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PART I

Centers on center manifolds
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The Hopf points in R?

We consider the analytic three-dimensional system

T = —y+]:1(l',y,Z),
y: IB—F.FQ(.’E,Z/,Z), (1)
2= Az+ Fs(z,y,2),

m )\ e R\{0};
n F = (F1,F,F3) € C¥(U) with U C R3 neighborhood of 0;
m F(0) =0 and DF(0) =0.

Hopf singular point

The origin is a Hopf singularity of system (1): it possesses the
eigenvalues +i € C and A € R\{0}.
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Local center manifolds W°

Let W€ be a local center manifold at the origin of system (1):
m W€ is an invariant surface, tangent to the (z,y) plane at
the origin.
m W= {z=h(z,y) : for (x,y) around (0,0)} with
h(0,0) = 0 and Dh(0,0) = 0.
m For any k > 1 there exists a C* local center manifold.

m The local center manifold need not be unique.
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Local dynamics on a center manifold W¢

m The origin is a center of (1) if all the orbits on W¢ are
periodic;

m Otherwise, the origin is a saddle-focus: a focus on W¥¢.

The center problem in R?

To decide when the origin of (1) is a center or not.
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The Lyapunov solution to the center problem

Lyapunov Center Theorem

The origin is a center for the analytic system (1) if and only if
(1) admits a real analytic local first integral of the form

H($,y72)=$2+’y2—|—”'

in a neighborhood of the origin in R3.

RENEILS

Moreover, when there is a center, the local center manifold W€
is unique and analytic.
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Inverse Jacobi multipliers (1844)

X will denote the associated vector field to system (1), that is,

0 0 0
X = (—y+f1(x,y, z))%—i-(:v—i-]ﬁ(x,y,z))af—i—()\z—l—fg(x,y, Z))& :

Inverse Jacobi multiplier

|@

A C" function V : U € R? — R is an inverse Jacobi multiplier
of X if it is not locally null and it satisfies the linear first-order
partial differential equation

XV =V divk,

where divX is the divergence of X.

For the rescaled vector field X' /V on U\V ~1(0): div(x/V) = 0.
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A new solution to the center problem

Theorem 1

System (1) has a center at the origin if and only if it admits a
local analytic inverse Jacobi multiplier of the form

V(l‘,y,Z):Z—i-"‘

in a neighborhood of the origin in R3.
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Sketch of the proof of Theorem 1 (necessary condition)

= Assume that (1) has a center at the origin.

Using normal form theory, system (1) having a center is
real analytically conjugated to the normal form

£=-nF(&+n?), n=EF(E+n%), v = w+wG(E+n?).

It has the inverse Jacobi multiplier V(f W) = w.
Going back we get V(z,y,2) =z+--- O
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Sketch of the proof of Theorem 1 (sufficient condition)

< Assume that (1) possesses V(x,y,2) =2+ ---.

Using the Implicit Function Theorem for V(zx,y, z) = 0:
there exists a unique analytic function h(z,y) such that
h(0,0) =0, Dh(0,0) =0 and V(x,y, h(z,y)) = 0.

H Hence, from the flow—invariance of the surface V =0, we
have W€ = {z = h(z,y)} is an analytic local center
manifold for (1).

K We prove that V(z,y,2) = (2 — h(z,y))W(z,y, z) such
that Wiye(z,y) = W(z,y, h(z,y)) # 0.

A “** We prove that W|yye is an analytic inverse integrating
factor of X|ye that is non-vanishing at the origin.

H The Reeb Criterium assures that the origin is a center for
Xyye.
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Relations between WW¢ and V~1(0) around centers

Remark: Non-uniqueness of V' € C around a center

For any k > 0, there are analytic inverse Jacobi multipliers V at
a center of the form

V=VH =(z+-- )@ +*+- V=2 +1°) + -

A consequence of the proof of Theorem 1

When system (1) has a center, then the V(z,y,z) =2+ ---
predicted by Theorem 1 satisfies W¢ C V~1(0)

Theorem 2

When system (1) has a center, then any local C* inverse
Jacobi multiplier V' of system (1) must satisfy W¢ C V=1(0).
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An application: classification of centers in the Lu system

For (a,b,c) € R?, consider the 3-parametric Lii family

t=a(y—x), y=cy—xz, Z=—bz+xy.

m The singularities Q+ = (+£v/be, £v/bc, ¢) when ¢ = (a +b)/3
and ab > 0 are Hopf points.

m Invariance under the symmetry (z,y, z) — (—z, —y, 2).

m The first three Lyapunov constants of ()+ vanish if and
only if (a,b,c) € L = {(a,b,c) ER3:a #0,b=2a,c=a}.
Theorem 3. (The centers in the Li system)

The singularities Q1 are centers if and only if (a, b, c) € L.

