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University of Lleida, Spain

DDays 2014, Badajoz, 12–14 November 2014
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PART I:

Centers on center manifolds
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The Hopf points in R3

We consider the analytic three-dimensional system

ẋ = −y + F1(x, y, z),
ẏ = x+ F2(x, y, z),
ż = λ z + F3(x, y, z),

(1)

λ ∈ R\{0};
F = (F1,F2,F3) ∈ Cw(U) with U ⊂ R3 neighborhood of 0;

F(0) = 0 and DF(0) = 0.

Hopf singular point

The origin is a Hopf singularity of system (1): it possesses the
eigenvalues ±i ∈ C and λ ∈ R\{0}.
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Local center manifolds Wc

Let Wc be a local center manifold at the origin of system (1):

Wc is an invariant surface, tangent to the (x, y) plane at
the origin.

Wc = {z = h(x, y) : for (x, y) around (0, 0)} with
h(0, 0) = 0 and Dh(0, 0) = 0.

For any k ≥ 1 there exists a Ck local center manifold.

The local center manifold need not be unique.
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Local dynamics on a center manifold Wc

The origin is a center of (1) if all the orbits on Wc are
periodic;

Otherwise, the origin is a saddle-focus: a focus on Wc.

The center problem in R3

To decide when the origin of (1) is a center or not.
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The Lyapunov solution to the center problem

Lyapunov Center Theorem

The origin is a center for the analytic system (1) if and only if
(1) admits a real analytic local first integral of the form

H(x, y, z) = x2 + y2 + · · ·

in a neighborhood of the origin in R3.

Remark

Moreover, when there is a center, the local center manifold Wc

is unique and analytic.
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Inverse Jacobi multipliers (1844)

X will denote the associated vector field to system (1), that is,

X = (−y+F1(x, y, z))
∂

∂x
+(x+F2(x, y, z))

∂

∂y
+(λz+F3(x, y, z))

∂

∂z
.

Inverse Jacobi multiplier

A C1 function V : U ⊂ R3 → R is an inverse Jacobi multiplier
of X if it is not locally null and it satisfies the linear first-order
partial differential equation

XV = V divX ,

where divX is the divergence of X .

Remark

For the rescaled vector field X/V on U\V −1(0): div(X/V ) ≡ 0.

Isaac A. Garćıa Centers in dimension 3



A new solution to the center problem

Theorem 1

System (1) has a center at the origin if and only if it admits a
local analytic inverse Jacobi multiplier of the form

V (x, y, z) = z + · · ·

in a neighborhood of the origin in R3.
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Sketch of the proof of Theorem 1 (necessary condition)

⇒ Assume that (1) has a center at the origin.

1 Using normal form theory, system (1) having a center is
real analytically conjugated to the normal form

ξ̇ = −ηF (ξ2+η2) , η̇ = ξF (ξ2+η2) , ẇ = λw+wG(ξ2+η2) .

2 It has the inverse Jacobi multiplier V̂ (ξ, η, w) = w.

3 Going back we get V (x, y, z) = z + · · · �

Isaac A. Garćıa Centers in dimension 3



Sketch of the proof of Theorem 1 (sufficient condition)

⇐ Assume that (1) possesses V (x, y, z) = z + · · · .

1 Using the Implicit Function Theorem for V (x, y, z) = 0:
there exists a unique analytic function h(x, y) such that
h(0, 0) = 0, Dh(0, 0) = 0 and V (x, y, h(x, y)) ≡ 0.

2 Hence, from the flow–invariance of the surface V = 0, we
have Wc = {z = h(x, y)} is an analytic local center
manifold for (1).

3 *** We prove that V (x, y, z) = (z − h(x, y))W (x, y, z) such
that W |Wc(x, y) = W (x, y, h(x, y)) 6≡ 0.

4 *** We prove that W |Wc is an analytic inverse integrating
factor of X|Wc that is non-vanishing at the origin.

5 The Reeb Criterium assures that the origin is a center for
X|Wc .
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Relations between Wc and V −1(0) around centers

Remark: Non-uniqueness of V ∈ Cw around a center

For any k ≥ 0, there are analytic inverse Jacobi multipliers V̂ at
a center of the form

V̂ = V Hk = (z + · · · )(x2 + y2 + · · · )k = z(x2 + y2)k + · · ·

A consequence of the proof of Theorem 1

When system (1) has a center, then the V (x, y, z) = z + · · ·
predicted by Theorem 1 satisfies Wc ⊂ V −1(0)

Theorem 2

When system (1) has a center, then any local C∞ inverse
Jacobi multiplier V of system (1) must satisfy Wc ⊂ V −1(0).

