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Statement of the problem

Convex billiards

Let Γ ⊂ R2 be an analytic strictly convex closed curve.

Let γ(s) be an arc-length parametrization of Γ.

Strictly convex means that the curvature κ(s) is positive.

We assume, without loss of generality, that the curve Γ has
length one, so s ∈ T = R/Z.

Let θ = angle of incidence/reflection ∈ (0, π).

Let (s, θ) ∈ T× (0, π) be so-called Birkhoff coordinates.

The billiard map is

f : T× (0, π)→ T× (0, π), f (s, θ) = (s1, θ1).
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Statement of the problem

Billiard map
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Statement of the problem

Periodic billiard trajectories

A (p,q)-periodic billiard trajectory forms a closed polygon with
q sides that makes p turns inside Γ.

Figure: A (2, 5)-periodic (or (3, 5)-periodic) billiard trajectory.
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Statement of the problem

Length differences

Periodic sets

T (p,q) = set of (p,q)-periodic billiard trajectories.

Theorem (Birkhoff)

#T (p,q) ≥ 2 for any relatively prime integers 1 ≤ q ≤ p.

Lenght differences

∆(p,q) = sup
{

Length(T (p,q))
}

− inf
{

Length(T (p,q))
}

.



A singular phenomenom: conjectures, experiments, and theorems

Statement of the problem

Ellipses and circles

Definition

Caustics are curves with the property that a billiard trajectory,
once tangent to one, stays tangent after every reflection.

Theorem (Poncelet)

Any billiard trajectory inside an ellipse has a caustic which is a
(maybe singular) confocal conic. If a billiard trajectory inside an
ellipse is (p,q)-periodic, all the trajectories sharing its caustic
are (p,q)-periodic and have the same length.

Corollary

If Γ is a circle, then ∆(p,q) = 0 for all 0 < p/q ≤ 1/2. If Γ is an
ellipse, then ∆(p,q) = 0 for all 0 < p/q < 1/2.
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Statement of the problem

A (1, 4)-periodic trajectory and its caustic
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Statement of the problem

Action = Length

If r = − cos θ and r1 = − cos θ1, then the billiard map
f : T× (−1,1)→ T× (−1,1), f (s, r) = (s1, r1), is an
area-preserving twist map whose generating function is the
distance between consecutive impact points. That is,

f (s, r) = (s1, r1)⇔

{

r = −∂1h(s, s1)
r1 = ∂2h(s, s1)

where h(s, s1) = |γ(s)− γ(s1)|.

Hence, the action of a (p,q)-periodic billiard orbit is equal
to the length of its associated closed polygonal trajectory.
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Statement of the problem

Dynamical interpretation of ∆(p,q)

MacKay-Meiss-Percival Action Principle (1984)

The action (length) difference ∆(p,q) is equal to the flux along
the (p,q)-resonance of the twist map f (s, r) = (s1, r1).
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Known result in the smooth case

Let Lq be the length of any (1,q)-periodic billiard trajectory.

Marvizi & Melrose (1982)

If the curve Γ is smooth and strictly convex, then

Lq ≍
∑

j≥0

cj

q2j , as q → +∞,

for some asymptotic coefficients cj = cj(Γ) ∈ R. For instance,

c0 = Length(Γ) =
∫

Γ ds > 0, and

c1 = − 1
24

(∫

Γ κ
2/3ds

)3
< 0, where κ is the curvature of Γ.
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A conjecture

A conjecture

The length difference ∆(1,q) tends to zero as q → +∞ faster
than any power. That is, ∆(1,q) is beyond all orders in q.

General principle in conservative systems

If a dynamical quantity is beyond all orders in the smooth class,
then it may be exponentially small in the analytic class.

Conjecture

If Γ is analytic and strictly convex, then there exists a constant
N = N(Γ) > 0 and an exponent r = r(Γ) > 0 such that

∆(1,q) ≤ Ne−rq, as q → +∞.
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First experiments: model curves and results

Model curves

Model curves

We consider the “perturbed” ellipses and circles

Γ = Γb,ǫ,n =
{

(x , y) ∈ R2 : x2 + y2/b2 + ǫyn ≤ 1
}

for some semiaxis length 0 < b ≤ 1, some exponent n ∈ N, and
some perturbation strength ǫ ∈ R.

We shall take exponents n ≥ 3. Otherwise Γb,ǫ,n is an ellipse
and ∆(1,q) = 0 for all q ≥ 3.

If n is even, Γb,ǫ,n is symmetric with regard to both axis.

If n is odd, Γb,ǫ,n is symmetric with regard to the y-axis.
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First experiments: model curves and results

On the perturbation strength ǫ

We can take a relatively big “perturbation”, provided Γb,ǫ,n

remains strictly convex.

