A singular phenomenom: conjectures, experiments, and theorems

Rafael Ramírez-Ros
(joint work with Pau Martín \& Anna Tamarit-Sariol)
Universitat Politècnica de Catalunya

DDays 2014, Badajoz, November 13

Outline

1 Statement of the problem
2 A conjecture
3 First experiments: model curves and results
4 A theorem
5 More experiments
6 Details on the numerical computations

Outline

1 Statement of the problem

2 A conjecture
3 First experiments：model curves and results
4 A theorem
5 More experiments
6 Details on the numerical computations

Convex billiards

■ Let $\Gamma \subset \mathbf{R}^{2}$ be an analytic strictly convex closed curve.
■ Let $\gamma(s)$ be an arc-length parametrization of Γ.

- Strictly convex means that the curvature $\kappa(s)$ is positive.

■ We assume, without loss of generality, that the curve Γ has length one, so $s \in \mathbf{T}=\mathbf{R} / \mathbf{Z}$.
■ Let $\theta=$ angle of incidence/reflection $\in(0, \pi)$.
\square Let $(s, \theta) \in \mathbf{T} \times(0, \pi)$ be so-called Birkhoff coordinates.

- The billiard map is

$$
f: \mathbf{T} \times(0, \pi) \rightarrow \mathbf{T} \times(0, \pi), \quad f(s, \theta)=\left(s_{1}, \theta_{1}\right)
$$

Billiard map

Periodic billiard trajectories

A (p, q)-periodic billiard trajectory forms a closed polygon with q sides that makes p turns inside Γ.

Figure: A $(2,5)$-periodic (or (3,5)-periodic) billiard trajectory.

Length differences

Periodic sets

$T^{(p, q)}=$ set of (p, q)-periodic billiard trajectories.

Theorem (Birkhoff)

$\# T^{(p, q)} \geq 2$ for any relatively prime integers $1 \leq q \leq p$.
Lenght differences
$\Delta^{(p, q)}=\sup \left\{\operatorname{Length}\left(T^{(p, q)}\right)\right\}-\inf \left\{\operatorname{Length}\left(T^{(p, q)}\right)\right\}$.

Ellipses and circles

Definition

Caustics are curves with the property that a billiard trajectory, once tangent to one, stays tangent after every reflection.

Theorem (Poncelet)

Any billiard trajectory inside an ellipse has a caustic which is a (maybe singular) confocal conic. If a billiard trajectory inside an ellipse is (p, q)-periodic, all the trajectories sharing its caustic are (p, q)-periodic and have the same length.

Corollary

If Γ is a circle, then $\Delta^{(p, q)}=0$ for all $0<p / q \leq 1 / 2$. If Γ is an ellipse, then $\Delta^{(p, q)}=0$ for all $0<p / q<1 / 2$.

A (1, 4)-periodic trajectory and its caustic

Action $=$ Length

■ If $r=-\cos \theta$ and $r_{1}=-\cos \theta_{1}$, then the billiard map
$f: \mathbf{T} \times(-1,1) \rightarrow \mathbf{T} \times(-1,1), f(s, r)=\left(s_{1}, r_{1}\right)$, is an area-preserving twist map whose generating function is the distance between consecutive impact points. That is,

$$
f(s, r)=\left(s_{1}, r_{1}\right) \Leftrightarrow\left\{\begin{array}{l}
r=-\partial_{1} h\left(s, s_{1}\right) \\
r_{1}=\partial_{2} h\left(s, s_{1}\right)
\end{array}\right.
$$

where $h\left(s, s_{1}\right)=\left|\gamma(s)-\gamma\left(s_{1}\right)\right|$.
■ Hence, the action of a (p, q)-periodic billiard orbit is equal to the length of its associated closed polygonal trajectory.

Dynamical interpretation of $\Delta^{(p, q)}$

MacKay-Meiss-Percival Action Principle (1984)

The action (length) difference $\Delta^{(p, q)}$ is equal to the flux along the (p, q)-resonance of the twist map $f(s, r)=\left(s_{1}, r_{1}\right)$.

