Centers in dimension 3

Isaac A. García
University of Lleida, Spain

DDays 2014, Badajoz, 12-14 November 2014

PART I:

Centers on center manifolds

The Hopf points in \mathbb{R}^{3}

We consider the analytic three-dimensional system

$$
\begin{align*}
& \dot{x}=-y+\mathcal{F}_{1}(x, y, z), \\
& \dot{y}=x+\mathcal{F}_{2}(x, y, z), \tag{1}\\
& \dot{z}=\lambda z+\mathcal{F}_{3}(x, y, z),
\end{align*}
$$

- $\lambda \in \mathbb{R} \backslash\{0\} ;$

■ $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}\right) \in C^{w}(\mathcal{U})$ with $\mathcal{U} \subset \mathbb{R}^{3}$ neighborhood of $0 ;$

- $\mathcal{F}(0)=0$ and $D \mathcal{F}(0)=0$.

Hopf singular point

The origin is a Hopf singularity of system (1): it possesses the eigenvalues $\pm i \in \mathbb{C}$ and $\lambda \in \mathbb{R} \backslash\{0\}$.

Local center manifolds \mathcal{W}^{c}

Let \mathcal{W}^{c} be a local center manifold at the origin of system (1):

- \mathcal{W}^{c} is an invariant surface, tangent to the (x, y) plane at the origin.
■ $\mathcal{W}^{c}=\{z=h(x, y):$ for (x, y) around $(0,0)\}$ with $h(0,0)=0$ and $D h(0,0)=0$.
- For any $k \geq 1$ there exists a C^{k} local center manifold.

■ The local center manifold need not be unique.

Local dynamics on a center manifold \mathcal{W}^{c}

- The origin is a center of (1) if all the orbits on \mathcal{W}^{c} are periodic;
- Otherwise, the origin is a saddle-focus: a focus on \mathcal{W}^{c}.

The center problem in \mathbb{R}^{3}
To decide when the origin of (1) is a center or not.

The Lyapunov solution to the center problem

Lyapunov Center Theorem

The origin is a center for the analytic system (1) if and only if (1) admits a real analytic local first integral of the form

$$
H(x, y, z)=x^{2}+y^{2}+\cdots
$$

in a neighborhood of the origin in \mathbb{R}^{3}.

Remark

Moreover, when there is a center, the local center manifold \mathcal{W}^{c} is unique and analytic.

Inverse Jacobi multipliers (1844)

\mathcal{X} will denote the associated vector field to system (1), that is,

$$
\mathcal{X}=\left(-y+\mathcal{F}_{1}(x, y, z)\right) \frac{\partial}{\partial x}+\left(x+\mathcal{F}_{2}(x, y, z)\right) \frac{\partial}{\partial y}+\left(\lambda z+\mathcal{F}_{3}(x, y, z)\right) \frac{\partial}{\partial z}
$$

Inverse Jacobi multiplier

A C^{1} function $V: \mathcal{U} \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ is an inverse Jacobi multiplier of \mathcal{X} if it is not locally null and it satisfies the linear first-order partial differential equation

$$
\mathcal{X} V=V \operatorname{div} \mathcal{X}
$$

where $\operatorname{div} \mathcal{X}$ is the divergence of \mathcal{X}.

Remark

For the rescaled vector field \mathcal{X} / V on $\mathcal{U} \backslash V^{-1}(0): \operatorname{div}(\mathcal{X} / V) \equiv 0$.

A new solution to the center problem

Theorem 1

System (1) has a center at the origin if and only if it admits a local analytic inverse Jacobi multiplier of the form

$$
V(x, y, z)=z+\cdots
$$

in a neighborhood of the origin in \mathbb{R}^{3}.

Sketch of the proof of Theorem 1 (necessary condition)

\Rightarrow Assume that (1) has a center at the origin.
1 Using normal form theory, system (1) having a center is real analytically conjugated to the normal form $\dot{\xi}=-\eta F\left(\xi^{2}+\eta^{2}\right), \dot{\eta}=\xi F\left(\xi^{2}+\eta^{2}\right), \dot{w}=\lambda w+w G\left(\xi^{2}+\eta^{2}\right)$.

