Rafael Ramírez-Ros (joint work with Pau Martín & Anna Tamarit-Sariol)

Universitat Politècnica de Catalunya

DDays 2014, Badajoz, November 13

- 2 A conjecture
- 3 First experiments: model curves and results
- 4 A theorem
- 5 More experiments
- 6 Details on the numerical computations

Outline

1 Statement of the problem

- 2 A conjecture
- 3 First experiments: model curves and results

4 A theorem

- 5 More experiments
- 6 Details on the numerical computations

Convex billiards

- **L**et $\Gamma \subset \mathbf{R}^2$ be an analytic strictly convex closed curve.
- **Let** $\gamma(s)$ be an arc-length parametrization of Γ .
- Strictly convex means that the curvature $\kappa(s)$ is positive.
- We assume, without loss of generality, that the curve Γ has length one, so $s \in \mathbf{T} = \mathbf{R}/\mathbf{Z}$.
- Let θ = angle of incidence/reflection \in (0, π).
- Let $(s, \theta) \in \mathbf{T} \times (0, \pi)$ be so-called Birkhoff coordinates.
- The billiard map is

$$f: \mathbf{T} \times (\mathbf{0}, \pi) \to \mathbf{T} \times (\mathbf{0}, \pi), \qquad f(\mathbf{s}, \theta) = (\mathbf{s}_1, \theta_1).$$

(日) (日) (日) (日) (日) (日) (日)

A singular phenomenom: conjectures, experiments, and theorems
LStatement of the problem

Billiard map

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ● ●

Periodic billiard trajectories

A (p, q)-periodic billiard trajectory forms a closed polygon with q sides that makes p turns inside Γ .

Figure: A (2,5)-periodic (or (3,5)-periodic) billiard trajectory.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Length differences

Periodic sets

 $T^{(p,q)} =$ set of (p, q)-periodic billiard trajectories.

Theorem (Birkhoff)

 $\#T^{(p,q)} \ge 2$ for any relatively prime integers $1 \le q \le p$.

Lenght differences

$$\Delta^{(p,q)} = \sup \left\{ \operatorname{Length}(T^{(p,q)}) \right\} - \inf \left\{ \operatorname{Length}(T^{(p,q)}) \right\}.$$

Ellipses and circles

Definition

Caustics are curves with the property that a billiard trajectory, once tangent to one, stays tangent after every reflection.

Theorem (Poncelet)

Any billiard trajectory inside an ellipse has a caustic which is a (maybe singular) confocal conic. If a billiard trajectory inside an ellipse is (p, q)-periodic, all the trajectories sharing its caustic are (p, q)-periodic and have the same length.

Corollary

If Γ is a circle, then $\Delta^{(p,q)} = 0$ for all $0 < p/q \le 1/2$. If Γ is an ellipse, then $\Delta^{(p,q)} = 0$ for all 0 < p/q < 1/2.

A (1, 4)-periodic trajectory and its caustic

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < < つ < < </p>

Action = Length

■ If $r = -\cos\theta$ and $r_1 = -\cos\theta_1$, then the billiard map $f : \mathbf{T} \times (-1, 1) \rightarrow \mathbf{T} \times (-1, 1)$, $f(s, r) = (s_1, r_1)$, is an area-preserving twist map whose generating function is the distance between consecutive impact points. That is,

$$f(\mathbf{s}, \mathbf{r}) = (\mathbf{s}_1, \mathbf{r}_1) \Leftrightarrow \begin{cases} \mathbf{r} = -\partial_1 h(\mathbf{s}, \mathbf{s}_1) \\ \mathbf{r}_1 = \partial_2 h(\mathbf{s}, \mathbf{s}_1) \end{cases}$$

where $h(s, s_1) = |\gamma(s) - \gamma(s_1)|$.

Hence, the action of a (p, q)-periodic billiard orbit is equal to the length of its associated closed polygonal trajectory.

Dynamical interpretation of $\Delta^{(p,q)}$

MacKay-Meiss-Percival Action Principle (1984)

The action (length) difference $\Delta^{(p,q)}$ is equal to the flux along the (p,q)-resonance of the twist map $f(s,r) = (s_1, r_1)$.

Known result in the smooth case

Let L_q be the length of any (1, q)-periodic billiard trajectory.

Marvizi & Melrose (1982)

If the curve Γ is smooth and strictly convex, then

$$L_q symp \sum_{j \ge 0} rac{\mathcal{C}_j}{q^{2j}}, \qquad ext{as } q o +\infty,$$

for some asymptotic coefficients $c_i = c_i(\Gamma) \in \mathbf{R}$. For instance,

•
$$c_0 = \text{Length}(\Gamma) = \int_{\Gamma} ds > 0$$
, and

• $c_1 = -\frac{1}{24} \left(\int_{\Gamma} \kappa^{2/3} ds \right)^3 < 0$, where κ is the curvature of Γ .

