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Goal and Methodology

Goal

Main achievement
Detemining periodic solutions, stability and bifurcation of resonant
Hamiltonians
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Goal and Methodology

Methodology

(i) Apply normal forms to introduce approximate symmetries of the
Hamiltonians.

(ii) Use regular and singular reduction theory reducing out the continuous
symmetries obtaining a Hamiltonian system on the corresponding
reduced (orbit) space.

(iii) Investigate the dynamics of the reduced problem: existence, stability and
bifurcations of the relative equilibria in terms of some parameters.

(iv) Get conclusions about the full system by reconstructing the flow of the
original problem. We obtain families of periodic solutions and invariant
tori.
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Prototype

Hamiltonian in a Rotating Frame

2

The Hamiltonian has five equilibria:

L1,L2,L3 unstable (Euler),

L4,L5 linearly stable iff 0 < µ < (1−
√

69/9)/2 (Lagrange).
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Prototype

L4 and L5 in the Planar Circular Restricted Three Body
Problem

The Hamiltonian written in a rotating frame x1x2x3 is given by

HR = 1
2(y2

1 + y2
2)− (x1y2 − x2y1)

− µ√
(x1 − 1 + µ)2 + x2

2

− 1− µ√
(x1 + µ)2 + x2

2

.

µ = m1/(m1 + m2),

assuming that m1 ≥ m2 then µ ∈ (0, 1/2),

the masses m1 and m2 are located at the points (−µ, 0) and (1− µ, 0) of
the coordinate space, respectively.

Coordinates of L4 and L5: (1/2− µ , ±
√

3/2 , ∓
√

3/2 , 1/2− µ)
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Prototype

Finding Periodic Solutions

A. Deprit and J. Henrard, A manifold of periodic orbits, Adv. Astron.
Astrophys. 6, 1968, 2–124: It reveals a very rich dynamics
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Prototype

Initial Conditions

E. Rabe and A. Schanzle, Periodic librations about the triangular solutions of
the restricted Earth-Moon problem and their orbital stabilities, Astron. J. 67,
1962, 732–739
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Prototype

Many Contributions: The Trojan Web

1 Lyapunov centre theorem and power series:

Lyapunov (1892)
Moulton (1920)
Buchanan (1941)

2 Use of computers:

Strömgen and coworkers (1930), but they applied numerical methods by
hand!
Rabe (1961)

3 Normal forms:

Deprit & Henrard (1968)
Meyer, Palmore & Schmidt (1970)
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Starting Point Theory

Two Fundamental Results

Lyapunov Centre Theorem:

Consider the smooth Hamiltonian system

ż = Az + · · · = JSz + · · ·

defined in a neighborhood of the origin in R4, let the eigenvalues of the
Hamiltonian matrix A be the pure imaginaries ±iω1, ±iω2, ω1, ω2 6= 0,
then if ω1/ω2 is not an integer the system has a one parameter family of
periodic solutions emanating from the origin of period near 2π/|ω1|.

Weinstein Theorem:

Two periodic solutions are found in each small energy level (H constant)
provided the symmetric matrix S is definite, positive or negative.
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Starting Point Theory

Resonant Hamiltonians

Hamiltonian around L4 when 0 < µ < (1−
√

69/9)/2 reads as

H = H2 + H3 + . . . ,

where H2 = 1
2 [ω1(x2

1 + y2
1)− ω2(x2

2 + y2
2)], and we consider ωi > 0 and such

that ω1/ω2 is rational.

In general we shall consider systems such that

H2 =
1
2

[q(x2
1 + y2

1) + p(x2
2 + y2

2)],

with q, p non-null integers such that q > 0 and gcd(q, p) = 1.

There are many approaches: Schmidt, Duistermaat, Golubitskii and Stewart,
Kummer, etc.
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Starting Point Theory

Invariants #1

Higher-order terms are put in normal form, i.e., {Hk,H2} = 0 for
k = 3, 4, . . . .
Invariants associated to the q : p resonance:

a1 = I1 = x2
1 + y2

1,

a2 = I2 = x2
2 + y2

2,

a3 = I|p|/2
1 Iq/2

2 cos(q θ2 − p θ1) = Re [(x1 − sign(p) y1i)|p|(x2 + y2i)q],

a4 = I|p|/2
1 Iq/2

2 sin(q θ2 − p θ1) = Im [(x1 − sign(p)y1i)|p|(x2 + y2i)q],

subject to the constraints

a2
3 + a2

4 = a|p|1 aq
2, a1 ≥ 0, a2 ≥ 0.