Known result in the smooth case

Let L_{q} be the length of any $(1, q)$-periodic billiard trajectory.
Marvizi \& Melrose (1982)
If the curve Γ is smooth and strictly convex, then

$$
L_{q} \asymp \sum_{j \geq 0} \frac{c_{j}}{q^{2 j}}, \quad \text { as } q \rightarrow+\infty
$$

for some asymptotic coefficients $c_{j}=c_{j}(\Gamma) \in \mathbf{R}$. For instance,

- $c_{0}=\operatorname{Length}(\Gamma)=\int_{\Gamma} \mathrm{d} s>0$, and
- $c_{1}=-\frac{1}{24}\left(\int_{\Gamma} \kappa^{2 / 3} \mathrm{~d} s\right)^{3}<0$, where κ is the curvature of Γ.

A singular phenomenom: conjectures, experiments, and theorems
$L_{\text {A conjecture }}$

Outline

1 Statement of the problem

2 A conjecture

3 First experiments: model curves and results
4 A theorem
5 More experiments
6 Details on the numerical computations

A conjecture

The length difference $\Delta^{(1, q)}$ tends to zero as $q \rightarrow+\infty$ faster than any power. That is, $\Delta^{(1, q)}$ is beyond all orders in q.

General principle in conservative systems

If a dynamical quantity is beyond all orders in the smooth class, then it may be exponentially small in the analytic class.

Conjecture

If Γ is analytic and strictly convex, then there exists a constant $N=N(\Gamma)>0$ and an exponent $r=r(\Gamma)>0$ such that

$$
\Delta^{(1, q)} \leq \mathrm{Ne}^{-r q}, \quad \text { as } q \rightarrow+\infty
$$

Outline

1 Statement of the problem

2 A conjecture
3 First experiments: model curves and results
4 A theorem

5 More experiments
6 Details on the numerical computations

Model curves

Model curves
We consider the "perturbed" ellipses and circles

$$
\Gamma=\Gamma_{b, \epsilon, n}=\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{2} / b^{2}+\epsilon y^{n} \leq 1\right\}
$$

for some semiaxis length $0<b \leq 1$, some exponent $n \in \mathbf{N}$, and some perturbation strength $\epsilon \in \mathbf{R}$.

We shall take exponents $n \geq 3$. Otherwise $\Gamma_{b, \epsilon, n}$ is an ellipse and $\Delta^{(1, q)}=0$ for all $q \geq 3$.

■ If n is even, $\Gamma_{b, \epsilon, n}$ is symmetric with regard to both axis.
■ If n is odd, $\Gamma_{b, \epsilon, n}$ is symmetric with regard to the y-axis.

On the perturbation strength ϵ

We can take a relatively big "perturbation", provided $\Gamma_{b, \epsilon, n}$ remains strictly convex.

■ If n is even, $\Gamma_{b, \epsilon, n}$ is strictly convex for all $\epsilon>0$.
■ If n is odd, $\Gamma_{b, \epsilon, n}$ is strictly convex for $|\epsilon|<\epsilon_{n}$, where

$$
\epsilon_{n}=\epsilon_{n}(b)=2(n-2)^{n / 2-1} n^{-n / 2} b^{-n}
$$

is the smallest positive value for which equation

$$
y^{2} / b^{2}+\epsilon y^{n}=1
$$

has a double root. For instance, $\epsilon_{3}(1) \simeq 0.384$, $\epsilon_{5}(1) \simeq 0.186$, and $\epsilon_{7}(1) \simeq 0.123$.

Axisymmetric periodic trajectories

■ Once fixed an exponent $n \geq 3$ and a period $q \geq 3$, there are exactly two kinds of axisymmetric $(1, q)$-periodic billiard trajectories inside $\Gamma_{b, \epsilon, n}$.
■ To compute them, we must deal with five scenarios:
1 n even and $q=2 k+1$ odd;
$2 n$ even and $q=4 k$ multiple of four;
$3 n$ even and $q=4 k+2$ even but not multiple of four;
$4 n$ odd and $q=2 k+1$ odd; and
$5 n$ odd and $q=2 k$ even.
■ All the axisymmetric $(1, q)$-periodic billiard trajectories of the same kind have the same length.

