Centers in dimension 3

ISAAC A. GARCÍA University of Lleida, Spain

DDays 2014, Badajoz, 12–14 November 2014

PART I:

Centers on center manifolds

ISAAC A. GARCÍA Centers in dimension 3

▲□ ▶ ▲ □ ▶ ▲ □ ▶

We consider the analytic three-dimensional system

$$\dot{x} = -y + \mathcal{F}_{1}(x, y, z),
\dot{y} = x + \mathcal{F}_{2}(x, y, z),
\dot{z} = \lambda z + \mathcal{F}_{3}(x, y, z),$$
(1)

▲□ ▶ ▲ □ ▶ ▲ □

$$\bullet \ \lambda \in \mathbb{R} \setminus \{0\};$$

• $\mathcal{F} = (\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3) \in C^w(\mathcal{U})$ with $\mathcal{U} \subset \mathbb{R}^3$ neighborhood of 0; • $\mathcal{F}(0) = 0$ and $D\mathcal{F}(0) = 0$.

Hopf singular point

The origin is a *Hopf singularity* of system (1): it possesses the eigenvalues $\pm i \in \mathbb{C}$ and $\lambda \in \mathbb{R} \setminus \{0\}$.

Let \mathcal{W}^c be a local center manifold at the origin of system (1):

- \mathcal{W}^c is an invariant surface, tangent to the (x, y) plane at the origin.
- $\mathcal{W}^c = \{z = h(x, y) : \text{ for } (x, y) \text{ around } (0, 0)\}$ with h(0, 0) = 0 and Dh(0, 0) = 0.
- For any $k \ge 1$ there exists a C^k local center manifold.
- The local center manifold need not be unique.

- The origin is a center of (1) if all the orbits on \mathcal{W}^c are periodic;
- Otherwise, the origin is a saddle-focus: a focus on \mathcal{W}^c .

The center problem in \mathbb{R}^3

To decide when the origin of (1) is a center or not.

同ト・モモト

Lyapunov Center Theorem

The origin is a center for the analytic system (1) if and only if (1) admits a real analytic local first integral of the form

$$H(x, y, z) = x^2 + y^2 + \cdots$$

in a neighborhood of the origin in \mathbb{R}^3 .

Remark

Moreover, when there is a center, the local center manifold \mathcal{W}^c is unique and analytic.

Inverse Jacobi multipliers (1844)

 \mathcal{X} will denote the associated vector field to system (1), that is,

$$\mathcal{X} = (-y + \mathcal{F}_1(x, y, z)) \frac{\partial}{\partial x} + (x + \mathcal{F}_2(x, y, z)) \frac{\partial}{\partial y} + (\lambda z + \mathcal{F}_3(x, y, z)) \frac{\partial}{\partial z}$$

Inverse Jacobi multiplier

A C^1 function $V : \mathcal{U} \subset \mathbb{R}^3 \to \mathbb{R}$ is an *inverse Jacobi multiplier* of \mathcal{X} if it is not locally null and it satisfies the linear first-order partial differential equation

$$\mathcal{X}V = V \operatorname{div}\mathcal{X},$$

where $\operatorname{div} \mathcal{X}$ is the divergence of \mathcal{X} .

Remark

For the rescaled vector field \mathcal{X}/V on $\mathcal{U}\setminus V^{-1}(0)$: div $(\mathcal{X}/V) \equiv 0$.

Theorem 1

System (1) has a center at the origin if and only if it admits a local analytic inverse Jacobi multiplier of the form

$$V(x, y, z) = z + \cdots$$

in a neighborhood of the origin in \mathbb{R}^3 .