A singular phenomenom: conjectures, experiments, and theorems LA conjecture

1 Statement of the problem

2 A conjecture

3 First experiments: model curves and results

4 A theorem

- 5 More experiments
- 6 Details on the numerical computations

A conjecture

The length difference $\Delta^{(1,q)}$ tends to zero as $q \to +\infty$ faster than any power. That is, $\Delta^{(1,q)}$ is beyond all orders in q.

General principle in conservative systems

If a dynamical quantity is beyond all orders in the smooth class, then it may be exponentially small in the analytic class.

Conjecture

If Γ is analytic and strictly convex, then there exists a constant $N = N(\Gamma) > 0$ and an exponent $r = r(\Gamma) > 0$ such that

$$\Delta^{(1,q)} \leq N \mathrm{e}^{-rq}, \qquad \text{as } q \to +\infty.$$

First experiments: model curves and results

Outline

2 A conjecture

3 First experiments: model curves and results

4 A theorem

- 5 More experiments
- 6 Details on the numerical computations

First experiments: model curves and results

Model curves

Model curves

We consider the "perturbed" ellipses and circles

$$\Gamma = \Gamma_{b,\epsilon,n} = \left\{ (x,y) \in \mathbf{R}^2 : x^2 + y^2/b^2 + \epsilon y^n \le 1 \right\}$$

for some semiaxis length $0 < b \le 1$, some exponent $n \in \mathbf{N}$, and some perturbation strength $\epsilon \in \mathbf{R}$.

We shall take exponents $n \ge 3$. Otherwise $\Gamma_{b,\epsilon,n}$ is an ellipse and $\Delta^{(1,q)} = 0$ for all $q \ge 3$.

- If *n* is even, $\Gamma_{b,\epsilon,n}$ is symmetric with regard to both axis.
- If *n* is odd, $\Gamma_{b,\epsilon,n}$ is symmetric with regard to the y-axis.

On the perturbation strength ϵ

We can take a relatively big "perturbation", provided $\Gamma_{b,\epsilon,n}$ remains strictly convex.

- If *n* is even, $\Gamma_{b,\epsilon,n}$ is strictly convex for all $\epsilon > 0$.
- If *n* is odd, $\Gamma_{b,\epsilon,n}$ is strictly convex for $|\epsilon| < \epsilon_n$, where

$$\epsilon_n = \epsilon_n(b) = 2(n-2)^{n/2-1}n^{-n/2}b^{-n}$$

is the smallest positive value for which equation

$$y^2/b^2 + \epsilon y^n = 1$$

has a double root. For instance, $\epsilon_3(1) \simeq 0.384$, $\epsilon_5(1) \simeq 0.186$, and $\epsilon_7(1) \simeq 0.123$.

Axisymmetric periodic trajectories

- Once fixed an exponent n ≥ 3 and a period q ≥ 3, there are exactly two kinds of axisymmetric (1, q)-periodic billiard trajectories inside Γ_{b,∈,n}.
- To compute them, we must deal with five scenarios:
 - 1 *n* even and q = 2k + 1 odd;
 - 2 *n* even and q = 4k multiple of four;
 - 3 *n* even and q = 4k + 2 even but not multiple of four;
 - 4 *n* odd and q = 2k + 1 odd; and
 - 5 *n* odd and q = 2k even.
- All the axisymmetric (1, q)-periodic billiard trajectories of the same kind have the same length.

Regular study versus singular study

- Let $D_q = D_q(\epsilon)$ be the signed difference between the lengths of the axisymmetric (1, q)-periodic trajectories inside $\Gamma_{b,\epsilon,n}$.
- We will prove later on that *q* is a singular parameter.
- On the contrary, the perturbation strength ϵ is a regular parameter. That is, $D_q(\epsilon)$ is analytic at $\epsilon = 0$. Besides, $D_q(0) = 0$ for all $q \ge 3$.
- Thus, we can carry out two different kind of studies:
 - Singular: To study $D_q(\epsilon)$ for $q \to +\infty$ and fixed $\epsilon \in \mathbf{R}$.
 - **Regular:** To study $D_q(\epsilon)$ for $\epsilon \to 0$ and fixed $q \ge 3$.

Result 1: Behavior of the asymptotic coefficients c_i

We consider the normalized coefficients $\hat{c}_j = c_j/(2j)!$, where $c_j = c_j(\Gamma_{b,\epsilon,n})$ are the asymptotic coefficients introduced in the Marvizi-Melrose theorem.