Regular study versus singular study

■ Let $D_{q}=D_{q}(\epsilon)$ be the signed difference between the lengths of the axisymmetric ($1, q$)-periodic trajectories inside $\Gamma_{b, \epsilon, n}$.

- We will prove later on that q is a singular parameter.

■ On the contrary, the perturbation strength ϵ is a regular parameter. That is, $D_{q}(\epsilon)$ is analytic at $\epsilon=0$. Besides, $D_{q}(0)=0$ for all $q \geq 3$.
■ Thus, we can carry out two different kind of studies:
■ Singular: To study $D_{q}(\epsilon)$ for $q \rightarrow+\infty$ and fixed $\epsilon \in \mathbf{R}$.

- Regular: To study $D_{q}(\epsilon)$ for $\epsilon \rightarrow 0$ and fixed $q \geq 3$.

Result 1: Behavior of the asymptotic coefficients c_{j}

We consider the normalized coefficients $\hat{c}_{j}=c_{j} /(2 j)$!, where $c_{j}=c_{j}\left(\Gamma_{b, \epsilon, n}\right)$ are the asymptotic coefficients introduced in the Marvizi-Melrose theorem.
■ If $0<b \leq 1,3 \leq n \leq 8$ and $\Gamma_{b, \epsilon, n}$ is strictly convex, then:
■ The asymptotic series $\sum_{j \geq 0} c_{j} q^{-2 j}$ is always divergent; and
■ Its Borel transform $\sum_{j \geq 0} \hat{c}_{j} z^{2 j}$ has a positive radius of convergence $\rho=\rho\left(\Gamma_{b, \epsilon, n}\right)>0$. Indeed,

$$
\left|\hat{c}_{j} / \hat{c}_{j+1}\right|^{1 / 2}=\rho+\mathrm{O}(1 / j) \quad \text { as } j \rightarrow+\infty
$$

■ If $b=1$, then $\lim _{\epsilon \rightarrow 0} \rho=+\infty$.
■ If $0<b<1$, then $\exists \lim _{\epsilon \rightarrow 0} \rho \in(0,+\infty)$.

Result 2: Singular behaviour of D_{q}

■ Let D_{q} be the signed difference between the lengths of the axisymmetric $(1, q)$-periodic trajectories inside $\Gamma_{b, \epsilon, n}$.
■ In general, $\Delta^{(1, q)} \geq\left|D_{q}\right|$. However, in most cases there are no more ($1, q$)-periodic trajectories, so $\Delta^{(1, q)}=\left|D_{q}\right|$.
■ We consider the normalized quantities $\hat{D}_{q}=q^{m} \mathrm{e}^{r q} D_{q}$.

- If $0<b<1$, then:

q	r	m	Behavior of \hat{D}_{q} as $q \rightarrow+\infty$
even	$\rho / 2$	3	Tends to a non-zero constant
odd	ρ	2	Tends to another non-zero constant

The case of perturbed circles

If $b=1$, then:

n	q	r	m	Behavior of \hat{D}_{q} as $q \rightarrow+\infty$
4	even	$\rho / 2$	3	Tends to a non-zero constant
4	odd	ρ	2	Tends to another non-zero constant
6	even	$\rho / 2$	3	Oscillates periodically, mean $=0$
6	odd	ρ	2	Oscillates periodically, mean $\neq 0$
even ≥ 8	even	$\rho / 2$	3	Oscillates quasiperiodic., mean $=0$
even ≥ 8	odd	ρ	2	Oscillates quasiperiodic., mean $\neq 0$
odd	any	$\rho / 2$	3	Oscillates quasiperiodic., mean $=0$

Questions (first round)

- Can we prove that the length differences $\Delta^{(1, q)}$ are exponentially small in q as $q \rightarrow+\infty$?
■ Can we compute (or guess) "analytically" ρ and r ?
■ Why are ellipses and circles so different?