- \Rightarrow Assume that (1) has a center at the origin.
 - Using normal form theory, system (1) having a center is real analytically conjugated to the normal form

$$\dot{\xi} = -\eta F(\xi^2 + \eta^2) \,, \ \dot{\eta} = \xi F(\xi^2 + \eta^2) \,, \ \dot{w} = \lambda w + w \, G(\xi^2 + \eta^2) \,.$$

- **2** It has the inverse Jacobi multiplier $\hat{V}(\xi, \eta, w) = w$.
- **3** Going back we get $V(x, y, z) = z + \cdots$

Sketch of the proof of Theorem 1 (sufficient condition)

- $\Leftarrow \text{Assume that (1) possesses } V(x, y, z) = z + \cdots.$
 - Using the Implicit Function Theorem for V(x, y, z) = 0: there exists a unique analytic function h(x, y) such that h(0, 0) = 0, Dh(0, 0) = 0 and $V(x, y, h(x, y)) \equiv 0$.
 - 2 Hence, from the flow-invariance of the surface V = 0, we have W^c = {z = h(x, y)} is an analytic local center manifold for (1).
 - 3 *** We prove that V(x, y, z) = (z h(x, y))W(x, y, z) such that $W|_{\mathcal{W}^c}(x, y) = W(x, y, h(x, y)) \neq 0.$
 - 4 *** We prove that $W|_{W^c}$ is an analytic inverse integrating factor of $\mathcal{X}|_{W^c}$ that is non-vanishing at the origin.
 - The Reeb Criterium assures that the origin is a center for X|W^c.

・ロト ・回ト ・ヨト ・ヨト

Remark: Non-uniqueness of $V \in C^w$ around a center

For any $k \ge 0$, there are analytic inverse Jacobi multipliers \hat{V} at a center of the form

$$\hat{V} = VH^k = (z + \cdots)(x^2 + y^2 + \cdots)^k = z(x^2 + y^2)^k + \cdots$$

A consequence of the proof of Theorem 1

When system (1) has a center, then the $V(x, y, z) = z + \cdots$ predicted by Theorem 1 satisfies $\mathcal{W}^c \subset V^{-1}(0)$

Theorem 2

When system (1) has a center, then any local C^{∞} inverse Jacobi multiplier V of system (1) must satisfy $\mathcal{W}^c \subset V^{-1}(0)$.

An application: classification of centers in the Lü system

For $(a, b, c) \in \mathbb{R}^3$, consider the 3-parametric Lü family

$$\dot{x} = a(y - x), \ \dot{y} = cy - xz, \ \dot{z} = -bz + xy.$$

- The singularities $Q_{\pm} = (\pm \sqrt{bc}, \pm \sqrt{bc}, c)$ when c = (a+b)/3 and ab > 0 are Hopf points.
- Invariance under the symmetry $(x, y, z) \mapsto (-x, -y, z)$.
- The first three Lyapunov constants of Q_{\pm} vanish if and only if $(a, b, c) \in L = \{(a, b, c) \in \mathbb{R}^3 : a \neq 0, b = 2a, c = a\}.$

Theorem 3. (The centers in the Lü system)

The singularities Q_{\pm} are centers if and only if $(a, b, c) \in L$.

Proof: When $(a, b, c) \in L$, $V(x, y, z) = x^2 - 2az$ is an inverse Jacobi multiplier.

Existence and smoothness of V and \mathcal{W}^c around the saddle-focus

Theorem 4

Assume that the origin is a saddle-focus for the analytic system (1). Then the following holds:

■ There exists a local C[∞] and non-flat inverse Jacobi multiplier of (1) having the expression

$$V(x, y, z) = z(x^2 + y^2)^n + \cdots$$

for some $n \geq 2$.

• For the former V, there is a local C^{∞} center manifold \mathcal{W}^c such that $\mathcal{W}^c \subset V^{-1}(0)$.

The following system has, $\forall a \in \mathbb{R}$,

 \hat{V}

is

$$\begin{split} \dot{x} &= -y - x(x^2 + y^2) , \ \dot{y} = x - y(x^2 + y^2) , \ \dot{z} = -z, \\ \mathcal{W}_a^c &= \begin{cases} \{z = 0\} & \text{(analytic)} \\ \{z = a \exp\left(-\frac{1}{2(x^2 + y^2)}\right) \} & (C^{\infty} \text{ flat}) \end{cases} \\ V_a(x, y, z) &= \begin{cases} z(x^2 + y^2)^2 & \text{(analytic)} \\ (z - a \exp\left(-\frac{1}{2(x^2 + y^2)}\right) \right) & (x^2 + y^2)^2 & (C^{\infty} \text{ non-flat}) \end{cases} \\ \dot{V}(x, y, z) &= V_0(x, y, z) - V_1(x, y, z) = \exp\left(-\frac{1}{2(x^2 + y^2)}\right) & (x^2 + y^2)^2 \end{aligned}$$
is C^{∞} flat and $\dot{V}^{-1}(0) = \{(0, 0, 0)\}.$

Theorem 5

Assume that the origin is a saddle-focus for system (1).