2 It has the inverse Jacobi multiplier $\hat{V}(\xi, \eta, w)=w$.
3 Going back we get $V(x, y, z)=z+\cdots \square$

Sketch of the proof of Theorem 1 (sufficient condition)

\Leftarrow Assume that (1) possesses $V(x, y, z)=z+\cdots$.
1 Using the Implicit Function Theorem for $V(x, y, z)=0$: there exists a unique analytic function $h(x, y)$ such that $h(0,0)=0, D h(0,0)=0$ and $V(x, y, h(x, y)) \equiv 0$.
2 Hence, from the flow-invariance of the surface $V=0$, we have $\mathcal{W}^{c}=\{z=h(x, y)\}$ is an analytic local center manifold for (1).
$3^{* * *}$ We prove that $V(x, y, z)=(z-h(x, y)) W(x, y, z)$ such that $\left.W\right|_{\mathcal{W}^{c}}(x, y)=W(x, y, h(x, y)) \not \equiv 0$.
$4^{* * *}$ We prove that $\left.W\right|_{\mathcal{W}^{c}}$ is an analytic inverse integrating factor of $\left.\mathcal{X}\right|_{\mathcal{W}^{c}}$ that is non-vanishing at the origin.
5 The Reeb Criterium assures that the origin is a center for $\mathcal{X} \mid \mathcal{W}^{c}$.

Relations between \mathcal{W}^{c} and $V^{-1}(0)$ around centers

Remark: Non-uniqueness of $V \in C^{w}$ around a center
For any $k \geq 0$, there are analytic inverse Jacobi multipliers \hat{V} at a center of the form

$$
\hat{V}=V H^{k}=(z+\cdots)\left(x^{2}+y^{2}+\cdots\right)^{k}=z\left(x^{2}+y^{2}\right)^{k}+\cdots
$$

A consequence of the proof of Theorem 1
When system (1) has a center, then the $V(x, y, z)=z+\cdots$ predicted by Theorem 1 satisfies $\mathcal{W}^{c} \subset V^{-1}(0)$

Theorem 2

When system (1) has a center, then any local C^{∞} inverse Jacobi multiplier V of system (1) must satisfy $\mathcal{W}^{c} \subset V^{-1}(0)$.

An application: classification of centers in the Lü system

For $(a, b, c) \in \mathbb{R}^{3}$, consider the 3-parametric Lü family

$$
\dot{x}=a(y-x), \dot{y}=c y-x z, \dot{z}=-b z+x y .
$$

- The singularities $Q_{ \pm}=(\pm \sqrt{b c}, \pm \sqrt{b c}, c)$ when $c=(a+b) / 3$ and $a b>0$ are Hopf points.
■ Invariance under the symmetry $(x, y, z) \mapsto(-x,-y, z)$.
■ The first three Lyapunov constants of $Q_{ \pm}$vanish if and only if $(a, b, c) \in L=\left\{(a, b, c) \in \mathbb{R}^{3}: a \neq 0, b=2 a, c=a\right\}$.

Theorem 3. (The centers in the Lü system)
The singularities $Q_{ \pm}$are centers if and only if $(a, b, c) \in L$.
Proof: When $(a, b, c) \in L, V(x, y, z)=x^{2}-2 a z$ is an inverse Jacobi multiplier.

Existence and smoothness of V and \mathcal{W}^{c} around the saddle-focus

Theorem 4

Assume that the origin is a saddle-focus for the analytic system (1). Then the following holds:

- There exists a local C^{∞} and non-flat inverse Jacobi multiplier of (1) having the expression

$$
V(x, y, z)=z\left(x^{2}+y^{2}\right)^{n}+\cdots
$$

for some $n \geq 2$.

- For the former V, there is a local C^{∞} center manifold \mathcal{W}^{c} such that $\mathcal{W}^{c} \subset V^{-1}(0)$.

A simple example of saddle-focus shows the possibilities

The following system has, $\forall a \in \mathbb{R}$,

$$
\begin{gathered}
\dot{x}=-y-x\left(x^{2}+y^{2}\right), \dot{y}=x-y\left(x^{2}+y^{2}\right), \dot{z}=-z, \\
\mathcal{W}_{a}^{c}= \begin{cases}\{z=0\} & \text { (analytic) } \\
\left\{z=a \exp \left(-\frac{1}{2\left(x^{2}+y^{2}\right)}\right)\right\} & \left(C^{\infty} \text { flat }\right)\end{cases}
\end{gathered}
$$

$V_{a}(x, y, z)= \begin{cases}z\left(x^{2}+y^{2}\right)^{2} & \text { (analytic) } \\ \left(z-a \exp \left(-\frac{1}{2\left(x^{2}+y^{2}\right)}\right)\right)\left(x^{2}+y^{2}\right)^{2} & \left(C^{\infty} \text { non-flat) }\right.\end{cases}$
$\hat{V}(x, y, z)=V_{0}(x, y, z)-V_{1}(x, y, z)=\exp \left(-\frac{1}{2\left(x^{2}+y^{2}\right)}\right)\left(x^{2}+y^{2}\right)^{2}$ is C^{∞} flat and $\hat{V}^{-1}(0)=\{(0,0,0)\}$.