Then
H2 = qa1 + pa2 = h,
Hk ≡ Hk(a1, a2, a3, a4) where Hk are polynomials in ai.
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Starting Point Theory

Invariants #2

Reduced space, e.g. orbit space is an orbifold

If (i) q = p = 1; (ii) p = −1 and h < 0; (iii) q = 1 and h > 0, we are in
the case of regular reduction, i.e. the reduced space is a manifold;

In the rest of situations we are in the case of singular reduction with one
or two singularities.

Poisson structure

{ , } a1 a2 a3 a4

a1 0 0 2p a4 −2p a3

a2 0 0 −2q a4 2q a3

a3 −2p a4 2q a4 0 a|p|−1
1 aq−1

2 (q2 a1 − p |p| a2)

a4 2p a3 −2q a3 −a|p|−1
1 aq−1

2 (q2 a1 − p |p| a2) 0
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Starting Point Theory

Orbit Spaces: p > 0

Out[3541]=

a1

Ρ
1 : 1

a1

Ρ
2 : 1

a1

Ρ
2 : 3

Out[2538]=

(a) Orange 1 : 1 (b) Turnip 2 : 1 (c) Lemon 2 : 3

Figure: Case p > 0. Above: ρ versus a1. Below: Orbit spaces
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Starting Point Theory

Orbit Spaces: p < 0

Out[2449]=

a1

Ρ
h " 0

a1

Ρ
h # 0

a1

Ρ
h $ 0

Out[2314]=

Figure: Case q = 3, p = −1. Above: ρ versus a1. Below: Orbit spaces
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Starting Point Theory

Symplectic Smoothing #1

For instance, the case (a1, a2, a3, a4) = (h/q, 0, 0, 0) and h > 0, the
singularity occurs at a1 = h/q.

(a) For q odd, we build

a1 =
h− pq(x2 + y2)

q
,

a2 = q(x2 + y2),

a3 = q(q−|p|)/2x(x2 + y2)(q−1)/2 [h− pq(x2 + y2)
]|p|/2

,

a4 = q(q−|p|)/2y(x2 + y2)(q−1)/2 [h− pq(x2 + y2)
]|p|/2

,

with inverse

x = q−1/2a−|p|/2
1 a(1−q)/2

2 a3, y = q−1/2a−|p|/2
1 a(1−q)/2

2 a4.

The transformed surface in the a2 x y-space is

a2 = q(x2 + y2).
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Starting Point Theory

Symplectic Smoothing #2

(b) For q even, we get

a1 =
2h− pq(x2 + y2)

2q
,

a2 =
q
2

(x2 + y2),

a3 = 2−(|p|+q)/2q(q−|p|)/2(x2 − y2)(x2 + y2)q/2−1 [2h− pq(x2 + y2)
]|p|/2

,

a4 = 21−(|p|+q)/2q(q−|p|)/2xy(x2 + y2)q/2−1 [2h− pq(x2 + y2)
]|p|/2

,

and when a3 ≥ 0 the inverse is

x = (2/q)1/2a1/2
2 cos

[
1
2

tan−1
(

a4

a3

)]
, y = (2/q)1/2a1/2

2 sin
[

1
2

tan−1
(

a4

a3

)]
,

and similarly for a3 < 0.
The transformed surface in the a2 x y-space is

a2 =
q
2

(x2 + y2).
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Starting Point Theory

Symplectic Smoothing #3

In all cases {x, y} = 1.

The change is local.

Out[2314]=
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Starting Point Examples

Cherry’s Example: 2 : −1 Resonance

H =
1
2
λ(x2

1 + y2
1)− λ(x2

2 + y2
2) +

1
2
α[x2(x2

1 − y2
1)− 2x1y1y2],

with λ and α as arbitrary parameters.