- Any two locally C^{∞} and non-flat at the origin linearly independent inverse Jacobi multipliers of (1) have the same Taylor expansion at the origin.
- Let V be a locally C^{∞} and non-flat at the origin inverse Jacobi multiplier of (1). Then there is exactly one smooth center manifold \mathcal{W}^c of (1) such that $\mathcal{W}^c \subset V^{-1}(0)$.

PART II:

Characterizing centers on center manifolds via Lie symmetries

Analytical normal form near a center

If the origin is a center for \mathcal{X}_{λ} then there is a real analytic near-identity diffeomorphism Φ such that

$$\widehat{\mathcal{X}}_{\lambda} = \Phi^* \mathcal{X}_{\lambda} = -y \left(1 + F(x^2 + y^2) \right) \partial_x + x \left(1 + F(x^2 + y^2) \right) \partial_y + z \left(\lambda + G(x^2 + y^2) \right) \partial_z$$

where F and G are real analytic on a neighborhood of zero in \mathbb{R} and F(0) = G(0) = 0.

・日・ ・ ヨ・・

C^{∞} normal form near a saddle-focus

If the origin is a saddle-focus for \mathcal{X}_{λ} then there is a C^{∞} near-identity diffeomorphism Φ such that $\widehat{\mathcal{Y}}_{\lambda} = \Phi^* \mathcal{X}_{\lambda}$ where

$$\begin{aligned} \widehat{\mathcal{Y}}_{\lambda} &= \left(-y + \frac{1}{2} [(x+iy)A(x^2+y^2) + (x-iy)B(x^2+y^2)] \right) \partial_x \\ &+ \left(x + \frac{1}{2} [(y-ix)A(x^2+y^2) + (y+ix)B(x^2+y^2)] \right) \partial_y \\ &+ z [\lambda + C(x^2+y^2)] \partial_z \end{aligned}$$

where $(i^2 = -1)$ and the symmetry conjugation $\overline{B(x^2 + y^2)} = A(x^2 + y^2)$ holds (so the normal form is real), $A(x^2 + y^2) + B(x^2 + y^2) \neq 0$, and $\operatorname{Re}(A) \neq 0$.

・ 同 トー・ ヨート・・ モート・・・

Normal forms near a Hopf singularity

Notation:

$$\mathcal{X}_{\lambda} = \mathcal{X}_A + \cdots$$

where \mathcal{X}_A is the linear vector field with associated matrix A.

Linearizable and orbitally linearizable centers

- $\mathcal{X}_{\lambda} = \mathcal{X}_{A} + \cdots$ is analytically orbitally linearizable in \mathcal{U} if there exists an analytic change of coordinates Φ on \mathcal{U} such that $\Phi^* \mathcal{X}_{\lambda} = f(x, y, z) \mathcal{X}_{A}$ for some analytic function $f: \mathcal{U} \to \mathbb{R}$ on a neighborhood of the origin with f(0, 0, 0) = 1.
- In the particular case that $f(x, y, z) \equiv 1$ we say that \mathcal{X}_{λ} is analytically linearizable in \mathcal{U} .

 $[\mathcal{X}, \mathcal{Y}] = \mathcal{X}\mathcal{Y} - \mathcal{Y}\mathcal{X}$ denotes the usual Lie bracket of vector fields \mathcal{X} and \mathcal{Y} in $\mathcal{V} \subset \mathbb{R}^n$ regarded as derivations.