Proof: When (a,b,c) € L, V(z,y,2) = 2> — 2az is an inverse
Jacobi multiplier.
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Existence and smoothness of V' and WW¢ around the
saddle-focus

Assume that the origin is a saddle-focus for the analytic system
(1). Then the following holds:

m There exists a local C* and non-flat inverse Jacobi
multiplier of (1) having the expression

V(z,y,2) = 2(a® +y*)" + -

for some n > 2.

m For the former V, there is a local C'*° center manifold W¢
such that W¢ C V=1(0) .
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A simple example of saddle-focus shows the possibilities

The following system has, Va € R,

i=-—y—z@®+y?), y=r—-y@@®+y?), i=—z,

e {z =0} (analytic)
a — {z:aexp (—m>} (COO ﬂat)
2(22 + y?)2 (analytic)
Va(z,y,2) = (Z — aexp <_W>> (:E2 + y2)2 (C* non-flat)

V(l‘,y, Z) = %(:Ev Y, Z) - V1($7y) Z) = €Xp <_W) (xQ +y2)2
is C flat and V=1(0) = {(0,0,0)}.
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More properties of W and V~1(0) around a saddle-focus

Assume that the origin is a saddle-focus for system (1).

m Any two locally C* and non-flat at the origin linearly
independent inverse Jacobi multipliers of (1) have the same
Taylor expansion at the origin.

m Let V be a locally C*° and non-flat at the origin inverse

Jacobi multiplier of (1). Then there is exactly one smooth
center manifold W€ of (1) such that W¢ c V~1(0).
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PART II:

Characterizing centers on center
manifolds via Lie symmetries
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Normal forms near a Hopf singularity

Analytical normal form near a center

If the origin is a center for X then there is a real analytic

near-identity diffeomorphism @ such that

2/(\)\ = X, =—y (1 + F(w2 + yz)) Op +x (1 + F(:L‘2 + y2)) Oy
+z (A + G(z? + %)) 8.

where F' and G are real analytic on a neighborhood of zero in R
and F(0) = G(0) = 0.
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Normal forms near a Hopf singularity

C*° normal form near a saddle-focus

If the origin is a saddle-focus for X then there is a C>°
near-identity diffeomorphism ® such that yA ®* Xy where

I = <—Z/+%

—i—(m + %[(y —iz)A(@® + %) + (y +iz)B(z® + y )]>8y
+2[A + C(2® + )]0,

(@ +iy)A@® + %) + (& — ig) B@® +)]) 0

where ( = —1) and the symmetry conjugation
B(x2 + y2) = A(2? + y?) holds (so the normal form is real),
A(x? + y?) + B(z% + y*) # 0, and Re(A) £ 0.
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Normal forms near a Hopf singularity

where X4 is the linear vector field with associated matrix A.

Linearizable and orbitally linearizable centers

m X\ = X4+ is analytically orbitally linearizable in U if
there exists an analytic change of coordinates ® on U such
that ®*X\ = f(x,y, 2)X4 for some analytic function
f:U — R on a neighborhood of the origin with
£(0,0,0) = 1.

m In the particular case that f(z,y,z) =1 we say that X is
analytically linearizable in U.
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Background on Centralizers and Normalizers in R"

[X,)] = XY — VX denotes the usual Lie bracket of vector fields
X and Y in V C R"” regarded as derivations.

Definitions and notations

The set of analytic centralizers of X on V will be denoted
CX,V)={Z2eC¥V): X, Z] =0}
The set of linear centralizers of X is L(X).

The set of analytic normalizers of X on V will be denoted
NX,V)={Z2eC?V):[X,Z] =AX} where A: V — R is
a meromorphic function.

