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Goal

Main achievement

Detemining periodic solutions, stability and bifurcation of resonant
Hamiltonians

@uertd
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Methodology

(i) Apply normal forms to introduce approximate symmetries of the
Hamiltonians.

(i1) Use regular and singular reduction theory reducing out the continuous
symmetries obtaining a Hamiltonian system on the corresponding
reduced (orbit) space.

(iii) Investigate the dynamics of the reduced problem: existence, stability and
bifurcations of the relative equilibria in terms of some parameters.

(iv) Get conclusions about the full system by reconstructing the flow of the
original problem. We obtain families of periodic solutions and invariant
tori.
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Hamiltonian in a Rotating Frame

xY

The Hamiltonian has five equilibria:
e L, L,, L3 unstable (Euler),
@ L4, Ls linearly stable iff 0 < p < (1 —+/69/9)/2 (Lagrange). gupn@
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L4 and Ls in the Planar Circular Restricted Three Body
Problem

The Hamiltonian written in a rotating frame xx,x3 is given by

Hr = 5001 +¥3) — (x1y2 — x2y1)
7 1 —p

\/(Xl — 1+ p)?+x \/(Xl + 1)+ x3

o p=my/(m +m),

@ assuming that m; > my then p € (0,1/2),

o the masses m; and m; are located at the points (—,0) and (1 — p, 0) of
the coordinate space, respectively.

Coordinates of Ly and Ls: (1/2 — ., £v/3/2, Fv3/2, 1/2 — p)
upn2
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Finding Periodic Solutions

A. Deprit and J. Henrard, A manifold of periodic orbits, Adv. Astron.
Astrophys. 6, 1968, 2—124: It reveals a very rich dynamics

Tr =120-305 91

1
57 = 25871 sss/\

T =25-415 750
, Tr=31-287 272 1 na
‘1'5 -10 -Oi5 !IJ 05 10 t[up
F1G. 4. Evolution of the branch % 4.
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Initial Conditions

E. Rabe and A. Schanzle, Periodic librations about the triangular solutions of
the restricted Earth-Moon problem and their orbital stabilities, Astron. J. 67,
1962, 732-739

TasLe IV
Initial conditions for the branch £ 4
No. %0 o e Jo
I 0494050076 0°977910758  ©0°149215754  —0°054919858
2 0507396097  1-012800883  0-201524769  —o-083454244
3 0'512405341 1 1723 5921375
4 o 1 —o- 106473701
5 0-519836776  1-040054368 0235814421  —o0-116433037
6 0-523163185 1°047597479 ~ ©°242133500 —0°126965897
7 o-528008017 1 o —o-
8  o-576620485  1-026776464 0232584018  —o-160036225
9 o'sBrgtéoos 1033339813 0238024001 -178807439
10 0584801378  1-037839987  ©0-244030785 -188659522
11 0588245748  1-042106220 0250458033  —0-196976479
T2 0-50T544917  1-046255473 0257104080  —0-204454802
13 ©0°594776822 1050310927 0-263849839 —0°211344653
14 0°507953704 1 8 353
15 0-601066536  1-058815424  ©0-277206887  —o-223841425
16 o-604108706  1-061923 24 58313
1
1 0°3: 3
0644975332 1-112518834  0°374215068 *300992247
0°653999012  1:123737498  ©0°393858443
0:604011593  1°173005324 0477517243
0735500418 T 5! 9
o x 551426370
©0-783188373  1-276460734 0647373839 +606714169
9816251 T 53 653646257
1304216355 —0-694571133
0-817698589  1°312555495  ©°714005400  —0-730849058
0-823378278  1-318135836  o-727307801 —0-763354355
0827485503 1°322262041  0-744203619  —o-819073126 N
0820762807  1°316328700 0747420610  —0-863028747 upha
0810304875  1°307355436 0740516843  —o-881462001 (E p
4650823 1 18179 071454
9 1 —0-885130287
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Many Contributions: The Trojan Web

@ Lyapunov centre theorem and power series:

e Lyapunov (1892)
e Moulton (1920)
o Buchanan (1941)

© Use of computers:

o Stromgen and coworkers (1930), but they applied numerical methods by
hand!
o Rabe (1961)

© Normal forms:

o Deprit & Henrard (1968)

o Meyer, Palmore & Schmidt (1970) 1@ pna
u
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Two Fundamental Results

o Lyapunov Centre Theorem:

Consider the smooth Hamiltonian system
z=Az+--=JSz+ -

defined in a neighborhood of the origin in R?, let the eigenvalues of the
Hamiltonian matrix A be the pure imaginaries tiw;, Liwy, wi,wy # 0,
then if wy /wy is not an integer the system has a one parameter family of
periodic solutions emanating from the origin of period near 2 [ |wy|.