More properties of \mathcal{W}^{c} and $V^{-1}(0)$ around a saddle-focus

Theorem 5

Assume that the origin is a saddle-focus for system (1).

- Any two locally C^{∞} and non-flat at the origin linearly independent inverse Jacobi multipliers of (1) have the same Taylor expansion at the origin.
- Let V be a locally C^{∞} and non-flat at the origin inverse Jacobi multiplier of (1). Then there is exactly one smooth center manifold \mathcal{W}^{c} of (1) such that $\mathcal{W}^{c} \subset V^{-1}(0)$.

PART II:

Characterizing centers on center manifolds via Lie symmetries

Normal forms near a Hopf singularity

Analytical normal form near a center

If the origin is a center for \mathcal{X}_{λ} then there is a real analytic near-identity diffeomorphism Φ such that

$$
\begin{aligned}
\widehat{\mathcal{X}}_{\lambda}= & \Phi^{*} \mathcal{X}_{\lambda}=-y\left(1+F\left(x^{2}+y^{2}\right)\right) \partial_{x}+x\left(1+F\left(x^{2}+y^{2}\right)\right) \partial_{y} \\
& +z\left(\lambda+G\left(x^{2}+y^{2}\right)\right) \partial_{z}
\end{aligned}
$$

where F and G are real analytic on a neighborhood of zero in \mathbb{R} and $F(0)=G(0)=0$.

Normal forms near a Hopf singularity

C^{∞} normal form near a saddle-focus

If the origin is a saddle-focus for \mathcal{X}_{λ} then there is a C^{∞} near-identity diffeomorphism Φ such that $\widehat{\mathcal{Y}}_{\lambda}=\Phi^{*} \mathcal{X}_{\lambda}$ where

$$
\begin{aligned}
\widehat{\mathcal{Y}}_{\lambda}= & \left(-y+\frac{1}{2}\left[(x+i y) A\left(x^{2}+y^{2}\right)+(x-i y) B\left(x^{2}+y^{2}\right)\right]\right) \partial_{x} \\
& +\left(x+\frac{1}{2}\left[(y-i x) A\left(x^{2}+y^{2}\right)+(y+i x) B\left(x^{2}+y^{2}\right)\right]\right) \partial_{y} \\
& +z\left[\lambda+C\left(x^{2}+y^{2}\right)\right] \partial_{z}
\end{aligned}
$$

where $\left(i^{2}=-1\right)$ and the symmetry conjugation $\overline{B\left(x^{2}+y^{2}\right)}=A\left(x^{2}+y^{2}\right)$ holds (so the normal form is real), $A\left(x^{2}+y^{2}\right)+B\left(x^{2}+y^{2}\right) \not \equiv 0$, and $\operatorname{Re}(A) \not \equiv 0$.

Normal forms near a Hopf singularity

Notation:

$$
\mathcal{X}_{\lambda}=\mathcal{X}_{A}+\cdots
$$

where \mathcal{X}_{A} is the linear vector field with associated matrix A.

Linearizable and orbitally linearizable centers

■ $\mathcal{X}_{\lambda}=\mathcal{X}_{A}+\cdots$ is analytically orbitally linearizable in \mathcal{U} if there exists an analytic change of coordinates Φ on \mathcal{U} such that $\Phi^{*} \mathcal{X}_{\lambda}=f(x, y, z) \mathcal{X}_{A}$ for some analytic function $f: \mathcal{U} \rightarrow \mathbb{R}$ on a neighborhood of the origin with $f(0,0,0)=1$.

- In the particular case that $f(x, y, z) \equiv 1$ we say that \mathcal{X}_{λ} is analytically linearizable in \mathcal{U}.

Background on Centralizers and Normalizers in \mathbb{R}^{n}

$[\mathcal{X}, \mathcal{Y}]=\mathcal{X} \mathcal{Y}-\mathcal{Y} \mathcal{X}$ denotes the usual Lie bracket of vector fields \mathcal{X} and \mathcal{Y} in $\mathcal{V} \subset \mathbb{R}^{n}$ regarded as derivations.