Definitions and notations

- The set of analytic centralizers of \mathcal{X} on \mathcal{V} will be denoted $\mathfrak{C}(\mathcal{X}, \mathcal{V}) = \{ \mathcal{Z} \in C^w(\mathcal{V}) : [\mathcal{X}, \mathcal{Z}] = 0 \}.$
- The set of linear centralizers of \mathcal{X} is $\mathcal{L}(\mathcal{X})$.
- The set of analytic normalizers of \mathcal{X} on \mathcal{V} will be denoted $\mathfrak{N}(\mathcal{X}, \mathcal{V}) = \{\mathcal{Z} \in C^w(\mathcal{V}) : [\mathcal{X}, \mathcal{Z}] = \Lambda \mathcal{X}\}$ where $\Lambda : \mathcal{V} \to \mathbb{R}$ is a meromorphic function.
- The set of real analytic first integrals (including constants) of \mathcal{X} on \mathcal{V} will be denoted $\mathcal{I}(\mathcal{X}, \mathcal{V})$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Several related algebraic structures

- The sets C(X, V) and N(X, V) are Lie algebra over the field R which are, in general, infinite-dimensional.
- The set $\mathcal{L}(\mathcal{X}_M)$ is a finite-dimensional real vector space.
- The set $\mathcal{I}(\mathcal{X}, \mathcal{V})$ is a ring.

Certain very interesting cases

One has in some cases the interesting fact that the Lie algebra $\mathfrak{C}(\mathcal{X}, \mathcal{V})$ has dimesion dim $\mathfrak{C}(\mathcal{X}, \mathcal{V}) = \infty$ but $\mathfrak{C}(\mathcal{X}, \mathcal{V})$ is a finitely generated module over $\mathcal{I}(\mathcal{X}, \mathcal{V})$.

・同・ ・ヨ・ ・ヨ・

Note

We emphasize that there is no algorithmic procedure for determining if $\mathfrak{N}(\mathcal{X}, \mathcal{V})$ is nontrivial, that is, $\mathfrak{N}(\mathcal{X}, \mathcal{V}) \neq \mathbb{R} \mathcal{X}$.

The formal counterpart

- $\mathfrak{C}_{\text{for}}(\mathcal{X})$, $\mathfrak{N}_{\text{for}}(\mathcal{X})$ and $\mathcal{I}_{\text{for}}(\mathcal{X})$ denotes the set of formal centralizers, normalizers, and first integrals of a given formal vector field \mathcal{X} .
- If \mathcal{X} is analytic on \mathcal{V} we have:

 $\mathfrak{C}(\mathcal{X},\mathcal{V})\subset\mathfrak{C}_{\mathrm{for}}(\mathcal{X})\,,\,\mathfrak{N}(\mathcal{X},\mathcal{V})\subset\mathfrak{N}_{\mathrm{for}}(\mathcal{X})\,,\,\mathcal{I}(\mathcal{X},\mathcal{V})\subset\mathcal{I}_{\mathrm{for}}(\mathcal{X}).$

・ 回 ト ・ ヨ ト ・ ヨ

Recall that $\mathcal{X}_{\lambda} = \mathcal{X}_A + \cdots$ with

$$A = \left(\begin{array}{rrrr} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & \lambda \end{array}\right).$$

The vector space $\mathcal{L}(\mathcal{X}_A)$

4

A basis of $\mathcal{L}(\mathcal{X}_A)$ is $\{\mathcal{Z}_0, \mathcal{Z}_1, \mathcal{Z}_2\}$ where

$$\mathcal{Z}_0 = \mathcal{X}_A = -y\partial_x + x\partial_y + \lambda z\partial_z \ , \ \mathcal{Z}_1 = x\partial_x + y\partial_y \ , \ \mathcal{Z}_2 = z\partial_z.$$

▲御▶ ▲理≯ ▲理≯

臣

Theorem: Module structure of Centralizers of \hat{X}_{λ} in the center case. Application to linearizable centers

Suppose \mathcal{X}_{λ} has a center on the center manifold W^c at the origin and let $\hat{\mathcal{X}}_{\lambda}$ be its analytic normal form.