@ Weinstein Theorem:

Two periodic solutions are found in each small energy level (H constant)
provided the symmetric matrix S is definite, positive or negative.

upna
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Resonant Hamiltonians

Hamiltonian around Ly when 0 < p < (1 — v/69/9)/2 reads as
H:H2+H3—|-...,

where H, = 1w (x} +?) — w2 (x3 +»3)], and we consider w; > 0 and such
that w; /w, is rational.

In general we shall consider systems such that

1

Hy = E[Q(x% +31) +p(3 +¥3)],

with ¢, p non-null integers such that ¢ > 0 and ged(q, p) = 1.

There are many approaches: Schmidt, Duistermaat, Golubitskii and Stewart,
Kummer, etc.

upna
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Invariants #1

Higher-order terms are put in normal form, i.e., {Hy, H»} = 0 for
k=3,4,....

Invariants associated to the ¢ : p resonance:
a =1 = x%—l—y%,
ay =1 = x%+y%,
ay = 177 13 cos(q 6y — p 1) = Re|(x1 — sign(p) y1i)VP! (x2 + y20)7].
as = IV 137 sin(q 0 — p 1) =Tm[(x1 — sign(p)yii) Pl (x2 + yai)],

subject to the constraints

2,2
a3—|—a4:a|1p‘ag, a; >0, a; > 0.

Then
® Hy=qa1+par =h. o 1upna
e Hy = Hy(ay,as,as,as) where Hy are polynomials in ;.
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Invariants #2

Reduced space, e.g. orbit space is an orbifold
o If)g=p=1;@{)p=—1land h < 0; (iii) g = 1 and h > 0, we are in
the case of regular reduction, i.e. the reduced space is a manifold;

@ In the rest of situations we are in the case of singular reduction with one
or two singularities.

Poisson structure

{, } ay a as ay

a 0 0 2p as —2pas

a» 0 0 —2qas 2qas

as | —2pas | 2qas 0 a’"" a7 (¢ a1 — plp| @)
as 2pas | —2qas 7a‘1p‘7l agfl(q2 ar —plp|a2) 0

‘l((_[‘upna
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Orbit Spaces: p > 0

ay

as

(a) Orange 1 : 1 (b) Turnip 2 : 1 (c)Lemon2:3

Tupha
Figure: Case p > 0. Above: p versus a;. Below: Orbit spaces @up2?
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Orbit Spaces: p < 0

h<0 h

P
V al ‘ ) | / al

as
asg ay a3
/ i ’ a ap 7/% a

Figure: Case ¢ = 3, p = —1. Above: p versus a;. Below: Orbit spaces \Qupna
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Symplectic Smoothing #1

For instance, the case (ay,az,a3,a4) = (h/q,0,0,0) and h > 0, the
singularity occurs at a; = h/q.

(a) For g odd, we build
h — pq(x* +y°)

a) ,
q
a; = q(+)y),
_ _ 2
ay = g VP 4?2 [ pg( 4?72,
_ _ 2
ay = q(q |p|)/2y(x2+y2)(q 1)/2 [h—pq(x2+y2)]|p|/ ’

with inverse
—1/2 _—lpl/2 (1—q)/2 —
x =g~ a0,y =g
The transformed surface in the a; x y-space is

1/2a1—\p|/2a§1—q)/2a4_

upna
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ar = q(x2 + yz).
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Symplectic Smoothing #2

(b) For g even, we get

2h — pq(x* + y*)
ay = P
2q
a) = g(xz +y2),

_ _ _ 2
ay = 27 UPHa2gllPD2(2 32y 1 )42 o) — pg(x? + y?)] lpl/ :

a, = 21—(\p|+q)/2q(q—|p\)/2xy(x2 +yz)q/Z—l [2h —pq(x2 +y2)] IP\/Z7

and when a3 > 0 the inverse is

r= (Z/q)l/za;/z cos B tan”"' <Z4>] ¥y = (2/51)1/2615/2 sin [; tan~! (cu)] )
3

as

and similarly for az < 0.
The transformed surface in the a; x y-space is
Tupha
ar =102 +7). e
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Symplectic Smoothing #3

In all cases {x,y} = 1.

