Strong mixing measures and invariant sets in linear dynamics

Marina Murillo Arcila

Supervised by Alfred Peris Manguillot

Universitat Politècnica de València

Ddays 2014 13 Noviembre, 2014

2 Frequently hypercyclic translation semigroups

3 Dynamical properties inherited from invariant sets

Let $T : X \to X$ be a linear operator on a topological vector space (in short, tvs) X.

Definitions

- Given two operators (Y, S) and (X, T), we will say that T is quasi-conjugated to S if there exists a continuous map φ : Y → X with dense range such that T ∘ φ = φ ∘ S. If φ can be chosen to be a homeomorphism, then S and T are conjugated.
- (X, T) is called topologically transitive if for any pair of nonempty open sets U, V ⊂ X there exists an n ∈ N such that Tⁿ(U) ∩ V ≠ Ø.

- (X, T) is called mixing if for any pair of nonempty open sets $U, V \subset X$ there exists some $n_0 \in \mathbb{N}$ such that $T^n(U) \cap V \neq \emptyset$ for every integer $n \ge n_0$.
- (X, T) is weakly mixing if $T \times T$ is transitive.
- (X, T) is called hypercyclic if there is some x ∈ X whose orbit Orb(x, T) is dense in X.
- (X, T) is called chaotic if it is hypercyclic and the set of periodic points of T is dense in X.

The corresponding notions for a sequence of operators $T_n : X \to X$ are defined by considering the sequence $(T_n)_n$.

Definitions

A Borel probability measure μ , has full support if for all non-empty open set $U \subset X$ we have $\mu(U) > 0$. *T* is ergodic if $T^{-1}(A) = A$ for $A \in \mathfrak{B}$ implies $\mu(A)(1 - \mu(A)) = 0$. *T* is strongly mixing with respect to μ if

$$\lim_{n\to\infty}\mu(A\cap T^{-n}(B))=\mu(A)\mu(B)\qquad (A,B\in\mathfrak{B}),$$

Definition

An operator T on a t.v.s space X is called frequently hypercyclic is there is some $x \in X$ such that, for any nonempty open subset U of X,

$$\liminf_{N\to\infty}\frac{card\{0\leq n\leq N;\,T^nx\in U\}}{N+1}>0.$$

Under the same hypothesis of the Frequently Hypercycliclity Criterion, given by Bonilla and Grosse-Erdmann, we derive a stronger result by showing that a T-invariant mixing measure can be obtained.

Theorem

Let T be an operator on a separable Banach space X. If there is a dense subset X_0 of X and a sequence of maps $S_n : X_0 \to X_0$ such that, for each $x \in X_0$,

(i)
$$\sum_{n=0}^{\infty} T^n x$$
 converges unconditionally

(ii)
$$\sum_{n=0}^{\infty} S_n x$$
 converges unconditionally, and

(iii)
$$T^n S_n x = x$$
 and $T^m S_n x = S_{n-m} x$ if $n > m$.

then there is a T-invariant strongly mixing Borel probability measure μ on X with full support.

Sketch of the proof

The idea behind the proof is to construct

- **①** a "model" probability space $(Z, \overline{\mu})$ and
- **2** a Borel measurable map $\Phi : Z \to X$, where
 - $Z \subset \mathbb{N}^{\mathbb{Z}}$ is such that $\sigma(Z) = Z$ for the Bernoulli shift $\sigma(\ldots, n_{-1}, n_0, n_1, \ldots) = (\ldots, n_0, n_1, n_2, \ldots)$,
 - $\overline{\mu}$ is a σ^{-1} -invariant strongly mixing measure,
 - $\Phi \sigma^{-1} = T \Phi$,

As a consequence the Borel probability measure μ on X defined by $\mu(A) = \overline{\mu}(\Phi^{-1}(A)), A \in \mathfrak{B}(X)$, is T-invariant and strongly mixing.