Definitions and notations

- The set of analytic centralizers of \mathcal{X} on \mathcal{V} will be denoted $\mathfrak{C}(\mathcal{X}, \mathcal{V})=\left\{\mathcal{Z} \in C^{w}(\mathcal{V}):[\mathcal{X}, \mathcal{Z}]=0\right\}$.
- The set of linear centralizers of \mathcal{X} is $\mathcal{L}(\mathcal{X})$.

■ The set of analytic normalizers of \mathcal{X} on \mathcal{V} will be denoted $\mathfrak{N}(\mathcal{X}, \mathcal{V})=\left\{\mathcal{Z} \in C^{w}(\mathcal{V}):[\mathcal{X}, \mathcal{Z}]=\Lambda \mathcal{X}\right\}$ where $\Lambda: \mathcal{V} \rightarrow \mathbb{R}$ is a meromorphic function.

- The set of real analytic first integrals (including constants) of \mathcal{X} on \mathcal{V} will be denoted $\mathcal{I}(\mathcal{X}, \mathcal{V})$.

Background on Centralizers and Normalizers in \mathbb{R}^{n}

Several related algebraic structures

- The sets $\mathfrak{C}(\mathcal{X}, \mathcal{V})$ and $\mathfrak{N}(\mathcal{X}, \mathcal{V})$ are Lie algebra over the field \mathbb{R} which are, in general, infinite-dimensional.
- The set $\mathcal{L}\left(\mathcal{X}_{M}\right)$ is a finite-dimensional real vector space.
- The set $\mathcal{I}(\mathcal{X}, \mathcal{V})$ is a ring.

Certain very interesting cases
One has in some cases the interesting fact that the Lie algebra $\mathfrak{C}(\mathcal{X}, \mathcal{V})$ has dimesion $\operatorname{dim} \mathfrak{C}(\mathcal{X}, \mathcal{V})=\infty$ but $\mathfrak{C}(\mathcal{X}, \mathcal{V})$ is a finitely generated module over $\mathcal{I}(\mathcal{X}, \mathcal{V})$.

Background on Centralizers and Normalizers in \mathbb{R}^{n}

Note

We emphasize that there is no algorithmic procedure for determining if $\mathfrak{N}(\mathcal{X}, \mathcal{V})$ is nontrivial, that is, $\mathfrak{N}(\mathcal{X}, \mathcal{V}) \neq \mathbb{R} \mathcal{X}$.

The formal counterpart

- $\mathfrak{C}_{\text {for }}(\mathcal{X}), \mathfrak{N}_{\text {for }}(\mathcal{X})$ and $\mathcal{I}_{\text {for }}(\mathcal{X})$ denotes the set of formal centralizers, normalizers, and first integrals of a given formal vector field \mathcal{X}.

■ If \mathcal{X} is analytic on \mathcal{V} we have:

$$
\mathfrak{C}(\mathcal{X}, \mathcal{V}) \subset \mathfrak{C}_{\text {for }}(\mathcal{X}), \mathfrak{N}(\mathcal{X}, \mathcal{V}) \subset \mathfrak{N}_{\text {for }}(\mathcal{X}), \mathcal{I}(\mathcal{X}, \mathcal{V}) \subset \mathcal{I}_{\text {for }}(\mathcal{X})
$$

Centralizers and dynamics of \mathcal{X}_{λ}

Recall that $\mathcal{X}_{\lambda}=\mathcal{X}_{A}+\cdots$ with

$$
A=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & \lambda
\end{array}\right)
$$

The vector space $\mathcal{L}\left(\mathcal{X}_{A}\right)$
A basis of $\mathcal{L}\left(\mathcal{X}_{A}\right)$ is $\left\{\mathcal{Z}_{0}, \mathcal{Z}_{1}, \mathcal{Z}_{2}\right\}$ where

$$
\mathcal{Z}_{0}=\mathcal{X}_{A}=-y \partial_{x}+x \partial_{y}+\lambda z \partial_{z}, \mathcal{Z}_{1}=x \partial_{x}+y \partial_{y}, \mathcal{Z}_{2}=z \partial_{z}
$$

Centralizers and dynamics of \mathcal{X}_{λ}

Theorem: Module structure of Centralizers of $\widehat{\mathcal{X}}_{\lambda}$ in the center case. Application to linearizable centers

Suppose \mathcal{X}_{λ} has a center on the center manifold W^{c} at the origin and let $\widehat{\mathcal{X}}_{\lambda}$ be its analytic normal form.