Isaac A. Garćıa Centers in dimension 3



An application: classification of centers in the Lü system

For (a, b, c) ∈ R3, consider the 3-parametric Lü family

ẋ = a(y − x), ẏ = cy − xz, ż = −bz + xy.

The singularities Q± = (±
√
bc,±

√
bc, c) when c = (a+ b)/3

and ab > 0 are Hopf points.

Invariance under the symmetry (x, y, z) 7→ (−x,−y, z).
The first three Lyapunov constants of Q± vanish if and
only if (a, b, c) ∈ L = {(a, b, c) ∈ R3 : a 6= 0, b = 2a, c = a}.

Theorem 3. (The centers in the Lü system)

The singularities Q± are centers if and only if (a, b, c) ∈ L.

Proof: When (a, b, c) ∈ L, V (x, y, z) = x2 − 2az is an inverse
Jacobi multiplier.
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Existence and smoothness of V and Wc around the
saddle-focus

Theorem 4

Assume that the origin is a saddle-focus for the analytic system
(1). Then the following holds:

There exists a local C∞ and non-flat inverse Jacobi
multiplier of (1) having the expression

V (x, y, z) = z(x2 + y2)n + · · ·

for some n ≥ 2.

For the former V , there is a local C∞ center manifold Wc

such that Wc ⊂ V −1(0) .
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A simple example of saddle-focus shows the possibilities

The following system has, ∀a ∈ R,

ẋ = −y − x(x2 + y2) , ẏ = x− y(x2 + y2) , ż = −z,

Wc
a =

{
{z = 0} (analytic){
z = a exp

(
− 1

2(x2+y2)

)}
(C∞ flat)

Va(x, y, z) =

{
z(x2 + y2)2 (analytic)(
z − a exp

(
− 1

2(x2+y2)

))
(x2 + y2)2 (C∞ non-flat)

V̂ (x, y, z) = V0(x, y, z)− V1(x, y, z) = exp
(
− 1

2(x2+y2)

)
(x2 + y2)2

is C∞ flat and V̂ −1(0) = {(0, 0, 0)}.
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More properties of Wc and V −1(0) around a saddle-focus

Theorem 5

Assume that the origin is a saddle-focus for system (1).

Any two locally C∞ and non-flat at the origin linearly
independent inverse Jacobi multipliers of (1) have the same
Taylor expansion at the origin.

Let V be a locally C∞ and non-flat at the origin inverse
Jacobi multiplier of (1). Then there is exactly one smooth
center manifold Wc of (1) such that Wc ⊂ V −1(0).
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PART II:

Characterizing centers on center
manifolds via Lie symmetries
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Normal forms near a Hopf singularity

Analytical normal form near a center

If the origin is a center for Xλ then there is a real analytic
near-identity diffeomorphism Φ such that

X̂λ = Φ∗Xλ = −y
(
1 + F (x2 + y2)

)
∂x + x

(
1 + F (x2 + y2)

)
∂y

+z
(
λ+G(x2 + y2)

)
∂z

where F and G are real analytic on a neighborhood of zero in R
and F (0) = G(0) = 0.
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Normal forms near a Hopf singularity

C∞ normal form near a saddle-focus

If the origin is a saddle-focus for Xλ then there is a C∞

near-identity diffeomorphism Φ such that Ŷλ = Φ∗Xλ where

Ŷλ =
(
− y +

1

2
[(x+ iy)A(x2 + y2) + (x− iy)B(x2 + y2)]

)
∂x

+
(
x+

1

2
[(y − ix)A(x2 + y2) + (y + ix)B(x2 + y2)]

)
∂y

+z[λ+ C(x2 + y2)]∂z

where (i2 = −1) and the symmetry conjugation
B(x2 + y2) = A(x2 + y2) holds (so the normal form is real),
A(x2 + y2) +B(x2 + y2) 6≡ 0, and Re(A) 6≡ 0.
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Normal forms near a Hopf singularity

Notation:

Xλ = XA + · · ·

where XA is the linear vector field with associated matrix A.

Linearizable and orbitally linearizable centers

Xλ = XA + · · · is analytically orbitally linearizable in U if
there exists an analytic change of coordinates Φ on U such
that Φ∗Xλ = f(x, y, z)XA for some analytic function
f : U → R on a neighborhood of the origin with
f(0, 0, 0) = 1.