It is an integrable system. Whittaker provided the solution:

x1 =

√
2

α(t + ε)
sin(λt + γ), y1 =

√
2

α(t + ε)
cos(λt + γ),

x2 =
1

α(t + ε)
sin
(
2(λt + γ)

)
, y2 =

−1
α(t + ε)

cos
(
2(λt + γ)

)
,

where ε and γ are constants of integration.
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Starting Point Examples

Applying Reduction

1 Written in invariants:

H = H2 + H3 with H2 = 2a1 − a2 and H3 = a3.

2 The orbit space, when 2a1 − a2 = h, is the surface

a2
3 + a2

4 = a1(h− 2a1)2, a1 ≥ 0, a1 ≥ h/2.

3 Using the Poisson structure with q = 2 and p = −1, the vector field
reads as

ȧ1 = {a1,H3} = −2a4, ȧ3 = {a3,H3} = 0, ȧ4 = {a4,H3} = −a2(4a1+a2).

4 It is easy to achieve that there is an equilibrium at
(a1, a3, a4) = (h/2, 0, 0) only when h ≥ 0.
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Starting Point Examples

Flow of the Reduced Space

Out[1045]=

h < 0 h = 0 h > 0

1 When h = 0 the origin is the origin in R4: There are two solutions
spiraling to the origin as t→ ±∞, the ones given by Whittaker.

2 When h > 0 the equilibrium point gives rise to a periodic solution of
period T ∼ π for each h ≥ 0 (short periodic family given by Lyapunov
centre theorem. These solutions are unstable.
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Starting Point Examples

The 3 : −1 Resonance

In action-angle coordinates: Ij = x2
j + y2

j , θj = tan−1 yj/xj, we write:

H = 3I1 − I2 +
ε2

2
(AI2

1 + 2BI1I2 + CI2
2) + ε2GI1/2

1 I3/2
2 cos(θ1 + 3θ2),

where A,B,C,G are constants.

1 Introduce the constants D = 1
2(A + 6B + 9C) and R = B + 3C.

2 Pass to the averaged system we get

H3 = Da2
1 − Rha1 + Ga3

which is defined on the orbit space:

a2
3 + a2

4 = a1(3a1 − h)3, a1 ≥ 0, 3a1 ≥ h.
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Starting Point Examples

Associated Vector Field

ȧ1 = {a1,H3} = −2Ga4,

ȧ3 = {a3,H3} = 2a4(2Da1 − Rh),

ȧ4 = {a4,H3} = −2a3(2Da1 − Rh)− Ga2
2(9a1 + a2)

= −2a3(2Da1 − Rh)− G(3a1 − h)2(12a1 − h),

The analysis is a bit delicate since there are many but there are basically two
scenarios.

Bifurcation lines:
α = D/G, β = R/G

Γ1: α2 − 27 = 0 (red lines);

Γ2: 729 + 108α2 + 648β2 − 48β4 + 8αβ(−81 + 4β2) = 0 (blue curves);

Γ3: 2α− 3β = 0 (green curve).
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Starting Point Examples

Bifurcations and Flows When h < 0

Also the number of critical points of the equations on the orbit space changes when one root
of the cubic polynomial meets the peak (a1 = h/3) for h ≥ 0, i.e. when after replacing a1
by h/3 in the cubic we get:

4

27
(2α− 3β)2h3 = 0.

So, we will distinguish the case h < 0, h = 0 and h > 0 and analyze the relative equilibria
and bifurcations as functions of α and β.

The case h = 0 is simple because the above vanishes and the resultant becomes

16a3
1(α

2 − 27) = 0.

When h #= 0 we have the two bifurcation planes appearing in Figures 2 and 3. The
equations for the bifurcation lines become:

Γ1: α
2 − 27 = 0 (red lines);

Γ2: 729 + 108α2 + 648β2 − 48β4 + 8αβ(−81 + 4β2) = 0 (blue lines);
Γ3: 2α− 3β = 0 (green line).

I

II III

IV

Α

Β

F i g u r e 2. Bifurcation plane and flows for the 3 : −1 resonance when h < 0

The planes are symmetric with respect to the origin. The blue line corresponds to a saddle-
centre or extremal bifurcation of critical points thus, an extremal bifurcation of periodic

7
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Starting Point Examples

Bifurcations and Flows When h > 0

III

III

IV

 

 

F i g u r e 3. B ifurcat ion plane and flows for the 3 : − 1 resonance when h > 0

orbits, see [13]. O n the red lines, the leading term of the cubic vanishes, so only two zeros
are possible. T he green line is a bifurcat ion of the peak.