■ For any open neighborhood $\mathcal{U}^{*} \subset \mathcal{U}$ of the origin and any $\mathcal{Z} \in \mathfrak{C}\left(\widehat{\mathcal{X}}_{\lambda}, \mathcal{U}^{*}\right)$ there exist $\mu_{i}\left(x^{2}+y^{2}\right) \in \mathcal{I}\left(\mathcal{X}_{A}, \mathcal{U}^{*}\right)$, $0 \leq i \leq 2$, such that

$$
\mathcal{Z}=\mu_{0}\left(x^{2}+y^{2}\right) \mathcal{Z}_{0}+\mu_{1}\left(x^{2}+y^{2}\right) \mathcal{Z}_{1}+\mu_{2}\left(x^{2}+y^{2}\right) \mathcal{Z}_{2}
$$

■ If \mathcal{X}_{λ} is not analytically linearizable then $\mu_{1} \equiv 0$.

Centralizers and dynamics of \mathcal{X}_{λ}

Theorem: The formal Centralizers of \mathcal{X}_{λ} and $\widehat{\mathcal{Y}}_{\lambda}$ in the saddle-focus case. Finite-dimensional Lie algebras
Suppose \mathcal{X}_{λ} has a saddle-focus at the origin and let $\widehat{\mathcal{Y}}_{\lambda}$ be its C^{∞} normal form.

- The Lie algebras $\mathfrak{C}_{\text {for }}\left(\mathcal{X}_{\lambda}\right)$ and $\mathfrak{C}_{\text {for }}\left(\widehat{\mathcal{Y}}_{\lambda}\right)$ satisfy

$$
\operatorname{dim} \mathfrak{C}_{\text {for }}\left(\mathcal{X}_{\lambda}\right)=\operatorname{dim} \mathfrak{C}_{\text {for }}\left(\widehat{\mathcal{Y}}_{\lambda}\right)=3
$$

- A basis of the Lie algebra $\mathfrak{C}_{\text {for }}\left(\widehat{\mathcal{Y}}_{\lambda}\right)$ is $\left\{\mathcal{Z}_{0}, \mathcal{Z}_{2}, \widehat{\mathcal{Y}}_{\lambda}\right\}$.

Centralizers and dynamics of \mathcal{X}_{λ}

Corollary 1: A solution of the center problem in \mathbb{R}^{3} in terms of $\operatorname{dim} \mathfrak{C}_{\text {for }}\left(\mathcal{X}_{\lambda}\right)$

- The origin is a center for \mathcal{X}_{λ} if and only if $\operatorname{dim} \mathfrak{C}_{\text {for }}\left(\mathcal{X}_{\lambda}\right)=\infty$, which is true if and only if $\operatorname{dim} \mathfrak{C}\left(\mathcal{X}_{\lambda}, \mathcal{U}\right)=\infty$.
- The origin is a saddle-focus for \mathcal{X}_{λ} if and only if $\operatorname{dim} \mathfrak{C}_{\text {for }}\left(\mathcal{X}_{\lambda}\right)=3$.

Corollary 2: $\operatorname{dim} \mathfrak{C}\left(\mathcal{X}_{\lambda}, \mathcal{U}\right)$ and analytic normalization in the saddle-focus case
Assume the origin is a saddle-focus for \mathcal{X}_{λ}. Then:

- $\operatorname{dim} \mathfrak{C}\left(\mathcal{X}_{\lambda}, \mathcal{U}\right) \leq 3$.
- If \mathcal{X}_{λ} is analytically normalizable then $\operatorname{dim} \mathfrak{C}\left(\mathcal{X}_{\lambda}, \mathcal{U}\right)=3$.

PART III:

Multiple Hopf bifurcations from a saddle-focus

Analytic perturbation of a saddle-focus

We perturb analytically system (1) of the form

$$
\begin{align*}
\dot{x} & =-y+\mathcal{G}_{1}(x, y, z ; \varepsilon), \\
\dot{y} & =x+\mathcal{G}_{2}(x, y, z ; \varepsilon), \tag{2}\\
\dot{z} & =\lambda z+\mathcal{G}_{3}(x, y, z ; \varepsilon),
\end{align*}
$$

$\square \varepsilon \in \mathbb{R}^{p}, 0<\|\varepsilon\| \ll 1$ and $\mathcal{G}_{i}(x, y, z ; 0) \equiv \mathcal{F}_{i}(x, y, z)$.
$\square \mathcal{G}=\left(\mathcal{G}_{1}, \mathcal{G}_{2}, \mathcal{G}_{3}\right)$ is analytic for both (x, y, z) and ε in a neighborhood of the origin.