The change is local.

gupn@
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Cherry’s Example: 2 : —1 Resonance

1 1
H = AT +31) = Mg +3) + Saba(d = 1) = 2xy1a),

with A and « as arbitrary parameters.

It is an integrable system. Whittaker provided the solution:

W= g = a(t\/f 5 cos(+1),
Xy = a(t1+ ) sin (2(At+7)), = a(t_—i 5 cos (2(Ar + 7)),

where € and ~ are constants of integration.
upna
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Applying Reduction

@ Written in invariants:
H=H,+ H; with Hy =2a; —a, and H; = as.
© The orbit space, when 2a; — ay = h, is the surface
a%—l—aﬁ:al(h—Za])z, a; >0, a >h/2.

© Using the Poisson structure with ¢ = 2 and p = —1, the vector field
reads as

ay = {a1,H3} = —2a4, a3 = {a3,H3} = 0, a4 = {a4, H3} = —ax(4a; +az).

© It is easy to achieve that there is an equilibrium at
(ay,as,a4) = (h/2,0,0) only when i > 0.

upna
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Flow of the Reduced Space

h<0 h=0 h>0

@ When i = 0 the origin is the origin in R*: There are two solutions
spiraling to the origin as t — $00, the ones given by Whittaker.

© When /& > 0 the equilibrium point gives rise to a periodic solution of
period T ~ m for each 2 > 0 (short periodic family given by Lyapunov
centre theorem. These solutions are unstable. ¢up®
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The 3 : —1 Resonance

In action-angle coordinates: /; = sz + yj?, 0 = tan ™! yj/Xj, we write:

e2

=30 — b+ (Al +2BL + C3) + ¢ 2617 R

cos(6y + 36>),

where A, B, C, G are constants.

© Introduce the constants D (A +6B+9C)and R = B + 3C.

© Pass to the averaged system we get
Hs = Da? — Rha; + Gas
which is defined on the orbit space:

a% + ai =a;(3a; — h)3, a >0, 3a; >h
@upna
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Associated Vector Field

ar = {a1,Hs} = —2Gas,
as = {as,H3} = 2a4(2Da, — Rh),
as = {as,H3} = —2a3(2Da; — Rh) — Ga3(9a; + a)
= —2a3(2Da; — Rh) — G(3a; — h)*(12a; — h),

The analysis is a bit delicate since there are many but there are basically two
scenarios.

Bifurcation lines:
a=D/G, B=R/G
I'i: o —27 = 0 (red lines);

[y 729 + 10802 + 6483% — 483* 4 8a3(—81 + 43%) = 0 (blue curves);
I'3: 2a0 — 36 = 0 (green curve). (@upn2
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Bifurcations and Flows When 2 < 0

I & IIT

11 as
a
a

ay

3

@urta
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Bifurcations and Flows When 2 > 0

IV&T,;

‘N

@
¢
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Non-semisimple 1 : —1 Resonance
Consider the Hamiltonian H = H, + H3 + ... where

)
Hy = xoy1 — x1y2 + E(X% +33)

where § = £1.

The linear system of equations is z = Az, where

0 1

0 0 X1

-1 0 0 o0 | x
A=1 .5 0 o 1|0 7y
0 -5 -1 0 v

A has repeated eigenvalues +i, but not all solutions are 27 periodic, since
there are secular terms like 7sin¢, #cos t.

upna
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Normal Form and Invariants

The four invariants usually associated with this Hamiltonian are just

1

1
by = xoy1 —x1y2, by = 5( 1+x3), by= 5()’%—1')’%), by = x1y1 +x2)2,

with the constraint
bt + b3 = 4 babs.

The non-zero Poisson brackets are
{ba,b3} = bs, {ba,bs} =2by, {bs,b3} =2b3.
We start with H, such that H, = by + db, and the rest of terms
H = by + 6by + (b} +2Bb1by +vb3) + - - .
Use an adequate scaling, so the Hamiltonian becomes

H = by + &(6by + vb3) + O(£%). upna
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Equations of Motion

© Thus the equation of the orbit space is
h? + b3 = 4 by bs.

© The reduced averaged Hamiltonian is

Hy = 6by + b3 = h.

