period Doubling

Period doubled branch

Period doubled branch

Schematic bifurcation diagram

Reversibility continuation

Definition: We say that $R \in L(\mathbb{R}^n)$ is a reversibility for the system $\dot{\mathbf{x}} = f(\mathbf{x})$, if $Rf(\mathbf{x}) = -f(R\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$.

Reversibility continuation

Definition: We say that $R \in L(\mathbb{R}^n)$ is a reversibility for the system $\dot{\mathbf{x}} = f(\mathbf{x})$, if $Rf(\mathbf{x}) = -f(R\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$.

Reversibility continuation

Definition: We say that $R \in L(\mathbb{R}^n)$ is a reversibility for the system $\dot{\mathbf{x}} = f(\mathbf{x})$, if $Rf(\mathbf{x}) = -f(R\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$.

Example: in a mechanical system changing the sign to all velocities and integrate in negative time we get another solution.

Poetic definition: In an reversible system the future is the past of a

Reversibility continuation: R1

Reversibility continuation: R2

Reversibility continuation: reversible orbits

Reversibility continuation: non reversible orbits

Insight: Reversibility continuation results

Insight: Reversibility continuation results

Horseshoe (exchange) solution of the 2k+1 BP

Not enough insight yet

No overtaking condition

5 body exchange orbit

5 body exchange orbits

5 body exchange orbit connected to Euler-like solution