- If $0 < b \le 1$, $3 \le n \le 8$ and $\Gamma_{b,\epsilon,n}$ is strictly convex, then:
 - The asymptotic series ∑_{j≥0} c_jq^{-2j} is always divergent; and
 Its Borel transform ∑_{j≥0} ĉ_jz^{2j} has a positive radius of convergence ρ = ρ(Γ_{b,ε,n}) > 0. Indeed,

$$\left|\hat{c}_{j}/\hat{c}_{j+1}
ight|^{1/2}=
ho+\mathrm{O}(1/j)\qquad ext{as }j
ightarrow+\infty.$$

If b = 1, then $\lim_{\epsilon \to 0} \rho = +\infty$.

If 0 < b < 1, then $\exists \lim_{\epsilon \to 0} \rho \in (0, +\infty)$.

Result 2: Singular behaviour of D_q

- Let D_q be the signed difference between the lengths of the axisymmetric (1, q)-periodic trajectories inside Γ_{b,ε,n}.
- In general, $\Delta^{(1,q)} \ge |D_q|$. However, in most cases there are no more (1, q)-periodic trajectories, so $\Delta^{(1,q)} = |D_q|$.

• We consider the normalized quantities $\hat{D}_q = q^m e^{rq} D_q$.

q	r	т	Behavior of \hat{D}_q as $q o +\infty$
even	ho/2	3	Tends to a non-zero constant
odd	ρ	2	Tends to another non-zero constant

The case of perturbed circles

If b = 1, then:

n	q	r	т	Behavior of \hat{D}_q as $q o +\infty$
4	even	$\rho/2$	3	Tends to a non-zero constant
4	odd	ρ	2	Tends to another non-zero constant
6	even	ho/2	3	Oscillates periodically, mean $=$ 0
6	odd	ρ	2	Oscillates periodically, mean $ eq$ 0
even \ge 8	even	ho/2	3	Oscillates quasiperiodic., mean $= 0$
even \ge 8	odd	ρ	2	Oscillates quasiperiodic., mean \neq 0
odd	any	ho/2	3	Oscillates quasiperiodic., mean $= 0$

First experiments: model curves and results

Questions (first round)

- Can we prove that the length differences $\Delta^{(1,q)}$ are exponentially small in q as $q \to +\infty$?
- **Can we compute (or guess) "analytically"** ρ and r?

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ - のへで

Why are ellipses and circles so different?

- 2 A conjecture
- 3 First experiments: model curves and results

4 A theorem

- 5 More experiments
- 6 Details on the numerical computations

Dynamics close to the border

- The billiard map can be analytically extended to a complex neighborhood of the boundary C₋ = T × {0} of the phase space T × (0, π) in the Birkhoff coordinates (s, θ).
- If $\rho(s)$ is the radius of curvature of Γ , then the billiard map $(s, \theta) \mapsto (s_1, \theta_1)$ has the Taylor expansion

$$\mathbf{s}_1 = \mathbf{s} + \sum_{j \ge 1} \alpha_j(\mathbf{s}) \theta^j, \qquad \theta_1 = \theta + \sum_{j \ge 2} \beta_j(\mathbf{s}) \theta^j,$$

where $\alpha_1 = 2\varrho$, $\alpha_2 = 4\varrho \varrho'/3$, $\alpha_3 = 2\varrho^2 \varrho''/3 + 4\varrho (\varrho')^2/9$, $\beta_2 = -2\varrho'/3$, $\beta_3 = 4(\varrho')^2/9 - 2\varrho \varrho''/3$, etcetera.

Lazutkin's coordinates

The billiard map has the form

$$x_1 = x + y + O(y^3), \qquad y_1 = y + O(y^4),$$

in the Lazutkin's coordinates (x, y) defined by

$$x = C \int_0^s \varrho^{-2/3}(t) dt, \qquad y = 4C \varrho^{1/3}(s) \sin(\theta/2),$$

where the constant C > 0 is determined in such a way that x is an angular variable defined modulus one: $x \in \mathbf{T} = \mathbf{R}/\mathbf{Z}$. That is,

$$C^{-1} = \int_{\Gamma} \varrho^{-2/3} \mathrm{d}s = -2\sqrt[3]{3c_1(\Gamma)}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem for the analytic case

Since the billiard map $f(x, y) = (x_1, y_1)$ is real analytic at y = 0, it can be extended to a complex domain of the form

$$D_{a_\star,b_\star} := \left\{ (x,y) \in \mathbf{C} / \mathbf{Z} imes \mathbf{C} : |\Im x| < a_\star, |y| < b_\star
ight\}.$$

Martín, Tamarit-Sariol & RRR (2014)

If Γ is analytic and strictly convex and $\alpha \in (0, 2\pi a_{\star})$, then there exist $N, q_{\star} > 0$ such that

$$\Delta^{(1,q)} \leq N \mathrm{e}^{-\alpha q}, \qquad \forall q \geq q_{\star}.$$

The constant *N* may explode when $\alpha \rightarrow 2\pi a_{\star}$, so, in general, we can not take $\alpha = 2\pi a_{\star}$.