C ase h < 0: T he surface is smooth, so all the relat ive equilibria are in the plateau and
correspond to 2π-periodic orbits. In region I the cubic polynomial has 3 di  erent posit ive
roots, so we have 3 relat ive equilibria on the surface: two centers and one saddle. O n the
blue line one of the centers and the saddle collide giving rise to an ex tremal crit ical point
that disappears once in region I I, where only the other center survives. In region I V , only
one center and the saddle are present . O n the blue line, this center and this saddle collide
in another ex tremal crit ical point thus there are no equilibra in region I I I.

C ase h > 0: Here the peak a1 = h / 3 is always an equilibrium. We are interested in roots
of the cubic which are bigger than h / 3. In region I the cubic has 2 valid roots that are
di  erent from h / 3. So, there is 3 relat ive equilibria in total. T he peak is a center, there is
one saddle close to the peak and another center is relat ively far from the other two points.
O n the green line the saddle collides with the peak and the situat ion of region I is recovered
in region I I. O n the blue line the saddle and the center (that is not the peak) collide and
then they disappear once in region I I I, where only the peak stays as a center up to the red
line. A fter crossing the red line, in region I V , a saddle appears and the peak cont inues to be
a center.

8
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Starting Point Examples

Non-semisimple 1 : −1 Resonance

Consider the Hamiltonian H = H2 + H3 + . . . where

H2 = x2y1 − x1y2 +
δ

2
(x2

1 + x2
2)

where δ = ±1.

The linear system of equations is ż = Az, where

A =


0 1 0 0
−1 0 0 0
−δ 0 0 1
0 −δ −1 0

 , z =


x1
x2
y1
y2

 .
A has repeated eigenvalues ±i, but not all solutions are 2π periodic, since
there are secular terms like t sin t, t cos t.
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Starting Point Examples

Normal Form and Invariants

The four invariants usually associated with this Hamiltonian are just

b1 = x2y1− x1y2, b2 =
1
2

(x2
1 + x2

2), b3 =
1
2

(y2
1 + y2

2), b4 = x1y1 + x2y2,

with the constraint
b2

1 + b2
4 = 4 b2b3.

The non-zero Poisson brackets are

{b2, b3} = b4, {b2, b4} = 2b2, {b4, b3} = 2b3.

We start with H2 such that H2 = b1 + δb2 and the rest of terms

H = b1 + δb2 + (αb2
1 + 2βb1b3 + γb2

3) + · · · .

Use an adequate scaling, so the Hamiltonian becomes

H = b1 + ε(δb2 + γb2
3) + O(ε2).
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Starting Point Examples

Equations of Motion

1 Thus the equation of the orbit space is

h2 + b2
4 = 4 b2 b3.

2 The reduced averaged Hamiltonian is

H4 = δb2 + γb2
3 = h̄.

3 The equations of motion are

ḃ2 = {b2,H4} = 2γb3b4, ḃ3 = {b3,H4} = 0, ḃ4 = {b4,H4} = −2δb2+4γb2
3.

In the case of 1 : −1 resonance there are two families of nearly 2π elliptic
periodic solutions emanating from the origin when δγ > 0. One family exists
forH > 0 and one forH < 0. There are no nearby 2π periodic solutions
when δγ < 0.
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Starting Point Examples

Flows

Figure: Flows in the 1 : −1 resonance. On the left: δγ > 0. On the right: δγ < 0.
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N-DOF Hamiltonians Reduction

Resonant Hamiltonians

We deal with Hamiltonians

H = H2 + H3 + . . .

such that the Hamiltonian matrix A of H2 is semi-simple with pure imaginary
eigenvalues:

±k1 ωi, ±k2 ωi, . . . , ±kn ωi

where ω is positive real, ki ∈ Z, with gcd(k1, k2, . . . , kn) = 1.