Corollary

Let $B_w: X \to X$ be a bilateral weighted backward shift on $X = \ell_p(\mathbb{Z})$ defined as

$$B_w(x_n)_{n\in\mathbb{Z}}=(w_{n+1}x_{n+1})_{n\in\mathbb{Z}},$$

such that

$$\sum_{n=-\infty}^{0} \left(\prod_{\nu=n+1}^{0} w_{\nu}\right) e_n + \sum_{n=1}^{\infty} \left(\prod_{\nu=1}^{n} w_{\nu}\right)^{-1} e_n$$

converges unconditionally in X. Then there exists a T-invariant strongly mixing Borel probability measure on X with full support.

Mixing measures and the Frequent HypercyclicIity Criterion Frequently hypercyclic translation semigroups

Erequently hypercyclic translation semigroups Dynamical properties inherited from invariant sets

Definition

A one-parameter family $(T_t)_{t\geq 0}$ of operators on a Banach space X is called a C_0 -semigroup if the following three conditions are satisfied:

(i)
$$T_0 = I$$
,
(ii) $T_t T_s = T_{t+s}$ for all $t, s \ge 0$
(iii) $\lim_{s \to t} T_s x = T_t x$ for all $x \in X$ and $t \ge 0$

> Mangino and Peris gave a continuous version of the Frequently Hypercyclicity Criterion. Under the same hypothesis we derive a stronger result, the existence of a strongly mixing measure with full support.

Theorem

Let $(T_t)_t$ be a C_0 -semigroup on a **separable Banach space** X. If there exists $X_0 \subset X$ dense in X and maps $S_t : X_0 \to X_0$, t > 0, such that :

(i)
$$T_t S_t x = x, T_t S_r x = S_{r-t} x, t > 0, r > t > 0,$$

(ii) $t \to T_t x$ is Pettis integrable in $[0,\infty)$ for all $x \in X_0$,

(iii) $t \to S_t x$ is Pettis integrable in $[0, \infty)$ for all $x \in X_0$.

then there is a $(T_t)_t$ -invariant strongly mixing Borel probability measure μ on X with full support.

Example

Let us consider the death model with variable coefficients

$$\begin{cases} \frac{\partial f_n}{\partial t} = -\alpha_n f_n + \beta_n f_{n+1}, & n \ge 1, \\ f_n(0) = a_n, & n \ge 1 \end{cases}$$
(1)

with $(\alpha_n)_n$, $(\beta_n)_n$ bounded positive sequences and $(a_n)_n \in \ell^1$ is a real sequence. Let $X = \ell^1$, and

$$Af = (-\alpha_n f_n + \beta_n f_{n+1})_n \text{ for } f = (f_n)_n \in X,$$

It generates a C_0 -semigroup $(T_t)_{t\geq 0}$ which is solution of (1). If $\sup_{n\geq 1} \alpha_n < \liminf_{n\to\infty} \beta_n$ the semigroup $(T_t)_{t\geq 0}$ admits an invariant mixing measure with full support on X.

Recently Bayart and Ruzsa (2013), characterized frequently hypercyclic weighted shifts on $\ell_p(\mathbb{Z})$ and $c_0(\mathbb{Z})$.

Definition

Let $L_p^{\rho}(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} ; f \text{ is measurable and } ||f||_{\rho} < \infty\}$, where $||f||_{\rho} = (\int_{-\infty}^{\infty} |f(t)|^{\rho} \rho(t) dt)^{\frac{1}{\rho}}$ and $C_0^{\rho}(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} ; f \text{ is continuous and } \lim_{x \to \infty} f(x)\rho(x) = 0\}$, with $||f||_{\infty} = \sup_{t \in \mathbb{R}} f(t)\rho(t)$. If X is any of the spaces above, the translation semigroup $(T_t)_{t \geq 0}$ defined by $T_t f(x) = f(x + t)$ is a well defined C_0 -semigroup.

Proposition

Let $(T_t)_{t\geq 0}$ be a mixing (equivalently chaotic) translation C_0 -semigroup on $C_0^{\rho}(\mathbb{R})$. Then $(T_t)_{t\geq 0}$ is frequently hypercyclic.

The converse of the previous proposition does not hold.