© The equations of motion are
Z.JZ = {bz,H4} = 2vb3by, B3 = {b3,H4} =0, B4 = {b4,H4} = —25b2—|—4’yb§.
In the case of 1 : —1 resonance there are two families of nearly 27 elliptic

periodic solutions emanating from the origin when 6~y > 0. One family exists
for H > 0 and one for H < 0. There are no nearby 27 periodic solutions

upna

November 13 th, 2014 30/44

when §y < 0.

Periodic Solutions of Hamiltonian Syst

Meyer, Palacidn & Yanguas (UC & UPNa)



Flows

Figure: Flows in the 1 : —1 resonance. On the left: 4y > 0. On the right: 6y < 0.
Qur2
o = = = = 9ae
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Resonant Hamiltonians

We deal with Hamiltonians
H=H, + H3 =+ ...

such that the Hamiltonian matrix A of H; is semi-simple with pure imaginary
eigenvalues:

+k wi, £k wi, ..., £k, wi
where w is positive real, k; € Z, with ged(ky, k2, ..., k,) = 1.

By a change of the time scale we may take w = 1. In this case the
Hamiltonian can be put into the form

1
2(X,Y) = SIK1 \X] Y1 2K T Y2 n \Xp T Yn)ls
Ho(x,y) = 5[kt (xf +31) + ko (3 +32) + -+ + ka (53 4 37)]

Tupha
where z = (x,y) € R* x R". @ve
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Integrable Part

H, is a super-integrable system since there are 2n — 1 independent integrals,
namely

Iy, L, ..., L, k10, —k,01, kiOp_y —kn_1 01, ..., k16 —ky0,.
In rectangular coordinates:
a = 1) :x%+y%, a=DL :x%+y§, ey ap =1, :xﬁer,z,,
anr = a1 a1 cos(ky B, — ky 1) = Re [(xn + sgn(ki) yui) “1! (x1 — sgn(k) yri) 1],
ntr = al,k'l/z allk”l/2 sin(ki 6, — kn 01) = Im[(x, + sgn(kl)yni)‘k”(xl — sgn(kx) yli)“""‘],

A3p—3 = alzk' 172 a||k2|/2 cos(ki 62 — k> 61) = Re[(x2 + sgn(k:) yzi)““‘(xl — sgn(kz)yli)|k2|],
An—2 = aI2k1I/2 a|1k2|/2 sin(ki 02 — k> 01) = Im[(x2 + Sgn(’ﬂ))’zi)‘kl‘(m - sgn(kz)yli)‘kz‘]A

upna
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Some Relationships

Clearly a; >0, ap >0, ..., a, > 0 and the identity cos® ¢ + sin® ¢ = 1
yields
k| [k
aﬁﬂ —|—aﬁ+2 = “|nl|a‘1 "

2 2 _ k] k|
a3, 3+ a3, 5 = a; ap .
But more invariants are needed in order to express the perturbation H3 + . ..
in terms of them in terms of polynomials.
Approach

One needs to resort to computer algebra techniques and obtain the invariants,
the relationships among them and to write down the Hamiltonian and the
corresponding vector field in terms of the invariants

upna
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Automatic Determination of Invariants #1

Derksen and Kemper’s Algorithm for Invariant of Tori (2002):

o It is more efficient than those that use Grobner bases (Sturmfels and
others).
o It performs better than the methods of Fekken.

@ The computation relies on divisibility test of two monomials, it is an
integer programming problem.

upna
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Automatic Determination of Invariants #2

Q Let 7 = (K*)" be a torus acting diagonally on an n-dimensional vector
space V

@ Identify K[V] = K[x1, ..., X,]
Q@ w=(wh,...,wh) e Z" is a weight, we write 1* = =" . 1=

Q Fori=1,...,nletw; the weight with which T acts on x;: t - x; = t“ix;

Q@ Ifm= x‘f] -+ xpn then T acts on m with wieght ajw; + - - - aywy,

Main idea: Choose a suitable finite set C of weights and produce sets S,, with
w € C of monomials of weight w.

These sets grow during the course of the algorithm, until upon termination we
get Sy that generates K[V]°.

The algorithm performs well for systems of 4, 5 or 6 degrees of freedom.

upna
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Orbit Space: Szygyies

e For a given resonance k| : k; : ... : ky, introducing complex variables,
say u;, v; (instead of x;, y;), we get the set of invariants: {ay,ay,...,as}
using the previous algorithm (s > n). The » first invariants are the ones
ar = X% + y,%.

@ We find a Grobner basis in terms of the a; and uy, vy, eliminating the
complex variables, to determine the relationships among the a;. We also
take into account the relationship a; + ... 4+ a, = h.