A singular phenomenom: conjectures, experiments, and theorems
$L_{\text {A theorem }}$

Outline

1 Statement of the problem
2 A conjecture
3 First experiments: model curves and results
4 A theorem
5 More experiments
6 Details on the numerical computations

Dynamics close to the border

■ The billiard map can be analytically extended to a complex neighborhood of the boundary $C_{-}=\mathbf{T} \times\{0\}$ of the phase space $\mathbf{T} \times(0, \pi)$ in the Birkhoff coordinates (s, θ).
■ If $\varrho(s)$ is the radius of curvature of Γ, then the billiard map $(s, \theta) \mapsto\left(s_{1}, \theta_{1}\right)$ has the Taylor expansion

$$
s_{1}=s+\sum_{j \geq 1} \alpha_{j}(s) \theta^{j}, \quad \theta_{1}=\theta+\sum_{j \geq 2} \beta_{j}(s) \theta^{j}
$$

where $\alpha_{1}=2 \varrho, \alpha_{2}=4 \varrho \varrho^{\prime} / 3, \alpha_{3}=2 \varrho^{2} \varrho^{\prime \prime} / 3+4 \varrho\left(\varrho^{\prime}\right)^{2} / 9$, $\beta_{2}=-2 \varrho^{\prime} / 3, \beta_{3}=4\left(\varrho^{\prime}\right)^{2} / 9-2 \varrho \varrho^{\prime \prime} / 3$, etcetera.

Lazutkin's coordinates

The billiard map has the form

$$
x_{1}=x+y+\mathrm{O}\left(y^{3}\right), \quad y_{1}=y+\mathrm{O}\left(y^{4}\right)
$$

in the Lazutkin's coordinates (x, y) defined by

$$
x=C \int_{0}^{s} \varrho^{-2 / 3}(t) \mathrm{d} t, \quad y=4 C \varrho^{1 / 3}(s) \sin (\theta / 2)
$$

where the constant $C>0$ is determined in such a way that x is an angular variable defined modulus one: $x \in \mathbf{T}=\mathbf{R} / \mathbf{Z}$. That is,

$$
C^{-1}=\int_{\Gamma} \varrho^{-2 / 3} \mathrm{~d} s=-2 \sqrt[3]{3 c_{1}(\Gamma)}
$$

Theorem for the analytic case

Since the billiard map $f(x, y)=\left(x_{1}, y_{1}\right)$ is real analytic at $y=0$, it can be extended to a complex domain of the form

$$
D_{a_{\star}, b_{\star}}:=\left\{(x, y) \in \mathbf{C} / \mathbf{Z} \times \mathbf{C}:|\Im x|<a_{\star},|y|<b_{\star}\right\} .
$$

Martín, Tamarit-Sariol \& RRR (2014)

If Γ is analytic and strictly convex and $\alpha \in\left(0,2 \pi a_{\star}\right)$, then there exist $N, q_{\star}>0$ such that

$$
\Delta^{(1, q)} \leq N \mathrm{e}^{-\alpha q}, \quad \forall q \geq q_{\star} .
$$

The constant N may explode when $\alpha \rightarrow 2 \pi a_{\star}$, so, in general, we can not take $\alpha=2 \pi a_{\star}$.

Questions (second round)

■ Can we compute $a_{\star}=a_{\star}(\Gamma)$ in some case?
Guess: The distance δ of the set of singularities and zeros of $\varrho(x)$ to the real axis may be related to the quantity a_{\star}.
■ Is there some relation between the quantity a_{\star}, the distance δ, the radius of convergence ρ of the Borel transforms, and the exponent r of the exponentially small formulas computed in the numerical experiments?
Guess: Sometimes $\rho=4 \pi a_{\star}=4 \pi \delta$ and $r \in\{\rho / 2, \rho\}$.