• For any open neighborhood $\mathcal{U}^* \subset \mathcal{U}$ of the origin and any $\mathcal{Z} \in \mathfrak{C}(\widehat{\mathcal{X}}_{\lambda}, \mathcal{U}^*)$ there exist $\mu_i(x^2 + y^2) \in \mathcal{I}(\mathcal{X}_A, \mathcal{U}^*)$, $0 \leq i \leq 2$, such that

$$\mathcal{Z} = \mu_0 (x^2 + y^2) \mathcal{Z}_0 + \mu_1 (x^2 + y^2) \mathcal{Z}_1 + \mu_2 (x^2 + y^2) \mathcal{Z}_2.$$

• If \mathcal{X}_{λ} is not analytically linearizable then $\mu_1 \equiv 0$.

Theorem: The formal Centralizers of X_{λ} and \tilde{Y}_{λ} in the saddle-focus case. Finite-dimensional Lie algebras

Suppose \mathcal{X}_{λ} has a saddle-focus at the origin and let \mathcal{Y}_{λ} be its C^{∞} normal form.

• The Lie algebras $\mathfrak{C}_{for}(\mathcal{X}_{\lambda})$ and $\mathfrak{C}_{for}(\widehat{\mathcal{Y}}_{\lambda})$ satisfy

$$\dim \mathfrak{C}_{\text{for}}(\mathcal{X}_{\lambda}) = \dim \mathfrak{C}_{\text{for}}(\widehat{\mathcal{Y}}_{\lambda}) = 3.$$

• A basis of the Lie algebra $\mathfrak{C}_{\text{for}}(\widehat{\mathcal{Y}}_{\lambda})$ is $\{\mathcal{Z}_0, \mathcal{Z}_2, \widehat{\mathcal{Y}}_{\lambda}\}$.

Centralizers and dynamics of \mathcal{X}_{λ}

Corollary 1: A solution of the center problem in \mathbb{R}^3 in terms of $\dim \mathfrak{C}_{for}(\mathcal{X}_{\lambda})$

- The origin is a center for \mathcal{X}_{λ} if and only if $\dim \mathfrak{C}_{for}(\mathcal{X}_{\lambda}) = \infty$, which is true if and only if $\dim \mathfrak{C}(\mathcal{X}_{\lambda}, \mathcal{U}) = \infty$.
- The origin is a saddle-focus for X_λ if and only if dim C_{for}(X_λ) = 3.

Corollary 2: dim $\mathfrak{C}(\mathcal{X}_{\lambda}, \mathcal{U})$ and analytic normalization in the saddle-focus case

Assume the origin is a saddle-focus for \mathcal{X}_{λ} . Then:

$$\dim \mathfrak{C}(\mathcal{X}_{\lambda}, \mathcal{U}) \leq 3.$$

• If \mathcal{X}_{λ} is analytically normalizable then dim $\mathfrak{C}(\mathcal{X}_{\lambda}, \mathcal{U}) = 3$.

PART III:

Multiple Hopf bifurcations from a saddle-focus

ISAAC A. GARCÍA Centers in dimension 3

We perturb analytically system (1) of the form

$$\begin{aligned} \dot{x} &= -y + \mathcal{G}_1(x, y, z; \varepsilon) , \\ \dot{y} &= x + \mathcal{G}_2(x, y, z; \varepsilon) , \\ \dot{z} &= \lambda z + \mathcal{G}_3(x, y, z; \varepsilon) , \end{aligned}$$
(2)

・ 同 ト・ イ ヨ ト・ イ ヨ ト

- $\varepsilon \in \mathbb{R}^p$, $0 < \|\varepsilon\| << 1$ and $\mathcal{G}_i(x, y, z; 0) \equiv \mathcal{F}_i(x, y, z)$.
- $\mathcal{G} = (\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3)$ is analytic for both (x, y, z) and ε in a neighborhood of the origin.
- We keep the monodromic nature of the origin: $\mathcal{G}_i(0,0,0;\varepsilon) = 0$ and $D\mathcal{G}(0,0,0;\varepsilon) = 0$.