Theorem

Let $(T_t)_{t\geq 0}$ be the translation semigroup defined on $L_p^{\rho}(\mathbb{R})$. The following assertions are equivalent:

(1)
$$(T_t)_{t\geq 0}$$
 is frequently hypercyclic.

(2)
$$\sum_{k\in\mathbb{Z}}\rho(k)<\infty$$
.

(3)
$$\int_{-\infty}^{\infty} \rho(t) dt < \infty$$
.

(4)
$$(T_t)_{t\geq 0}$$
 is chaotic.

(5) $(T_t)_{t\geq 0}$ satisfies the Frequently Hypercyclicity Criterion.

Proposition

Let $(\underline{K}_n)_n$ be an increasing sequence of *T*-invariant sets, and $Y = \bigcup_{n=1}^{\infty} \overline{K}_n$. We have:

(i) If $T|_{K_n}$ is transitive for all $n \in \mathbb{N}$ then $T : Y \to Y$ is transitive.

(ii) If $T|_{K_n}$ is mixing for all $n \in \mathbb{N}$ then $T : Y \to Y$ is mixing.

(iii) If $T|_{K_n}$ is weakly-mixing for all $n \in \mathbb{N}$ then $T : Y \to Y$ is weakly-mixing.

(iv) If $T|_{K_n}$ is chaotic for all $n \in \mathbb{N}$ then $T : Y \to Y$ is chaotic.

Corollary

Let *K* be an absolutely convex *T*-invariant set such that $T|_K$ is transitive (respectively weakly-mixing, mixing, chaotic, topologically ergodic), then $T|_{\overline{span}(K)}$ is transitive (respectively ...). In particular, if $\overline{span}(K) = X$, then the property is inherited by *T* on *X*.

Theorem

Let $T: X \to X$ be an operator and $(K_n)_n$ an increasing sequence of *T*-invariant compact sets such that $T|_{K_n}$ is transitive and $\overline{\bigcup_{n=1}^{\infty} K_n} = X$. Then *T* is weakly mixing.

Theorem

Let X be a Banach space and let the system $(X, (T_n)_n)$, where $\{T_n : X \to X ; n \in \mathbb{N}\}$ is a sequence of operators such that $T_n(Y) \subset Y$ for every $n \in \mathbb{N}$ and for certain $Y \subset X$ with $0 \in Y$. We consider $Z := \overline{span}(Y)$.

(1) If $(Y, (T_n|_Y)_n)$ is weakly mixing of all orders then $(Z, (T_n|_Z)_n)$ is also weakly mixing of all orders.

(2) If $(Y, (T_n|_Y)_n)$ is mixing then $(Z, (T_n|_Z)_n)$ is also mixing.

Example

Logistic map: Let $p : [0,1] \to [0,1]$ be the logistic polynomial p(x) := 4x(1-x), which is chaotic and mixing. We will embed [0,1] in a locally convex space X via a map ϕ , and we define $T : X \to X$ such that $T \circ \phi = \phi \circ p$ and $\overline{span(\phi[0,1])} = X$. Let

$$X=\{(x_i)_i\in\mathbb{C}^{\mathbb{N}}\ ;\ \exists r>0 ext{ such that } \sup_i|x_i|r^i<\infty\}.$$

X has its natural inductive topology. We define $\phi: I \to X$ as $\phi(x) = (x, x^2, x^3, ...)$, and

$$T(x_1, x_2, \dots)_k = 4^k \sum_{j=0}^k (-1)^j \binom{k}{j} x_{j+k}, \quad k \in \mathbb{N}.$$

 $T \circ \phi = \phi \circ p$. Let $Y := \phi[0, 1]$. span(Y) is dense in X, hence T is mixing and chaotic.