By a change of the time scale we may take ω = 1. In this case the
Hamiltonian can be put into the form

H2(x, y) =
1
2

[k1 (x2
1 + y2

1) + k2 (x2
2 + y2

2) + · · ·+ kn (x2
n + y2

n)],

where z = (x, y) ∈ Rn × Rn.
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N-DOF Hamiltonians Reduction

Integrable Part

H2 is a super-integrable system since there are 2n− 1 independent integrals,
namely

I1, I2, . . . , In, k1 θn − kn θ1, k1 θn−1 − kn−1 θ1, . . . , k1 θ2 − k2 θ1.

In rectangular coordinates:

a1 = I1 = x2
1 + y2

1, a2 = I2 = x2
2 + y2

2, . . . , an = In = x2
n + y2

n,

an+1 = a|k1|/2
n a|kn|/2

1 cos(k1 θn − kn θ1) = Re [(xn + sgn(k1) yni)|k1|(x1 − sgn(kn) y1i)|kn|],

an+2 = a|k1|/2
n a|kn|/2

1 sin(k1 θn − kn θ1) = Im [(xn + sgn(k1) yni)|k1|(x1 − sgn(kn) y1i)|kn|],
...

a3n−3 = a|k1|/2
2 a|k2|/2

1 cos(k1 θ2 − k2 θ1) = Re [(x2 + sgn(k1) y2i)|k1|(x1 − sgn(k2) y1i)|k2|],

a3n−2 = a|k1|/2
2 a|k2|/2

1 sin(k1 θ2 − k2 θ1) = Im [(x2 + sgn(k1) y2i)|k1|(x1 − sgn(k2) y1i)|k2|].
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N-DOF Hamiltonians Reduction

Some Relationships

Clearly a1 ≥ 0, a2 ≥ 0, . . . , an ≥ 0 and the identity cos2 φ+ sin2 φ = 1
yields

a2
n+1 + a2

n+2 = a|k1|
n a|kn|

1 ,
...

a2
3n−3 + a2

3n−2 = a|k1|
2 a|k2|

1 .

But more invariants are needed in order to express the perturbation H3 + . . .
in terms of them in terms of polynomials.

Approach
One needs to resort to computer algebra techniques and obtain the invariants,
the relationships among them and to write down the Hamiltonian and the
corresponding vector field in terms of the invariants
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N-DOF Hamiltonians Reduction

Automatic Determination of Invariants #1

Derksen and Kemper’s Algorithm for Invariant of Tori (2002):

It is more efficient than those that use Gröbner bases (Sturmfels and
others).

It performs better than the methods of Fekken.

The computation relies on divisibility test of two monomials, it is an
integer programming problem.
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N-DOF Hamiltonians Reduction

Automatic Determination of Invariants #2

1 Let T = (K∗)r be a torus acting diagonally on an n-dimensional vector
space V

2 Identify K[V] ≡ K[x1, . . . , xn]

3 ω = (ω(1), . . . , ω(r)) ∈ Zr is a weight, we write tω = tω
(1)

1 · tω(r)

r

4 For i = 1, . . . , n let ωi the weight with which T acts on xi: t · xi = tωixi

5 If m = xa1
1 · · · xan

n then T acts on m with wieght a1ω1 + · · · anωn

Main idea: Choose a suitable finite set C of weights and produce sets Sω with
ω ∈ C of monomials of weight ω.

These sets grow during the course of the algorithm, until upon termination we
get S0 that generates K[V]G.

The algorithm performs well for systems of 4, 5 or 6 degrees of freedom.
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N-DOF Hamiltonians Reduction

Orbit Space: Szygyies

For a given resonance k1 : k2 : . . . : kn, introducing complex variables,
say ui, vi (instead of xi, yi), we get the set of invariants: {a1, a2, . . . , as}
using the previous algorithm (s > n). The n first invariants are the ones
ak = x2

k + y2
k .

We find a Gröbner basis in terms of the ak and uk, vk, eliminating the
complex variables, to determine the relationships among the ak. We also
take into account the relationship a1 + . . .+ an = h.

The number of fundamental szygyies is s− 2n + 2, so that the orbit
space has dimension 2(n− 1) and a reduced Hamiltonian of n− 1
degrees of freedom (after applying normal forms and truncating
higher-order terms) lives in that space.
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N-DOF Hamiltonians Reduction

Vector Fields and Dynamics

In order to express the normal form (written in the complex coordinates
uk, vk) in terms of the ai one performs the division algorithm for
multivariate polynomials (using the Gröbner basis) and the remainder of
the division yields the desired expression (a polynomial in terms of ai).
We express it by H̄.