In the particular case that f(x, y, z) ≡ 1 we say that Xλ is
analytically linearizable in U .
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Background on Centralizers and Normalizers in Rn

[X ,Y] = XY −YX denotes the usual Lie bracket of vector fields
X and Y in V ⊂ Rn regarded as derivations.

Definitions and notations

The set of analytic centralizers of X on V will be denoted
C(X ,V) = {Z ∈ Cw(V) : [X ,Z] = 0}.
The set of linear centralizers of X is L(X ).

The set of analytic normalizers of X on V will be denoted
N(X ,V) = {Z ∈ Cw(V) : [X ,Z] = ΛX} where Λ : V → R is
a meromorphic function.

The set of real analytic first integrals (including constants)
of X on V will be denoted I(X ,V).
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Background on Centralizers and Normalizers in Rn

Several related algebraic structures

The sets C(X ,V) and N(X ,V) are Lie algebra over the field
R which are, in general, infinite-dimensional.

The set L(XM ) is a finite-dimensional real vector space.

The set I(X ,V) is a ring.

Certain very interesting cases

One has in some cases the interesting fact that the Lie algebra
C(X ,V) has dimesion dimC(X ,V) =∞ but C(X ,V) is a finitely
generated module over I(X ,V).
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Background on Centralizers and Normalizers in Rn

Note

We emphasize that there is no algorithmic procedure for
determining if N(X ,V) is nontrivial, that is, N(X ,V) 6= RX .

The formal counterpart

Cfor(X ), Nfor(X ) and Ifor(X ) denotes the set of formal
centralizers, normalizers, and first integrals of a given
formal vector field X .

If X is analytic on V we have:

C(X ,V) ⊂ Cfor(X ) , N(X ,V) ⊂ Nfor(X ) , I(X ,V) ⊂ Ifor(X ).
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Centralizers and dynamics of Xλ

Recall that Xλ = XA + · · · with

A =

 0 −1 0
1 0 0
0 0 λ

 .

The vector space L(XA)

A basis of L(XA) is {Z0,Z1,Z2} where

Z0 = XA = −y∂x + x∂y + λz∂z , Z1 = x∂x + y∂y , Z2 = z∂z.
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Centralizers and dynamics of Xλ

Theorem: Module structure of Centralizers of X̂λ in the center
case. Application to linearizable centers

Suppose Xλ has a center on the center manifold W c at the
origin and let X̂λ be its analytic normal form.

For any open neighborhood U∗ ⊂ U of the origin and any
Z ∈ C(X̂λ,U∗) there exist µi(x

2 + y2) ∈ I(XA,U∗),
0 ≤ i ≤ 2, such that

Z = µ0(x
2 + y2)Z0 + µ1(x

2 + y2)Z1 + µ2(x
2 + y2)Z2.

If Xλ is not analytically linearizable then µ1 ≡ 0.
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Centralizers and dynamics of Xλ

Theorem: The formal Centralizers of Xλ and Ŷλ in the
saddle-focus case. Finite-dimensional Lie algebras

Suppose Xλ has a saddle-focus at the origin and let Ŷλ be its
C∞ normal form.

The Lie algebras Cfor(Xλ) and Cfor(Ŷλ) satisfy

dimCfor(Xλ) = dimCfor(Ŷλ) = 3.

A basis of the Lie algebra Cfor(Ŷλ) is {Z0,Z2, Ŷλ}.
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Centralizers and dynamics of Xλ

Corollary 1: A solution of the center problem in R3 in terms of
dimCfor(Xλ)

The origin is a center for Xλ if and only if
dimCfor(Xλ) =∞, which is true if and only if
dimC(Xλ,U) =∞.

The origin is a saddle-focus for Xλ if and only if
dimCfor(Xλ) = 3.

Corollary 2: dimC(Xλ,U) and analytic normalization in the
saddle-focus case

Assume the origin is a saddle-focus for Xλ. Then:

dimC(Xλ,U) ≤ 3.

If Xλ is analytically normalizable then dimC(Xλ,U) = 3.
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PART III:

Multiple Hopf bifurcations from a
saddle-focus

Isaac A. Garćıa Centers in dimension 3



Analytic perturbation of a saddle-focus

We perturb analytically system (1) of the form

ẋ = −y + G1(x, y, z; ε) ,
ẏ = x+ G2(x, y, z; ε) , (2)

ż = λz + G3(x, y, z; ε) ,

ε ∈ Rp, 0 < ‖ε‖ << 1 and Gi(x, y, z; 0) ≡ Fi(x, y, z).
G = (G1,G2,G3) is analytic for both (x, y, z) and ε in a
neighborhood of the origin.