Definition

A lattice is a non-empty set M with an order \leq such that every pair of elements $x, y \in M$ has both a supremum and an infimum. An ordered vector space is a real vector space X which is also an ordered space such that:

• If $x, y, z \in X$ and $x \leq y$ then $x + z \leq y + z$

• If $x, y \in X$, $x \leq y$ and $0 \leq \alpha \in \mathbb{R}$, then $\alpha x \leq \alpha y$

The set $X^+ = \{x \in X ; x \ge 0\}$ is termed the positive cone in X. An ordered vector space which is also a lattice is a vector lattice. If X and Y are vector lattices then an operator $T : X \to Y$ is positive if $x \ge 0$ implies $Tx \ge 0$.

A Banach(Fréchet) lattice is a Banach(Fréchet) space which is also a vector lattice in which $x \leq y$ implies $||x|| \leq ||y|| (||x||_n \leq ||y||_n, n \in \mathbb{N}$, where $(|| \cdot ||_n)_n$ is an increasing sequence of seminorms).

Theorem

Let $(T_t)_{t\geq 0}$ be a C_0 -semigroup of positive operators on a separable Banach lattice X. If there exist $X_0 \subset X^+$ dense in X and maps $S_t : X_0 \to X^+$, t > 0 such that

•
$$T_t S_t x = x, T_t S_r x = S_{r-t} x, t > 0, r > t > 0,$$

- $t \to T_t x$ is Pettis integrable in $[0,\infty)$ for all $x \in X_0$,
- $t \to S_t x$ is Pettis integrable in $[0,\infty)$ for all $x \in X_0$.

then $(T_t|_{X^+})_{t\geq 0}$ is mixing, each operator $T_t|_{X^+}$ with t > 0 is chaotic, and there is a $(T_t)_t$ -invariant strongly mixing Borel probability measure μ on X^+ whose support is X^+ .

Example

Let $X = \{f \in C([0, 1], \mathbb{R}) : f(0) = 0\}$ with the sup norm. We consider the following initial value problem of a partial differential equation:

$$\begin{cases} \frac{\partial u}{\partial t} = \gamma x \frac{\partial u}{\partial x} + h(x)u, \\ u(0, x) = f(x) \end{cases}$$
(2)

where $\gamma < 0$, $h \in C([0,1],\mathbb{R})$ and $f \in X$. Then the solution semigroup $(\mathcal{T}_t)_{t \geq 0}$,

$$T_t f(x) = e^{\int_0^t h(e^{\gamma(t-s)}x)ds} f(e^{\gamma t}x)$$

to the equation (2) is a strongly continuous semigroup on X. If $\min\{h(x) : x \in [0,1]\}$ is positive, then there exists a $(T_t)_t$ -invariant strongly mixing Borel probability measure μ on X^+ whose support is X^+ .

Bibliography

M. Murillo-Arcila and A. Peris.

Strong mixing measures for linear operators and frequent hypercyclicity. J. Math. Anal. Appl. 398(2013) 462–465.

5. Math. Anal. Appl. 550(2015) 402

M. Murillo-Arcila and A. Peris.

Mixing properties for nonautonomous linear dynamics and invariant sets.

Appl. Math. Lett. 26(2013) 215-218.

M. Murillo-Arcila and A. Peris.
 Strong mixing measures for C₀-semigroups.
 To appear in RACSAM. DOI:10.1007/s13398-014-0169-3.

- M. Murillo-Arcila and A. Peris. Chaotic behavior on invariant sets of linear operators. To appear in Integral Equations and Operator Theory.
 - DOI:10.1007/s00020-014-2188-z.
- S. Bartoll, F. Martínez-Giménez, M. Murillo-Arcila, and A. Peris.

Cantor Sets, Bernouilli Shifts and Linear Dynamics. Descriptive Topology and Functional Analysis. 80(2014) 195–207.

- E. Mangino and M. Murillo-Arcila. Frequently hypercyclic translation C₀-semigroups. Submitted. arXiv:1407.4637.
- J.A. Conejero, M. Murillo and J.B. Seoane-Seplveda. Linear Chaos for the Quick- Thinking- Driver model. *Submitted.*

 J.A. Conejero, G.A. Muñoz-Fernández, M. Murillo and J.B. Seoane-Sepúlveda
 Smooth functions with uncountably many zeros. To appear in Bull. Belg. Math. Soc. Simon-Stevin.