@ The number of fundamental szygyies is s — 2n + 2, so that the orbit
space has dimension 2(n — 1) and a reduced Hamiltonian of n — 1
degrees of freedom (after applying normal forms and truncating
higher-order terms) lives in that space.

‘l((_[‘upna
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Vector Fields and Dynamics

@ In order to express the normal form (written in the complex coordinates
uy, v) in terms of the a; one performs the division algorithm for
multivariate polynomials (using the Grobner basis) and the remainder of
the division yields the desired expression (a polynomial in terms of a;).
We express it by H.

@ The Poisson structure of the ai, k = 1, . .. s is obtained using the division
algorithm with respect to the Grobner basis. One obtains {a;, ax} as a
polynomial in a;.

@ The associated vector field is computed through dy = {ay, H}.

Once the equations of motion are computed one can obtain relative equilibria,
bifurcations and so on.

For n = 3 several examples have been carriedout: 1 :1:1,1:1: -1,
1:3:5,etc. ¢up?®

Meyer, Palacidn & Yanguas (UC & UPNa) Periodic Solutions of Hamiltonian Syst November 13 th, 2014 39/44




Contents

@ N-Degrees-Of-Freedom Systems

@ Theoretical Background

upna

Meyer, Palacidn & Yanguas (UC & UPNa) Periodic Solutions of Hamiltonian Syst November 13 th, 2014 40/44




Rigorous Results #1

@ Equilibria on the orbit space with non-degenerate Morse function
corresponds to (families) of periodic solutions.

o Circulation about these equilibria (e.g., the elliptic points) correspond to
families of invariant n-tori of the full system.

@ Bifurcations of relative equilibria (centre-saddle, Hamiltonian pitchfork,
and others) correspond to bifurcations of periodic solutions of the full
system.

But, do these families of periodic solutions and KAM tori really exist? Do
these bifurcations of periodic solutions take place in the full system?

The answer is YES if some non-degenerate conditions are fulfilled.

‘l((_[‘upna

Meyer, Palacidn & Yanguas (UC & UPNa) Periodic Solutions of Hamiltonian Syst November 13 th, 2014 41/44




Rigorous Results #2

On the plateau (regular points):

A critical point of H at d € L (i.e. 0H/dy(d) = 0) is nondegenerate if the
Hessian at the critical point, 9*H/dy*(d), is nonsingular. The linearization
about the critical point is

_ 0’H
v:Av:Ja—yz(d)v.

Let the eigenvalues of Abevy,..., v .
Theorem

If H has a nondegenerate critical point at d, then there are smooth functions
d(e) =d+ 0(c) and T(¢) = 21t + O(e) for ¢ small, and the solution of H
through d(e) is T(e)-periodic. The multipliers are

L1, 14+ev4+0(E),...,1 +evy o+ O(2).
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Rigorous Results #3

At peaks (singular points):
Theorem

Let d be a peak of the reduced space with frequency ks and z € 1171 (d). If
kj/ky is not an integer for j # s then the solution through z of the full system
for e = 0 is periodic with period 27 [ ks and characteristic multipliers

gt fk)omi R /k)2mi k) 2w

.y ey

eFks/k)2mi — 41 4 one expects from a periodic solution of a Hamiltonian

system, but all the others are not equal to +1.
For € > 0 and small, the full system has an elliptic periodic solution near z of
period 27 [ks + O(e) and characteristic multipliers

e:t(kl/k.v) 27"'1._’_0(5)’ . 7e‘i‘(ks/ks) 27 — 17 e_(k.v/kx) 2mi — 17 L. 7ei(kn/kx) 271'!'_’_0(8 .

v
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Some Remarks

@ For n > 3 there are other types of singular points, not just peaks. We
have called them ridges and the theory is not fully understood yet.

@ The approach is analytical and combines tools of dynamical systems
theory with computer algebra.

@ One can use the relative equilibria (possibly computed with higher-order
normal forms) and reverse the normal-form transformation to obtain
initial conditions for getting numerically the periodic solutions.

@ Of course there are many other techniques (numerical and
semianalytical) to get periodic and quasi-periodic solutions of resonant
Hamiltonians, but this approach renders particularly useful when there
are many parameters, bifurcations, and so on. The accurate computations
of the periodic solutions and tori has to be achieved using these
techniques, or within our approach, obtaining initial conditions that must
be refined numerically. \upna
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