We study the existence of periodic orbits of (2) bifurcating from (x, y, z) = (0, 0, 0) in a multiple Hopf bifurcation for $||\varepsilon|| << 1$.

Theorem 6

Assume that the origin of (1) is a saddle-focus. Let V(x, y, z) be a C^{∞} and non-flat at the origin inverse Jacobi multiplier of the unperturbed analytic system (1). Then:

•
$$V(x, y, z) = z(x^2 + y^2)^n + \cdots$$
 with $n \ge 2$ fixed.

• The maximum number of limit cycles that can bifurcate from the origin in the perturbed system (2) with $\|\varepsilon\|$ sufficiently small is n-1.

(四) (종) (종)

Sketch of the proof of Theorem 6

1 We perform the polar blow-up $(x, y, z) \mapsto (\theta, r, w)$ defined by $x = r \cos \theta$, $y = r \sin \theta$, z = rw and the new time $t \mapsto \theta$ bringing system (2) into

$$\frac{dr}{d\theta} = R(\theta, r, w; \varepsilon) , \ \frac{dw}{d\theta} = \lambda w + W(\theta, r, w; \varepsilon) , \qquad (3)$$

defined for |r| sufficiently small on the cylinder $C = \{(\theta, r, w) \in \mathbb{S}^1 \times \mathbb{R}^2\}$ where $\mathbb{S}^1 = \mathbb{R}/2\pi\mathbb{Z}$.

- 2 We define for system (3):
 - (a) Poincaré map: the 2π -time flow $\Pi(r_0, w_0; \varepsilon) = (r(2\pi; r_0, w_0; \varepsilon), w(2\pi; r_0, w_0; \varepsilon)).$
 - (b) displacement map: $d(r_0, w_0; \varepsilon) = \Pi(r_0, w_0; \varepsilon) \operatorname{Id}(r_0, w_0) = (d_1(r_0, w_0; \varepsilon), d_2(r_0, w_0; \varepsilon)).$

(1日) (日) (日)

PROBLEM:

Look for zeroes of $d(r_0, w_0; \varepsilon)$ around $(r_0, \varepsilon) = (0, 0)$ and with $r_0 > 0$.

3 Lyapunov-Schmidt reduction to $d(r_0, w_0; \varepsilon)$: there exists one unique analytic function $\bar{w}(r_0, \varepsilon)$ defined near $(r_0, \varepsilon) = (0, 0)$ such that $d_2(r_0, \bar{w}(r_0, \varepsilon); \varepsilon) \equiv 0$.

REDUCED PROBLEM:

Look for zeroes of the analytic reduced displacement map $\Delta(r_0; \varepsilon) = d_1(r_0, \bar{w}(r_0, \varepsilon); \varepsilon)$ around $(r_0, \varepsilon) = (0, 0)$ with $r_0 > 0$.

・同・ ・ヨ・ ・ヨ・

Sketch of the proof of Theorem 6

4 Define $\delta(r_0) = \Delta(r_0; 0)$ with Taylor expansion at $r_0 = 0$: $\delta(r_0) = \sum_{i \ge k} c_i r_0^i$ with $c_k \ne 0$. *k* is the order at the origin of $\delta(r_0)$.

STANDARD ARGUMENTS:

- UPPER BOUND OF # ZEROES: From the Weierstrass Preparation Theorem, the number of zeros of $\Delta(r_0; \varepsilon)$ near $(r_0, \varepsilon) = (0, 0)$ is at most k.
- SYMMETRY: System (3) is invariant under $(r, \theta, w) \mapsto (-r, \theta + \pi, -w)$. Hence the zeroes of $\Delta(r_0; \varepsilon)$ near $(r_0, \varepsilon) = (0, 0)$ appear in pairs of opposite sign except the trivial one $r_0 = 0$. Thus the maximum number of limit cycles (associated with the zeros with $r_0 > 0$) is (k - 1)/2.