- We keep the monodromic nature of the origin:
$\mathcal{G}_{i}(0,0,0 ; \varepsilon)=0$ and $D \mathcal{G}(0,0,0 ; \varepsilon)=0$.

Multiple Hopf bifurcation

We study the existence of periodic orbits of (2) bifurcating from $(x, y, z)=(0,0,0)$ in a multiple Hopf bifurcation for $\|\varepsilon\| \ll 1$.

Theorem 6

Assume that the origin of (1) is a saddle-focus. Let $V(x, y, z)$ be a C^{∞} and non-flat at the origin inverse Jacobi multiplier of the unperturbed analytic system (1). Then:

- $V(x, y, z)=z\left(x^{2}+y^{2}\right)^{n}+\cdots$ with $n \geq 2$ fixed.
- The maximum number of limit cycles that can bifurcate from the origin in the perturbed system (2) with $\|\varepsilon\|$ sufficiently small is $n-1$.

Sketch of the proof of Theorem 6

1 We perform the polar blow-up $(x, y, z) \mapsto(\theta, r, w)$ defined by $x=r \cos \theta, y=r \sin \theta, z=r w$ and the new time $t \mapsto \theta$ bringing system (2) into

$$
\begin{equation*}
\frac{d r}{d \theta}=R(\theta, r, w ; \varepsilon), \frac{d w}{d \theta}=\lambda w+W(\theta, r, w ; \varepsilon) \tag{3}
\end{equation*}
$$

defined for $|r|$ sufficiently small on the cylinder $C=\left\{(\theta, r, w) \in \mathbb{S}^{1} \times \mathbb{R}^{2}\right\}$ where $\mathbb{S}^{1}=\mathbb{R} / 2 \pi \mathbb{Z}$.
2 We define for system (3):
(a) Poincaré map: the 2π-time flow

$$
\Pi\left(r_{0}, w_{0} ; \varepsilon\right)=\left(r\left(2 \pi ; r_{0}, w_{0} ; \varepsilon\right), w\left(2 \pi ; r_{0}, w_{0} ; \varepsilon\right)\right)
$$

(b) displacement map: $d\left(r_{0}, w_{0} ; \varepsilon\right)=\Pi\left(r_{0}, w_{0} ; \varepsilon\right)-\operatorname{Id}\left(r_{0}, w_{0}\right)=$ $\left(d_{1}\left(r_{0}, w_{0} ; \varepsilon\right), d_{2}\left(r_{0}, w_{0} ; \varepsilon\right)\right)$.

Sketch of the proof of Theorem 6

PROBLEM:

Look for zeroes of $d\left(r_{0}, w_{0} ; \varepsilon\right)$ around $\left(r_{0}, \varepsilon\right)=(0,0)$ and with $r_{0}>0$.

3 Lyapunov-Schmidt reduction to $d\left(r_{0}, w_{0} ; \varepsilon\right)$: there exists one unique analytic function $\bar{w}\left(r_{0}, \varepsilon\right)$ defined near $\left(r_{0}, \varepsilon\right)=(0,0)$ such that $d_{2}\left(r_{0}, \bar{w}\left(r_{0}, \varepsilon\right) ; \varepsilon\right) \equiv 0$.

Reduced Problem:

Look for zeroes of the analytic reduced displacement map $\Delta\left(r_{0} ; \varepsilon\right)=d_{1}\left(r_{0}, \bar{w}\left(r_{0}, \varepsilon\right) ; \varepsilon\right)$ around $\left(r_{0}, \varepsilon\right)=(0,0)$ with $r_{0}>0$.

Sketch of the proof of Theorem 6

4 Define $\delta\left(r_{0}\right)=\Delta\left(r_{0} ; 0\right)$ with Taylor expansion at $r_{0}=0$: $\delta\left(r_{0}\right)=\sum_{i \geq k} c_{i} r_{0}^{i}$ with $c_{k} \neq 0$. k is the order at the origin of $\delta\left(r_{0}\right)$.

Standard Arguments:

- Upper bound of \# zeroes: From the Weierstrass Preparation Theorem, the number of zeros of $\Delta\left(r_{0} ; \varepsilon\right)$ near $\left(r_{0}, \varepsilon\right)=(0,0)$ is at most k.
- Symmetry: System (3) is invariant under $(r, \theta, w) \mapsto(-r, \theta+\pi,-w)$. Hence the zeroes of $\Delta\left(r_{0} ; \varepsilon\right)$ near $\left(r_{0}, \varepsilon\right)=(0,0)$ appear in pairs of opposite sign except the trivial one $r_{0}=0$. Thus the maximum number of limit cycles (associated with the zeros with $r_{0}>0$) is $(k-1) / 2$.