We keep the monodromic nature of the origin:
Gi(0, 0, 0; ε) = 0 and DG(0, 0, 0; ε) = 0.
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Multiple Hopf bifurcation

We study the existence of periodic orbits of (2) bifurcating from
(x, y, z) = (0, 0, 0) in a multiple Hopf bifurcation for ‖ε‖ << 1.

Theorem 6

Assume that the origin of (1) is a saddle-focus. Let V (x, y, z)
be a C∞ and non-flat at the origin inverse Jacobi multiplier of
the unperturbed analytic system (1). Then:

V (x, y, z) = z(x2 + y2)n + · · · with n ≥ 2 fixed.

The maximum number of limit cycles that can bifurcate
from the origin in the perturbed system (2) with ‖ε‖
sufficiently small is n− 1.
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Sketch of the proof of Theorem 6

1 We perform the polar blow–up (x, y, z) 7→ (θ, r, w) defined
by x = r cos θ , y = r sin θ , z = rw and the new time
t 7→ θ bringing system (2) into

dr

dθ
= R(θ, r, w; ε) ,

dw

dθ
= λw +W (θ, r, w; ε) , (3)

defined for |r| sufficiently small on the cylinder
C = {(θ, r, w) ∈ S1 × R2} where S1 = R/2πZ.

2 We define for system (3):

(a) Poincaré map: the 2π–time flow
Π(r0, w0; ε) = (r(2π; r0, w0; ε), w(2π; r0, w0; ε)).

(b) displacement map: d(r0, w0; ε) = Π(r0, w0; ε)− Id(r0, w0) =
(d1(r0, w0; ε), d2(r0, w0; ε)).
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Sketch of the proof of Theorem 6

Problem:

Look for zeroes of d(r0, w0; ε) around (r0, ε) = (0, 0) and with
r0 > 0.

3 Lyapunov-Schmidt reduction to d(r0, w0; ε): there exists
one unique analytic function w̄(r0, ε) defined near
(r0, ε) = (0, 0) such that d2(r0, w̄(r0, ε); ε) ≡ 0.

Reduced Problem:

Look for zeroes of the analytic reduced displacement map
∆(r0; ε) = d1(r0, w̄(r0, ε); ε) around (r0, ε) = (0, 0) with r0 > 0.
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Sketch of the proof of Theorem 6

4 Define δ(r0) = ∆(r0; 0) with Taylor expansion at r0 = 0:
δ(r0) =

∑
i≥k cir

i
0 with ck 6= 0.

k is the order at the origin of δ(r0).

Standard Arguments:

Upper bound of # zeroes: From the Weierstrass
Preparation Theorem, the number of zeros of ∆(r0; ε) near
(r0, ε) = (0, 0) is at most k.

Symmetry: System (3) is invariant under
(r, θ, w) 7→ (−r, θ + π,−w). Hence the zeroes of ∆(r0; ε)
near (r0, ε) = (0, 0) appear in pairs of opposite sign except
the trivial one r0 = 0. Thus the maximum number of limit
cycles (associated with the zeros with r0 > 0) is (k − 1)/2.
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Sketch of the proof of Theorem 6

5 FINAL STEP: prove that (k − 1)/2 = n− 1

An inverse Jacobi multiplier V̂ (θ, r, w) of system (3)ε=0 in r 6= 0
is given by

V̂ (θ, r, w) =
V (r cos θ, r sin θ, rw)

r2(1 + Θ(θ, r, w; 0))
.

The fundamental relation

Let V̂ (θ, r, w) be an inverse Jacobi multiplier of system (3)ε=0

and Π(r0, w0) its Poincaré map. Then

V̂ (2π,Π(r0, w0)) = V̂ (0, r0, w0) det(DΠ(r0, w0)) . (4)
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PART IV:

The 3-dimensional center problem at
the zero-Hopf singularity

Isaac A. Garćıa Centers in dimension 3



Families of 3-dimensional analytic zero-Hopf singularities

Take λ = 0!!!
We consider an analytic three-dimensional family of system

ẋ = −y + F1(x, y, z;µ)
ẏ = x+ F2(x, y, z;µ)
ż = F3(x, y, z;µ),

(5)

where µ ∈ Λ ⊂ Rp are the parameters of the family and:

The functions Fi : U ⊂ R3 → R are Cw(U), Fi(0, 0, 0;µ) = 0
and ∇Fi(0, 0, 0;µ) = (0, 0, 0);

The eigenvalues associated to the singularity of at the
origin of (5) are {±i, 0}.
The origin of (5) is called a zero-Hopf or a fold-Hopf
singularity.
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The linear part is completely integrable

The linearization ẋ = −y, ẏ = x, ż = 0 of (5) has two first
integrals H1(x, y, z) = x2 + y2 and H2(x, y, z) = z.