The set of real analytic first integrals (including constants)
of X on V will be denoted Z(X, V).
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Background on Centralizers and Normalizers in R"

Several related algebraic structures

m The sets €(X,V) and M(X, V) are Lie algebra over the field
R which are, in general, infinite-dimensional.

m The set L(X)) is a finite-dimensional real vector space.
m The set Z(X,V) is a ring.

Certain very interesting cases

One has in some cases the interesting fact that the Lie algebra
(X, V) has dimesion dim €(X,V) = oo but €(X,V) is a finitely
generated module over Z(X, V).
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Background on Centralizers and Normalizers in R"

We emphasize that there is no algorithmic procedure for
determining if M(X, V) is nontrivial, that is, M(X,V) # R X.

The formal counterpart

B Cior (X)), Nior(X) and Zg,, (X) denotes the set of formal
centralizers, normalizers, and first integrals of a given
formal vector field X.

m If X is analytic on V we have:

Q:(va) C Q:for(X) 5 m(X7V) C mfor()() ) I(X,V) C Ifor(X)'
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Centralizers and dynamics of X,

Recall that X\ = X4 + --- with

The vector space L(X,)
A basis of L(X,) is {20, Z1, 22} where

20 =Xg = Y0y + 20y + A\20, , Z1 = 20, + Y0y , 23 = 20,.
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Centralizers and dynamics of X,

Theorem: Module structure of Centralizers of /?A in the center
case. Application to linearizable centers

Suppose X, has a center on the center manifold W€ at the
origin and let X be its analytic normal form.

m For any open neighborhood ¢4* C U of the origin and any
Z € €(X\,U*) there exist p;(2? + y?) € T(Xa,U*),
0 <i < 2, such that

Z = po(a® + y*) 20 + 1 (2” + y*) 21 + pa(2® + v*) Za.

m If X) is not analytically linearizable then p; = 0.
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Centralizers and dynamics of X,

Theorem: The formal Centralizers of X and JAJA in the
saddle-focus case. Finite-dimensional Lie algebras

Suppose &), has a saddle-focus at the origin and let ?A be its
C® normal form.

m The Lie algebras €, (X)) and €f0r(§,\) satisfy
dim Crop (X)) = dim Cgor (V) = 3.

m A basis of the Lie algebra Q:for(j)\)\) is {29, 2o, :)A))\}
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Centralizers and dynamics of X,

Corollary 1: A solution of the center problem in R? in terms of
dim Cgo, (X))

m The origin is a center for X, if and only if
dim €, (X)) = oo, which is true if and only if
dim €(X,U) = oo.

m The origin is a saddle-focus for X if and only if
dim €, (X)) = 3.

Corollary 2: dim €(X),U) and analytic normalization in the

saddle-focus case

Assume the origin is a saddle-focus for X. Then:
m dim €(X,,U) < 3.
m [f X is analytically normalizable then dim €(X\,U) = 3.

A A
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PART III:

Multiple Hopt bifurcations from a
saddle-focus
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Analytic perturbation of a saddle-focus

We perturb analytically system (1) of the form

T = _y+g1($7yuz;€) )
y = 1‘+g2($7y72;5) ) (2)
z = )\Z‘FQS(«T;%Z;&") )

meceRP0<|e]| << 1and Gi(x,y,2;0) = Fi(z,y, 2).
m G = (G1,G2,Gs) is analytic for both (z,y,z) and € in a
neighborhood of the origin.

m We keep the monodromic nature of the origin:
Gi(0,0,0;¢) = 0 and DG(0,0,0;e) = 0.
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Multiple Hopf bifurcation

We study the existence of periodic orbits of (2) bifurcating from
(x,y,2) = (0,0,0) in a multiple Hopf bifurcation for ||e|| << 1.