・ 国 ト ・ 国 ト ・ 国 ト

5 FINAL STEP: prove that (k-1)/2 = n-1

An inverse Jacobi multiplier $\hat{V}(\theta,r,w)$ of system $(3)_{\varepsilon=0}$ in $r\neq 0$ is given by

$$\hat{V}(\theta, r, w) = \frac{V(r\cos\theta, r\sin\theta, rw)}{r^2(1 + \Theta(\theta, r, w; 0))} .$$

The fundamental relation

Let $\hat{V}(\theta, r, w)$ be an inverse Jacobi multiplier of system $(3)_{\varepsilon=0}$ and $\Pi(r_0, w_0)$ its Poincaré map. Then

$$\hat{V}(2\pi, \Pi(r_0, w_0)) = \hat{V}(0, r_0, w_0) \det(D\Pi(r_0, w_0)) .$$
(4)

▲ 御 ▶ → ● ▶ -

PART IV:

The 3-dimensional center problem at the zero-Hopf singularity

Families of 3-dimensional analytic zero-Hopf singularities

Take $\lambda = 0!!!$

We consider an analytic three-dimensional family of system

$$\dot{x} = -y + F_1(x, y, z; \mu)
\dot{y} = x + F_2(x, y, z; \mu)
\dot{z} = F_3(x, y, z; \mu),$$
(5)

伺い イヨン イヨン

where $\mu \in \Lambda \subset \mathbb{R}^p$ are the parameters of the family and:

- The functions $F_i: U \subset \mathbb{R}^3 \to \mathbb{R}$ are $\mathcal{C}^w(U)$, $F_i(0,0,0;\mu) = 0$ and $\nabla F_i(0,0,0;\mu) = (0,0,0);$
- The eigenvalues associated to the singularity of at the origin of (5) are {±*i*, 0}.
- The origin of (5) is called a *zero-Hopf* or a *fold-Hopf* singularity.

The linear part is completely integrable

- The linearization $\dot{x} = -y$, $\dot{y} = x$, $\dot{z} = 0$ of (5) has two first integrals $H_1(x, y, z) = x^2 + y^2$ and $H_2(x, y, z) = z$.
- The orbits are the intersection of the level sets of H_1 and H_2 : cylinders and planes.

Definition: 3-dimensional center

The origin of the nonlinear system (5) is a 3-dimensional center if there is a neighborhood of it completely foliated by periodic orbits of (5), including continua of equilibriums as trivial periodic orbits.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

The polar-directional blow-up

Doing first the rescaling $(x, y, z) \mapsto (x/\varepsilon, y/\varepsilon, z/\varepsilon)$ and later the polar blow–up $(x, y, z) \mapsto (\theta, r, w)$ defined by

$$x = r \cos \theta , \ y = r \sin \theta , \ z = rw ,$$
 (6)

system (5) can be written for $|\varepsilon|$ sufficiently small into the analytic system

$$\frac{dr}{d\theta} = \varepsilon R(\theta, r, w; \mu, \varepsilon) , \quad \frac{dw}{d\theta} = \varepsilon W(\theta, r, w; \mu, \varepsilon) , \qquad (7)$$

around its invariant set $\{r = 0\}$ and defined on the cylinder $\{(\theta, r, w) \in \mathbb{S}^1 \times \mathcal{K}\}$ where $\mathbb{S}^1 = \mathbb{R}/2\pi\mathbb{Z}$ and $\mathcal{K} \subset \mathbb{R}^2$ is an arbitrary compact set.

Remark

Any 2π -periodic solution of (7) corresponds to a periodic orbit of (5) near (x, y, z) = (0, 0, 0).

3-dimensional centers and displacement map

The origin is a 3-dimensional center of (5) with $\mu = \mu^* \in \mathbb{R}^p$ if and only if $d(r_0, w_0; \mu^*, \varepsilon) \equiv 0$.

・日本 ・ 日本 ・ 日本

It is immediate to check that:

complete analytical integrability \Rightarrow 3-dimensional center.

What about the converse?

Theorem (3-dimensional centers and complete integrability)

The origin of system (5) for $\mu = \mu^*$ is a 3-dimensional center if and only if one of the following statements hold:

- 1. System (5) is completely analytically integrable.
- 2. System (5) is analytically orbitally linearizable.