If n is even, Γb,ǫ,n is strictly convex for all ǫ > 0.

If n is odd, Γb,ǫ,n is strictly convex for |ǫ| < ǫn, where

ǫn = ǫn(b) = 2(n − 2)n/2−1n−n/2b−n

is the smallest positive value for which equation

y2/b2 + ǫyn = 1

has a double root. For instance, ǫ3(1) ≃ 0.384,
ǫ5(1) ≃ 0.186, and ǫ7(1) ≃ 0.123.
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First experiments: model curves and results

Axisymmetric periodic trajectories

Once fixed an exponent n ≥ 3 and a period q ≥ 3, there
are exactly two kinds of axisymmetric (1,q)-periodic
billiard trajectories inside Γb,ǫ,n.

To compute them, we must deal with five scenarios:

1 n even and q = 2k + 1 odd;
2 n even and q = 4k multiple of four;
3 n even and q = 4k + 2 even but not multiple of four;
4 n odd and q = 2k + 1 odd; and
5 n odd and q = 2k even.

All the axisymmetric (1,q)-periodic billiard trajectories of
the same kind have the same length.
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First experiments: model curves and results

Regular study versus singular study

Let Dq = Dq(ǫ) be the signed difference between the
lengths of the axisymmetric (1,q)-periodic trajectories
inside Γb,ǫ,n.

We will prove later on that q is a singular parameter.

On the contrary, the perturbation strength ǫ is a regular
parameter. That is, Dq(ǫ) is analytic at ǫ = 0. Besides,
Dq(0) = 0 for all q ≥ 3.
Thus, we can carry out two different kind of studies:

Singular: To study Dq(ǫ) for q → +∞ and fixed ǫ ∈ R.
Regular: To study Dq(ǫ) for ǫ→ 0 and fixed q ≥ 3.
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First experiments: model curves and results

Result 1: Behavior of the asymptotic coefficients cj

We consider the normalized coefficients ĉj = cj/(2j)!, where
cj = cj(Γb,ǫ,n) are the asymptotic coefficients introduced in the
Marvizi-Melrose theorem.

If 0 < b ≤ 1, 3 ≤ n ≤ 8 and Γb,ǫ,n is strictly convex, then:
The asymptotic series

∑

j≥0 cjq−2j is always divergent; and
Its Borel transform

∑

j≥0 ĉjz2j has a positive radius of
convergence ρ = ρ(Γb,ǫ,n) > 0. Indeed,

|ĉj/ĉj+1|
1/2

= ρ+ O(1/j) as j → +∞.

If b = 1, then limǫ→0 ρ = +∞.

If 0 < b < 1, then ∃ limǫ→0 ρ ∈ (0,+∞).
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First experiments: model curves and results

Result 2: Singular behaviour of Dq

Let Dq be the signed difference between the lengths of the
axisymmetric (1,q)-periodic trajectories inside Γb,ǫ,n.

In general, ∆(1,q) ≥ |Dq|. However, in most cases there are
no more (1,q)-periodic trajectories, so ∆(1,q) = |Dq|.

We consider the normalized quantities D̂q = qmerqDq.

If 0 < b < 1, then:

q r m Behavior of D̂q as q → +∞

even ρ/2 3 Tends to a non-zero constant
odd ρ 2 Tends to another non-zero constant
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First experiments: model curves and results

The case of perturbed circles

If b = 1, then:

n q r m Behavior of D̂q as q → +∞
4 even ρ/2 3 Tends to a non-zero constant
4 odd ρ 2 Tends to another non-zero constant
6 even ρ/2 3 Oscillates periodically, mean = 0
6 odd ρ 2 Oscillates periodically, mean 6= 0

even ≥ 8 even ρ/2 3 Oscillates quasiperiodic., mean = 0
even ≥ 8 odd ρ 2 Oscillates quasiperiodic., mean 6= 0

odd any ρ/2 3 Oscillates quasiperiodic., mean = 0
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First experiments: model curves and results

Questions (first round)

Can we prove that the length differences ∆(1,q) are
exponentially small in q as q → +∞?

Can we compute (or guess) “analytically” ρ and r?

Why are ellipses and circles so different?
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A theorem

Dynamics close to the border

The billiard map can be analytically extended to a complex
neighborhood of the boundary C− = T× {0} of the phase
space T× (0, π) in the Birkhoff coordinates (s, θ).