- Can we find (and prove) an asymptotic exponentially small formula in q for $\Delta^{(1, q)}$ in some case?

Let $\delta=\delta_{\epsilon}=\delta\left(\Gamma_{b, \epsilon, n}\right)>0$ be the distance of the set of singularities and zeros of the function $\varrho(x)$ to the real axis.

Circles

If $b=1$ and $n \geq 3$, then there exists a constant $\eta_{n} \in \mathbf{R}$ such that

$$
4 \pi \delta_{\epsilon}=2|\log \epsilon| / n+\eta_{n}+\mathrm{o}(1), \quad \text { as } \epsilon \rightarrow 0
$$

Ellipses

Let $K(m)=\int_{0}^{1}\left(1-m t^{2}\right)^{-1 / 2}\left(1-t^{2}\right)^{-1 / 2} \mathrm{~d} t$ be the complete elliptic integral of the first kind. If $0<b<1$ and $n \geq 3$, then

$$
4 \pi \delta_{\epsilon}=\pi \frac{K\left(b^{2}\right)}{K\left(1-b^{2}\right)}+\mathrm{O}(\epsilon), \quad \text { as } \epsilon \rightarrow 0
$$

A singular phenomenom: conjectures, experiments, and theorems
$L_{\text {More experiments }}$

Outline

1 Statement of the problem
2 A conjecture
3 First experiments: model curves and results
4 A theorem

5 More experiments

6 Details on the numerical computations

On small perturbations of circles

- Once fixed the exponent $n \geq 3$ and the period $q \geq 3$, there exists some order $k=k(n, q) \in \mathbf{N}$ and some coefficient $d=d(n, q) \neq 0$ such that

$$
D_{q}(\epsilon)=d \epsilon^{k}+\mathrm{O}\left(\epsilon^{k+1}\right)
$$

■ If we set $\rho=2|\log \epsilon| / n+\mathrm{O}(1)$ and fix $q \geq 3$, then

$$
\mathrm{e}^{-\rho q / 2}=\mathrm{O}\left(\epsilon^{q / n}\right), \quad \mathrm{e}^{-\rho q}=\mathrm{O}\left(\epsilon^{2 q / n}\right), \quad \text { as } \epsilon \rightarrow 0
$$

■ We have numerically checked that:
■ $|k-q / n| \leq 1$ when n is odd or when both n and q are even;

- $|k-2 q / n| \leq 1$ when n is even and q is odd.

Outline

1 Statement of the problem
2 A conjecture
3 First experiments: model curves and results
4 A theorem
5 More experiments
6 Details on the numerical computations

Details on the numerical computations (I)

■ If $b=1, \epsilon=1, n=4$, and $q=201$, then the lengths of the two kinds of axisymmetric $(1, q)$-periodic trajectories are

$$
\begin{aligned}
L_{q} & \approx 5.768626202436993316419760718937759486569915806531338264257503 \\
I_{q} & \approx 5.768626202436993316419760718937759486569915806531338264255034 .
\end{aligned}
$$

■ Therefore, 57 decimal digits are lost when we compute

$$
D_{q}=L_{q}-I_{q} \approx 2.4690108977323491947687904121408 \times 10^{-57} .
$$

■ The above cancellation is beyond single, double, and quadruple precisions. The use of a multiple precision arithmetic (MPA) is mandatory. We have implemented the MPA provided by the PARI/GP system.

Details on the numerical computations (II)

- All nonlinear equations are solved with Newton's method in variable precision. We double the precision after each Newton's iteration.
- We have computed the first 500 coefficients of the asymptotic series $\sum_{j \geq 0} c_{j} q^{-2 j}$ in several cases.
- We have also computed the differences D_{q} for periods $q \leq 24000$ or $q \leq 12000$, depending on the scenario.
- If $b=1, \epsilon=1, n=4, q=12001$, and the MPA uses 4000 digits, the computation of $D_{q} \approx 4.2112173963 \times 10^{-3148}$ takes 131 seconds in my office desktop.