Sketch of the proof of Theorem 6

5 FINAL STEP: prove that $(k-1) / 2=n-1$
An inverse Jacobi multiplier $\hat{V}(\theta, r, w)$ of system $(3)_{\varepsilon=0}$ in $r \neq 0$ is given by

$$
\hat{V}(\theta, r, w)=\frac{V(r \cos \theta, r \sin \theta, r w)}{r^{2}(1+\Theta(\theta, r, w ; 0))}
$$

The fundamental Relation

Let $\hat{V}(\theta, r, w)$ be an inverse Jacobi multiplier of system $(3)_{\varepsilon=0}$ and $\Pi\left(r_{0}, w_{0}\right)$ its Poincaré map. Then

$$
\begin{equation*}
\hat{V}\left(2 \pi, \Pi\left(r_{0}, w_{0}\right)\right)=\hat{V}\left(0, r_{0}, w_{0}\right) \operatorname{det}\left(D \Pi\left(r_{0}, w_{0}\right)\right) \tag{4}
\end{equation*}
$$

PART IV:

The 3-dimensional center problem at the zero-Hopf singularity

Families of 3-dimensional analytic zero-Hopf singularities

Take $\lambda=0!!!$
We consider an analytic three-dimensional family of system

$$
\begin{align*}
& \dot{x}=-y+F_{1}(x, y, z ; \mu) \\
& \dot{y}=x+F_{2}(x, y, z ; \mu) \tag{5}\\
& \dot{z}=F_{3}(x, y, z ; \mu),
\end{align*}
$$

where $\mu \in \Lambda \subset \mathbb{R}^{p}$ are the parameters of the family and:
■ The functions $F_{i}: U \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ are $\mathcal{C}^{w}(U), F_{i}(0,0,0 ; \mu)=0$ and $\nabla F_{i}(0,0,0 ; \mu)=(0,0,0)$;

- The eigenvalues associated to the singularity of at the origin of (5) are $\{ \pm i, 0\}$.
- The origin of (5) is called a zero-Hopf or a fold-Hopf singularity.

The linear part is completely integrable

■ The linearization $\dot{x}=-y, \dot{y}=x, \dot{z}=0$ of (5) has two first integrals $H_{1}(x, y, z)=x^{2}+y^{2}$ and $H_{2}(x, y, z)=z$.
■ The orbits are the intersection of the level sets of H_{1} and H_{2} : cylinders and planes.

Definition: 3-dimensional center

The origin of the nonlinear system (5) is a 3-dimensional center if there is a neighborhood of it completely foliated by periodic orbits of (5), including continua of equilibriums as trivial periodic orbits.

The analytic Poincaré return map

The polar-directional blow-up

Doing first the rescaling $(x, y, z) \mapsto(x / \varepsilon, y / \varepsilon, z / \varepsilon)$ and later the polar blow-up $(x, y, z) \mapsto(\theta, r, w)$ defined by

$$
\begin{equation*}
x=r \cos \theta, y=r \sin \theta, z=r w \tag{6}
\end{equation*}
$$

system (5) can be written for $|\varepsilon|$ sufficiently small into the analytic system

$$
\begin{equation*}
\frac{d r}{d \theta}=\varepsilon R(\theta, r, w ; \mu, \varepsilon), \quad \frac{d w}{d \theta}=\varepsilon W(\theta, r, w ; \mu, \varepsilon) \tag{7}
\end{equation*}
$$

around its invariant set $\{r=0\}$ and defined on the cylinder $\left\{(\theta, r, w) \in \mathbb{S}^{1} \times \mathcal{K}\right\}$ where $\mathbb{S}^{1}=\mathbb{R} / 2 \pi \mathbb{Z}$ and $\mathcal{K} \subset \mathbb{R}^{2}$ is an arbitrary compact set.

The analytic Poincaré return map

Remark

Any 2π-periodic solution of (7) corresponds to a periodic orbit of (5) near $(x, y, z)=(0,0,0)$.

3-dimensional centers and displacement map

The origin is a 3 -dimensional center of (5) with $\mu=\mu^{*} \in \mathbb{R}^{p}$ if and only if $d\left(r_{0}, w_{0} ; \mu^{*}, \varepsilon\right) \equiv 0$.