(日) (日) (日) (日) (日) (日) (日)

Questions (second round)

- Can we compute a_{*} = a_{*}(Γ) in some case? Guess: The distance δ of the set of singularities and zeros of ρ(x) to the real axis may be related to the quantity a_{*}.
- Is there some relation between the quantity a_⋆, the distance δ, the radius of convergence ρ of the Borel transforms, and the exponent *r* of the exponentially small formulas computed in the numerical experiments?
 Guess: Sometimes ρ = 4πa_⋆ = 4πδ and r ∈ {ρ/2, ρ}.
- Can we find (and prove) an asymptotic exponentially small formula in q for $\Delta^{(1,q)}$ in some case?

Let $\delta = \delta_{\epsilon} = \delta(\Gamma_{b,\epsilon,n}) > 0$ be the distance of the set of singularities and zeros of the function $\varrho(x)$ to the real axis.

Circles

If b = 1 and $n \ge 3$, then there exists a constant $\eta_n \in \mathbf{R}$ such that

$$4\pi\delta_{\epsilon} = 2|\log\epsilon|/n + \eta_n + o(1),$$
 as $\epsilon \to 0$.

Ellipses

Let $K(m) = \int_0^1 (1 - mt^2)^{-1/2} (1 - t^2)^{-1/2} dt$ be the complete elliptic integral of the first kind. If 0 < b < 1 and $n \ge 3$, then

$$4\pi\delta_\epsilon=\pirac{{\cal K}(b^2)}{{\cal K}(1-b^2)}+{
m O}(\epsilon),\qquad {
m as}\;\epsilon o 0.$$

- 2 A conjecture
- 3 First experiments: model curves and results
- 4 A theorem
- 5 More experiments
- 6 Details on the numerical computations

On small perturbations of circles

Once fixed the exponent n ≥ 3 and the period q ≥ 3, there exists some order k = k(n, q) ∈ N and some coefficient d = d(n, q) ≠ 0 such that

$$D_q(\epsilon) = d\epsilon^k + O(\epsilon^{k+1}).$$

If we set $\rho = 2|\log \epsilon|/n + O(1)$ and fix $q \ge 3$, then

$$\mathrm{e}^{-
ho q/2} = \mathrm{O}(\epsilon^{q/n}), \quad \mathrm{e}^{-
ho q} = \mathrm{O}(\epsilon^{2q/n}), \qquad \text{as } \epsilon o 0.$$

We have numerically checked that:

■ $|k - q/n| \le 1$ when *n* is odd or when both *n* and *q* are even;

■
$$|k - 2q/n| \le 1$$
 when *n* is even and *q* is odd.

Details on the numerical computations

Outline

- 2 A conjecture
- 3 First experiments: model curves and results
- 4 A theorem
- 5 More experiments
- 6 Details on the numerical computations

Details on the numerical computations

Details on the numerical computations (I)

If b = 1, ϵ = 1, n = 4, and q = 201, then the lengths of the two kinds of axisymmetric (1, q)-periodic trajectories are

$$\begin{split} L_q &\approx 5.768626202436993316419760718937759486569915806531338264257503, \\ l_q &\approx 5.768626202436993316419760718937759486569915806531338264255034. \end{split}$$

■ Therefore, 57 decimal digits are lost when we compute

 $D_q = L_q - I_q \approx 2.4690108977323491947687904121408 \times 10^{-57}$.

The above cancellation is beyond single, double, and quadruple precisions. The use of a multiple precision arithmetic (MPA) is mandatory. We have implemented the MPA provided by the PARI/GP system. Details on the numerical computations

Details on the numerical computations (II)

- All nonlinear equations are solved with Newton's method in variable precision. We double the precision after each Newton's iteration.
- We have computed the first 500 coefficients of the asymptotic series ∑_{i>0} c_iq^{-2j} in several cases.
- We have also computed the differences D_q for periods $q \le 24000$ or $q \le 12000$, depending on the scenario.
- If b = 1, $\epsilon = 1$, n = 4, q = 12001, and the MPA uses 4000 digits, the computation of $D_q \approx 4.2112173963 \times 10^{-3148}$ takes 131 seconds in my office desktop.