If ̺(s) is the radius of curvature of Γ, then the billiard map
(s, θ) 7→ (s1, θ1) has the Taylor expansion

s1 = s +
∑

j≥1

αj(s)θ
j , θ1 = θ +

∑

j≥2

βj(s)θ
j ,

where α1 = 2̺, α2 = 4̺̺′/3, α3 = 2̺2̺′′/3 + 4̺(̺′)2/9,
β2 = −2̺′/3, β3 = 4(̺′)2/9− 2̺̺′′/3, etcetera.
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A theorem

Lazutkin’s coordinates

The billiard map has the form

x1 = x + y + O(y3), y1 = y + O(y4),

in the Lazutkin’s coordinates (x , y) defined by

x = C
∫ s

0
̺−2/3(t)dt , y = 4C̺1/3(s) sin(θ/2),

where the constant C > 0 is determined in such a way that x is
an angular variable defined modulus one: x ∈ T = R/Z. That is,

C−1 =

∫

Γ
̺−2/3ds = −2 3

√

3c1(Γ).
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A theorem

Theorem for the analytic case

Since the billiard map f (x , y) = (x1, y1) is real analytic at y = 0,
it can be extended to a complex domain of the form

Da⋆,b⋆
:= {(x , y) ∈ C/Z× C : |ℑx | < a⋆, |y | < b⋆} .

Martín, Tamarit-Sariol & RRR (2014)

If Γ is analytic and strictly convex and α ∈ (0,2πa⋆), then there
exist N,q⋆ > 0 such that

∆(1,q) ≤ Ne−αq , ∀q ≥ q⋆.

The constant N may explode when α→ 2πa⋆, so, in general,
we can not take α = 2πa⋆.
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A theorem

Questions (second round)

Can we compute a⋆ = a⋆(Γ) in some case?
Guess: The distance δ of the set of singularities and zeros
of ̺(x) to the real axis may be related to the quantity a⋆.

Is there some relation between the quantity a⋆, the
distance δ, the radius of convergence ρ of the Borel
transforms, and the exponent r of the exponentially small
formulas computed in the numerical experiments?
Guess: Sometimes ρ = 4πa⋆ = 4πδ and r ∈ {ρ/2, ρ}.

Can we find (and prove) an asymptotic exponentially small
formula in q for ∆(1,q) in some case?
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A theorem

Let δ = δǫ = δ(Γb,ǫ,n) > 0 be the distance of the set of
singularities and zeros of the function ̺(x) to the real axis.

Circles

If b = 1 and n ≥ 3, then there exists a constant ηn ∈ R such that

4πδǫ = 2| log ǫ|/n + ηn + o(1), as ǫ→ 0.

Ellipses

Let K (m) =
∫ 1

0 (1 −mt2)−1/2(1− t2)−1/2dt be the complete
elliptic integral of the first kind. If 0 < b < 1 and n ≥ 3, then

4πδǫ = π
K (b2)

K (1− b2)
+ O(ǫ), as ǫ→ 0.
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More experiments

On small perturbations of circles

Once fixed the exponent n ≥ 3 and the period q ≥ 3, there
exists some order k = k(n,q) ∈ N and some coefficient
d = d(n,q) 6= 0 such that

Dq(ǫ) = dǫk + O(ǫk+1).

If we set ρ = 2| log ǫ|/n + O(1) and fix q ≥ 3, then

e−ρq/2 = O(ǫq/n), e−ρq = O(ǫ2q/n), as ǫ→ 0.

We have numerically checked that:
|k − q/n| ≤ 1 when n is odd or when both n and q are even;
|k − 2q/n| ≤ 1 when n is even and q is odd.
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Details on the numerical computations (I)

If b = 1, ǫ = 1, n = 4, and q = 201, then the lengths of the
two kinds of axisymmetric (1,q)-periodic trajectories are

Lq ≈ 5.768626202436993316419760718937759486569915806531338264257503,

lq ≈ 5.768626202436993316419760718937759486569915806531338264255034.

Therefore, 57 decimal digits are lost when we compute

Dq = Lq− lq ≈ 2.4690108977323491947687904121408×10−57 .

The above cancellation is beyond single, double, and
quadruple precisions. The use of a multiple precision
arithmetic (MPA) is mandatory. We have implemented the
MPA provided by the PARI/GP system.



A singular phenomenom: conjectures, experiments, and theorems

Details on the numerical computations

Details on the numerical computations (II)

All nonlinear equations are solved with Newton’s method in
variable precision. We double the precision after each
Newton’s iteration.

We have computed the first 500 coefficients of the
asymptotic series

∑

j≥0 cjq−2j in several cases.

We have also computed the differences Dq for periods
q ≤ 24000 or q ≤ 12000, depending on the scenario.

If b = 1, ǫ = 1, n = 4, q = 12001, and the MPA uses 4000
digits, the computation of Dq ≈ 4.2112173963× 10−3148

takes 131 seconds in my office desktop.
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