Theorem 6

Assume that the origin of (1) is a saddle-focus. Let V(x,y, 2)
be a C*° and non-flat at the origin inverse Jacobi multiplier of
the unperturbed analytic system (1). Then:

m V(z,y,2) = 2(22 + y?)" + - with n > 2 fixed.
m The maximum number of limit cycles that can bifurcate

from the origin in the perturbed system (2) with ||¢||
sufficiently small is n — 1.
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Sketch of the proof of Theorem 6

1 We perform the polar blow—up (z,y, z) — (0,7, w) defined
by x =rcosf , y=rsinf , z =rw and the new time
t — 6 bringing system (2) into
d d
d—Z:R(G,T,w;E) , d—lg:)\w—FW(G,r,w;s) , (3)
defined for |r| sufficiently small on the cylinder
C ={(0,r,w) € S x R?} where S! = R/27Z.
2 We define for system (3):
(a) Poincaré map: the 2r—time flow
II(rg, wo;€) = (r(2m; 70, wo; €), w(27; 79, Wo; €)).
(b) displacement map: d(rg, wo;e) = H(rg, wo; ) — Id(ro, wo) =
(d1(r0, wo; €), d2(ro, wo; €))-
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Sketch of the proof of Theorem 6

PROBLEM:

Look for zeroes of d(rg,wop;€) around (rg,e) = (0,0) and with
ro > 0.

3 Lyapunov-Schmidt reduction to d(rg,wp;e): there exists
one unique analytic function w(rg,€) defined near
(ro,e) = (0,0) such that da(rg, w(re,€);e) = 0.

REDUCED PROBLEM:

Look for zeroes of the analytic reduced displacement map
A(ro;e) = di(ro,w(ro,€);e) around (rg,e) = (0,0) with ro > 0.
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Sketch of the proof of Theorem 6

4 Define §(rg) = A(ro;0) with Taylor expansion at ro = 0:
6(T0) = ZiZk Ci’l"z‘) with Cl 75 0.
k is the order at the origin of §(rg).

STANDARD ARGUMENTS:

m UPPER BOUND OF # ZEROES: From the Weierstrass
Preparation Theorem, the number of zeros of A(rp;e) near
(ro,€) = (0,0) is at most k.

®m SYMMETRY: System (3) is invariant under
(r,0,w) — (—r,0 + 7, —w). Hence the zeroes of A(rg;e)
near (rg,e) = (0,0) appear in pairs of opposite sign except
the trivial one rg = 0. Thus the maximum number of limit
cycles (associated with the zeros with 79 > 0) is (k —1)/2.
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Sketch of the proof of Theorem 6

5 FINAL STEP: prove that (k—1)/2=n—1

An inverse Jacobi multiplier V (8,7, w) of system (3).— in r # 0
is given by

X V(rcosf,rsinf, rw)
0,r,w) = '
V(0,7 w) r2(1+ 9(0,r, w;0))

THE FUNDAMENTAL RELATION

Let V (0,7, w) be an inverse Jacobi multiplier of system (3).—o
and II(rg,wp) its Poincaré map. Then

V(2m, IL(ro, wo)) = V (0,79, wo) det(DI(rg, wp)) . (4)
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PART IV:

The 3-dimensional center problem at
the zero-Hopf singularity

Isaac A. GARcia



Families of 3-dimensional analytic zero-Hopf singularities

Take A = 0!
We consider an analytic three-dimensional family of system

i =-y+ Fi(z,y,2;p1)
U= x4 Fy(z,y,2; 1) (5)
z= FS(:L‘ayaZ;:u’)v

where ;1 € A C RP are the parameters of the family and:
m The functions F; : U C R* — R are C¥(U), F;(0,0,0;) =0
and VF;(0,0,0; u) = (0,0,0);
m The eigenvalues associated to the singularity of at the
origin of (5) are {£i,0}.
m The origin of (5) is called a zero-Hopf or a fold-Hopf
singularity.
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The linear part is completely integrable

m The linearization & = —y, y = x, 2 = 0 of (5) has two first
integrals Hy(z,y,2) = 22 + y? and Ha(x,y,2) = 2.

m The orbits are the intersection of the level sets of H; and
Hj: cylinders and planes.