Let us consider the 9-parameter family of quadratic vector fields in \mathbb{R}^3

$$\dot{x} = -y + x(a_1x + a_2y + a_3z),
\dot{y} = x + y(b_1x + b_2y + b_3z),
\dot{z} = z(c_1x + c_2y + c_3z),$$
(8)

回 と く ヨ と く ヨ と …

where the parameters of the family are

$$\mu = (a_1, a_2, a_3, b_1, b_2, b_3, c_1, c_2, c_3) \in \mathbb{R}^9.$$

The irreducible components of the center variety

Theorem (García-Valls)

The origin of (8) is a 3-dimensional center if and only if: (i) $a_3 = b_3 = c_3 = 0$, $a_2 = \pm b_1$, $b_2 = \pm a_1$ and $c_2 = \pm c_1$; (ii) $a_2 = a_3 = b_2 = b_3 = c_2 = c_3 = 0;$ (iii) $a_3 = b_3 = c_3 = 0$, $a_2 = b_2$, $b_1 = a_1$, $c_2 = c_1 b_2 / a_1$ with $a_1 \neq 0$; (iv) $a_3 = b_3 = c_3 = c_1 = c_2 = 0, a_2 = -2b_2, b_1 = -2a_1$; (v) $c_3 = 0, a_2 = \pm b_1, b_2 = \pm a_1, c_2 = \pm c_1$; (vi) $c_1 = c_2 = c_3 = 0$, $a_2 = \pm 2a_1$, $a_3 = -b_3$, $b_1 = -2a_1$, $b_2 = \pm a_1$; (vii) $c_1 = c_2 = c_3 = 0$, $a_2 = b_2$, $a_3 = -b_3$, $b_1 = a_1$; (viii) $a_1 = a_2 = a_3 = b_1 = b_2 = b_3 = c_3 = 0$: (ix) $a_1 = a_3 = b_1 = b_2 = b_3 = c_1 = c_3 = 0$: (x) $a_1 = a_3 = b_2 = b_3 = c_3 = 0, b_1 = -a_2, c_1 = -c_2;$ (xi) $a_1 = a_3 = b_1 = b_3 = c_1 = c_3 = 0.$ Isaac A. García Centers in dimension 3

PART V:

Future work and open problems

ISAAC A. GARCÍA Centers in dimension 3

□ ▶ (ミ ▶)

Future work and open problems

- 1 The cyclicity problem for a center on W^c in some POLYNOMIAL family \mathcal{X}_{λ} with $\lambda \neq 0$. We need to control the displacement map and the Bautin ideal!!
- 2 The nilpotent center on a center manifold: We can lose analyticity of W^c even in the center case!!

$$\dot{x} = y + F_1(x, y, z; \lambda)
\dot{y} = F_2(x, y, z; \lambda)
\dot{z} = \lambda z + F_3(x, y, z; \lambda),$$
(9)

with $\lambda \neq 0$.

[1] A. BUICĂ, I. A. GARCÍA AND S. MAZA, Existence of inverse Jacobi multipliers around Hopf points in \mathbb{R}^3 : emphasis on the center problem, J. Differential Equations **252** (2012), 6324-6336.

[2] I.A. GARCÍA, S. MAZA AND D.S. SHAFER, Properties of monodromic points on center manifolds in ℝ³ via Lie symmetries, J. Dyn. Differ. Equ. 25 (2013), 981-1000.

[3] A. BUICĂ, I. A. GARCÍA AND S. MAZA, Multiple Hopf bifurcation in \mathbb{R}^3 and inverse Jacobi multipliers, J. Differential Equations **256** (2014), 310-325.

[4] I.A. GARCÍA AND C. VALLS, The three-dimensional center problem for the zero-Hopf singularity. To appear.

・ロン ・回と ・ヨン ・ヨン

[5] X. ZHANG, Inverse Jacobian multipliers and Hopf bifurcation on center manifolds, J. Differential Equations 256 (2014), 3278-3299.

伺 ト イヨト イヨト