The orbits are the intersection of the level sets of H1 and
H2: cylinders and planes.

Definition: 3-dimensional center

The origin of the nonlinear system (5) is a 3-dimensional center
if there is a neighborhood of it completely foliated by periodic
orbits of (5), including continua of equilibriums as trivial
periodic orbits.
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The analytic Poincaré return map

The polar-directional blow-up

Doing first the rescaling (x, y, z) 7→ (x/ε, y/ε, z/ε) and later the
polar blow–up (x, y, z) 7→ (θ, r, w) defined by

x = r cos θ , y = r sin θ , z = rw , (6)

system (5) can be written for |ε| sufficiently small into the
analytic system

dr

dθ
= εR(θ, r, w;µ, ε) ,

dw

dθ
= εW (θ, r, w;µ, ε) , (7)

around its invariant set {r = 0} and defined on the cylinder
{(θ, r, w) ∈ S1 ×K} where S1 = R/2πZ and K ⊂ R2 is an
arbitrary compact set.
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The analytic Poincaré return map

Remark

Any 2π–periodic solution of (7) corresponds to a periodic orbit
of (5) near (x, y, z) = (0, 0, 0).

3-dimensional centers and displacement map

The origin is a 3-dimensional center of (5) with µ = µ∗ ∈ Rp if
and only if d(r0, w0;µ

∗, ε) ≡ 0.
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Characterizing 3-dimensional centers via normal form

It is immediate to check that:

complete analytical integrability ⇒ 3-dimensional center.

What about the converse?

Theorem (3-dimensional centers and complete integrability)

The origin of system (5) for µ = µ∗ is a 3-dimensional center if
and only if one of the following statements hold:

1. System (5) is completely analytically integrable.

2. System (5) is analytically orbitally linearizable.
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A 9-parameter family of quadratic vector fields

Let us consider the 9-parameter family of quadratic vector fields
in R3

ẋ = −y + x(a1x+ a2y + a3z),
ẏ = x+ y(b1x+ b2y + b3z),
ż = z(c1x+ c2y + c3z),

(8)

where the parameters of the family are

µ = (a1, a2, a3, b1, b2, b3, c1, c2, c3) ∈ R9.
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The irreducible components of the center variety

Theorem (Garćıa-Valls)

The origin of (8) is a 3-dimensional center if and only if:

(i) a3 = b3 = c3 = 0, a2 = ±b1, b2 = ±a1 and c2 = ±c1;

(ii) a2 = a3 = b2 = b3 = c2 = c3 = 0;

(iii) a3 = b3 = c3 = 0, a2 = b2, b1 = a1, c2 = c1b2/a1 with a1 6= 0;

(iv) a3 = b3 = c3 = c1 = c2 = 0, a2 = −2b2, b1 = −2a1;

(v) c3 = 0, a2 = ±b1, b2 = ±a1, c2 = ±c1;

(vi) c1 = c2 = c3 = 0, a2 = ∓2a1, a3 = −b3, b1 = −2a1, b2 = ±a1;

(vii) c1 = c2 = c3 = 0, a2 = b2, a3 = −b3, b1 = a1;

(viii) a1 = a2 = a3 = b1 = b2 = b3 = c3 = 0;

(ix) a1 = a3 = b1 = b2 = b3 = c1 = c3 = 0;

(x) a1 = a3 = b2 = b3 = c3 = 0, b1 = −a2, c1 = −c2;

(xi) a1 = a3 = b1 = b3 = c1 = c3 = 0.
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PART V:

Future work and open problems
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Future work and open problems

1 The cyclicity problem for a center on W c in some
POLYNOMIAL family Xλ with λ 6= 0. We need to control
the displacement map and the Bautin ideal!!

2 The nilpotent center on a center manifold: We can lose
analyticity of W c even in the center case!!

ẋ = y + F1(x, y, z;λ)
ẏ = F2(x, y, z;λ)
ż = λz + F3(x, y, z;λ),

(9)

with λ 6= 0.
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