Characterizing 3-dimensional centers via normal form

It is immediate to check that:
complete analytical integrability $\Rightarrow 3$-dimensional center.
What about the converse?
Theorem (3-dimensional centers and complete integrability)
The origin of system (5) for $\mu=\mu^{*}$ is a 3-dimensional center if and only if one of the following statements hold:

1. System (5) is completely analytically integrable.
2. System (5) is analytically orbitally linearizable.

A 9-parameter family of quadratic vector fields

Let us consider the 9-parameter family of quadratic vector fields in \mathbb{R}^{3}

$$
\begin{align*}
\dot{x} & =-y+x\left(a_{1} x+a_{2} y+a_{3} z\right), \\
\dot{y} & =x+y\left(b_{1} x+b_{2} y+b_{3} z\right), \tag{8}\\
\dot{z} & =z\left(c_{1} x+c_{2} y+c_{3} z\right),
\end{align*}
$$

where the parameters of the family are

$$
\mu=\left(a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3}\right) \in \mathbb{R}^{9}
$$

The irreducible components of the center variety

Theorem (García-Valls)

The origin of (8) is a 3-dimensional center if and only if:
(i) $a_{3}=b_{3}=c_{3}=0, a_{2}= \pm b_{1}, b_{2}= \pm a_{1}$ and $c_{2}= \pm c_{1}$;
(ii) $a_{2}=a_{3}=b_{2}=b_{3}=c_{2}=c_{3}=0$;
(iii) $a_{3}=b_{3}=c_{3}=0, a_{2}=b_{2}, b_{1}=a_{1}, c_{2}=c_{1} b_{2} / a_{1}$ with $a_{1} \neq 0$;
(iv) $a_{3}=b_{3}=c_{3}=c_{1}=c_{2}=0, a_{2}=-2 b_{2}, b_{1}=-2 a_{1}$;
(v) $c_{3}=0, a_{2}= \pm b_{1}, b_{2}= \pm a_{1}, c_{2}= \pm c_{1}$;
(vi) $c_{1}=c_{2}=c_{3}=0, a_{2}=\mp 2 a_{1}, a_{3}=-b_{3}, b_{1}=-2 a_{1}, b_{2}= \pm a_{1}$;
(vii) $c_{1}=c_{2}=c_{3}=0, a_{2}=b_{2}, a_{3}=-b_{3}, b_{1}=a_{1}$;
(viii) $a_{1}=a_{2}=a_{3}=b_{1}=b_{2}=b_{3}=c_{3}=0$;
(ix) $a_{1}=a_{3}=b_{1}=b_{2}=b_{3}=c_{1}=c_{3}=0$;
(x) $a_{1}=a_{3}=b_{2}=b_{3}=c_{3}=0, b_{1}=-a_{2}, c_{1}=-c_{2}$;
(xi) $a_{1}=a_{3}=b_{1}=b_{3}=c_{1}=c_{3}=0$.

PART V:

Future work and open problems

Future work and open problems

1 The cyclicity problem for a center on W^{c} in some POLYNOMIAL family \mathcal{X}_{λ} with $\lambda \neq 0$. We need to control the displacement map and the Bautin ideal!!
2 The nilpotent center on a center manifold: We can lose analyticity of W^{c} even in the center case!!

$$
\begin{align*}
& \dot{x}=y+F_{1}(x, y, z ; \lambda) \\
& \dot{y}=F_{2}(x, y, z ; \lambda) \tag{9}\\
& \dot{z}=\lambda z+F_{3}(x, y, z ; \lambda),
\end{align*}
$$

with $\lambda \neq 0$.

References

[1] A. Buică, I. A. García and S. Maza, Existence of inverse Jacobi multipliers around Hopf points in \mathbb{R}^{3} : emphasis on the center problem, J. Differential Equations 252 (2012), 6324-6336.
[2] I.A. García, S. Maza and D.S. Shafer, Properties of monodromic points on center manifolds in \mathbb{R}^{3} via Lie symmetries, J. Dyn. Differ. Equ. 25 (2013), 981-1000.
[3] A. Buică, I. A. García and S. Maza, Multiple Hopf bifurcation in \mathbb{R}^{3} and inverse Jacobi multipliers, J. Differential Equations 256 (2014), 310-325.
[4] I.A. García and C. Valls, The three-dimensional center problem for the zero-Hopf singularity. To appear.

Generalizations to arbitrary dimension

[5] X. Zhang, Inverse Jacobian multipliers and Hopf bifurcation on center manifolds, J. Differential Equations 256 (2014), 32783299.