Definition: 3-dimensional center

The origin of the nonlinear system (5) is a 3-dimensional center
if there is a neighborhood of it completely foliated by periodic
orbits of (5), including continua of equilibriums as trivial
periodic orbits.
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The analytic Poincaré return map

The polar-directional blow-up

Doing first the rescaling (x,y, z) — (x/e,y/e, z/¢) and later the
polar blow—up (z,y, z) — (0, r,w) defined by

x=rcosl, y=rsind, z=rw, (6)

system (5) can be written for |e| sufficiently small into the
analytic system

dr dw

@ - 5R(9,T7wvu,5) ’ @ - €W(97T7wa,u75) ) (7)
around its invariant set {r = 0} and defined on the cylinder
{(,r,w) € S x K} where S = R/27Z and K C R? is an
arbitrary compact set.

Isaac A. GARcia Centers in dimension 3



The analytic Poincaré return map

Any 27—periodic solution of (7) corresponds to a periodic orbit
of (5) near (z,y,z) = (0,0,0).

3-dimensional centers and displacement map

The origin is a 3-dimensional center of (5) with p = p* € RP if
and only if d(rg, wo; u*,e) = 0.
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Characterizing 3-dimensional centers via normal form

It is immediate to check that:

complete analytical integrability = 3-dimensional center.

What about the converse?
Theorem (3-dimensional centers and complete integrability)

The origin of system (5) for p = p* is a 3-dimensional center if
and only if one of the following statements hold:
1. System (5) is completely analytically integrable.

2. System (5) is analytically orbitally linearizable.
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A 9-parameter family of quadratic vector fields

Let us consider the 9-parameter family of quadratic vector fields

in R3
&t = —y+z(arx + ay + azz),
y = x+y(bix+ by + b3z), (8)
z = z(az+ ey + c32),

where the parameters of the family are

9
M= (aha27a3ab17b27b3aclac27c3) eR”.
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The irreducible components of the center variety

Theorem (Garcia-Valls)

The origin of (8) is a 3-dimensional center if and only if:

a3 =bz =c3 =0, ap = +by, by = ta; and cg3 = £cq;

as =a3 =by =bg =cy =c3=0;

az =bs =c3 =0, ag = by, by = a1, ca = c1ba/ay with a; # 0;
a3 =bz3 =c3=c1 =c3 =0, ap = —2by, by = —2a;;

C3 :0, a9 = :l:bl, b2 = :I:al, Cy = :l:Cl,'

)
)
)
)
)
(vi) 1 =ca=c3 =0, ay = F2a1, ag = —bs, by = —2a1, by = ta;;
) c1 =ca=c3=0, ay = by, azg = —bs, by = ay;
) a1 =ag =as =by =by =bs =c3 =0;
) ar =a3=by =by=bg=c1 =c3=0;
) ag =a3=by =bs =c3 =0, by = —az, c; = —c3;

)

a1=a3=b121)32(31263:0.
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PART V:

Future work and open problems
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Future work and open problems

The cyclicity problem for a center on W€ in some
POLYNOMIAL family X\ with A # 0. We need to control
the displacement map and the Bautin ideal!!

A The nilpotent center on a center manifold: We can lose
analyticity of W¢ even in the center case!!

T :y—i_Fl(xvyaza)\)
y= F(v,y,2N) 9)
2= Az + Fs3(x,y, z; \),

with A # 0.

Isaac A. GARcia Centers in dimension 3



References

[1] A. BuicA, I. A. GARciA AND S. MAzA, Emzistence of inverse
Jacobi multipliers around Hopf points in R3: emphasis on the
center problem, J. Differential Equations 252 (2012), 6324-6336.

[2] I.A. GARcIA, S. MAzA AND D.S. SHAFER, Properties of

monodromic points on center manifolds in R3 via Lie symmetries,
J. Dyn. Differ. Equ. 25 (2013), 981-1000.

[3] A. BuicA, I. A. GARcia AND S. MAzA, Multiple Hopf
bifurcation in R3 and inverse Jacobi multipliers, J. Differential
Equations 256 (2014), 310-325.

[4] T.A. GARrcia AND C. VALLS, The three-dimensional center
problem for the zero-Hopf singularity. To appear.

Isaac A. GARcia Centers in dimension 3



Generalizations to arbitrary dimension

[5] X. ZHANG, Inverse Jacobian multipliers and Hopf bifurcation
on center manifolds, J. Differential Equations 256 (2014), 3278-
3299.

Isaac A. GARcia Centers in dimension 3