The Poisson structure of the ak, k = 1, . . . s is obtained using the division
algorithm with respect to the Gröbner basis. One obtains {aj, ak} as a
polynomial in al.

The associated vector field is computed through ȧk = {ak, H̄}.

Once the equations of motion are computed one can obtain relative equilibria,
bifurcations and so on.

For n = 3 several examples have been carried out: 1 : 1 : 1, 1 : 1 : −1,
1 : 3 : 5, etc.
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N-DOF Hamiltonians Theory

Rigorous Results #1

Equilibria on the orbit space with non-degenerate Morse function
corresponds to (families) of periodic solutions.

Circulation about these equilibria (e.g., the elliptic points) correspond to
families of invariant n-tori of the full system.

Bifurcations of relative equilibria (centre-saddle, Hamiltonian pitchfork,
and others) correspond to bifurcations of periodic solutions of the full
system.

But, do these families of periodic solutions and KAM tori really exist? Do
these bifurcations of periodic solutions take place in the full system?

The answer is YES if some non-degenerate conditions are fulfilled.
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N-DOF Hamiltonians Theory

Rigorous Results #2

On the plateau (regular points):
A critical point of H̄ at d ∈ L (i.e. ∂H̄/∂y(d) = 0) is nondegenerate if the
Hessian at the critical point, ∂2H̄/∂y2(d), is nonsingular. The linearization
about the critical point is

v̇ = Ā v = J
∂2H̄
∂y2 (d) v.

Let the eigenvalues of Ā be ν1, . . . , ν2n−2.

Theorem

If H̄ has a nondegenerate critical point at d, then there are smooth functions
d̃(ε) = d̃ + O(ε) and T(ε) = 2π + O(ε) for ε small, and the solution of H
through d̃(ε) is T(ε)-periodic. The multipliers are
1, 1, 1 + ε ν1 + O(ε2), . . . , 1 + ε ν2n−2 + O(ε2).
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N-DOF Hamiltonians Theory

Rigorous Results #3

At peaks (singular points):

Theorem

Let d be a peak of the reduced space with frequency ks and z ∈ Π−1(d). If
kj/ks is not an integer for j 6= s then the solution through z of the full system
for ε = 0 is periodic with period 2π/ks and characteristic multipliers

e±(k1/ks) 2πi, . . . , e±(ks/ks) 2πi, . . . , e±(kn/ks) 2πi,

e±(ks/ks) 2πi = ±1 as one expects from a periodic solution of a Hamiltonian
system, but all the others are not equal to +1.
For ε > 0 and small, the full system has an elliptic periodic solution near z of
period 2π/ks + O(ε) and characteristic multipliers

e±(k1/ks) 2πi+O(ε), . . . , e+(ks/ks) 2πi = 1, e−(ks/ks) 2πi = 1, . . . , e±(kn/ks) 2πi+O(ε).
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Conclusions

Some Remarks

For n ≥ 3 there are other types of singular points, not just peaks. We
have called them ridges and the theory is not fully understood yet.

The approach is analytical and combines tools of dynamical systems
theory with computer algebra.

One can use the relative equilibria (possibly computed with higher-order
normal forms) and reverse the normal-form transformation to obtain
initial conditions for getting numerically the periodic solutions.

Of course there are many other techniques (numerical and
semianalytical) to get periodic and quasi-periodic solutions of resonant
Hamiltonians, but this approach renders particularly useful when there
are many parameters, bifurcations, and so on. The accurate computations
of the periodic solutions and tori has to be achieved using these
techniques, or within our approach, obtaining initial conditions that must
be refined numerically.

Meyer, Palacián & Yanguas (UC & UPNa) Periodic Solutions of Hamiltonian Systems November 13 th, 2014 44 / 44


	Contents
	Presentation
	Goal and Methodology
	Prototype: The Restricted Three-Body Problem
	Two-Degrees-Of-Freedom Systems
	Reduction to the Orbit Space
	Three Applications

	N-Degrees-Of-Freedom Systems
	Reduction to the Orbit Space
	Theoretical Background

	Conclusions


