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Filippov’s convention and sewing limit cycles

sewing scaping sliding

Sewing (crossing) limit cycle
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Return map / Difference map

Return (Composition) map Difference map

Periodic orbits crossing Σ
m

{Π(ρ) = ρ} = {Π+
X+(ρ)− (Π−

X−)−1(ρ) = 0}
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The center-focus problem and related problems

Definition

If Vn 6= 0 and
Π(ρ)− ρ = Vnρ

n + O(ρn+1)

for ρ > 0 close to zero, then Vn is called the n-th Lyapunov
constant.

Related Problems

Characterization of centers

Maximum order of a weak focus

Cyclicity
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Lyapunov constants (Smooth case)

For differential systems, a singular point is of center-focus type if
trDX (x0) = 0 and detDX (x0) < 0. Then after a translation and a
change of time the system writes as:

(x ′, y ′) = (−y + P(x , y), x + Q(x , y))

and, in complex coordinates (z = x + iy),

z ′ = i z +
∑

k+`=m

rk,`z
k z̄`.

V2n = 0 for all n.

Quasihomogeneity and zero weight:
V2n+1(λ−k+`+1rk,`, λ

k−`−1r̄k,`) = V2n+1(rk,`, r̄k,`).

Quasihomogeneity and quasidegree:
V2n+1(λk+`−1rk,`, λ

k+`−1r̄k,`) = λ2nV2n+1(rk,`, r̄k,`).

V2n+1 =Re(V o
2n+1)+Im(V e

2n+1).
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First Lyapunov constants

V3 =Re(r2,1)− Im(r2,0r1,1).

V5 =Re(r3,2) +
1

3
Im(−r̄1,3r0,2 − 3r̄2,0r3,1 − 3r̄2,2r1,1 − 4r0,2r4,0

− 6r1,1r3,1 − 3r1,2r3,0) +
1

3
Re(2r̄0,2r0,3r2,0 + 3r̄0,2r1,1r1,2

+ r̄0,3r0,2r1,1 + 5r̄1,1r0,2r3,0 − 15r̄1,1r1,1r2,1 + 3r̄1,1r1,2r2,0

+ 2r̄1,2r0,2r2,0 − 3r̄2,0r1,1r3,0 − 30r̄2,0r2,0r2,1 − 21r̄2,1r1,1r2,0

− 2r0,2r2,0r3,0 − 6r21,1r3,0 − 24r1,1r2,0r2,1)

+
1

3
Im(4r̄0,2r̄1,1r̄2,0r0,2 − 2r̄0,2r31,1 + 3r̄21,1r0,2r2,0 − 2r̄1,1r0,2r22,0

+ 15r̄1,1r21,1r2,0 + 30r̄2,0r1,1r22,0 + 24r21,1r22,0).

Number of monomials N3 = 4, N5 = 54, N7 = 526(0.2s),
N9 = 3800(9s), N11 = 23442(14m),
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Centers, weak-foci and cyclicity

Center Problem

{Π(ρ) ≡ ρ} ⇔ {V3 = 0,V5 = 0, . . . ,V2n+1 = 0, . . .}

General Problems / Family Problems

Finiteness problem ⇔ Hilbert’s Basis Theorem

Computational difficulties:

Explicit computation
Solution of polynomial system of equations of high degree
Radicality
R versus C

Why is it a center? (First integral, Hamiltonian, Darboux,
reversible, symmetry,. . . )
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Centers, weak-foci and cyclicity

Order of a weak-focus

For a given family of polynomial vector fields which is the highest
value of n such that Π(ρ)− ρ = Vnρ

n + O(ρn+1)?

General Problems / Family Problems

Problem (Gasull-Giné-Torregrosa 2014)

There exists c such that the origin of

z ′ = i z + z2d+1 + c z2d z̄

is a weak-focus of order k = 2d2 + 3d (V2k+1 6= 0).

True up to d = 44. (2 days of CPU time).
V3 = V5 = . . . = V7831 = 0, V7833 = D1(E1cc̄ − E2)(c44 + c̄44)π,
V7835 = . . . = V8007 = 0, V8009 = −D2(c44 + c̄44)π.
D1 = N1225/N220, E1 = N157, E2 = M155, D2 = N2089/N903.
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There exists c such that the origin of

z ′ = i z + z2d+1 + c z2d z̄

is a weak-focus of order k = 2d2 + 3d (V2k+1 6= 0).

True up to d = 44. (2 days of CPU time).
V3 = V5 = . . . = V7831 = 0, V7833 = D1(E1cc̄ − E2)(c44 + c̄44)π,
V7835 = . . . = V8007 = 0, V8009 = −D2(c44 + c̄44)π.
D1 = N1225/N220, E1 = N157, E2 = M155, D2 = N2089/N903.

Joan Torregrosa (UAB) The center-focus problem in piecewise systems



Centers, weak-foci and cyclicity

Order of a weak-focus

For a given family of polynomial vector fields which is the highest
value of n such that Π(ρ)− ρ = Vnρ

n + O(ρn+1)?

General Problems / Family Problems

Problem (Gasull-Giné-Torregrosa 2014)
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Centers, weak-foci and cyclicity

Cyclicity of a singular point

For a given family of polynomial vector fields which is the
maximum number of limit cycles that bifurcate from a singular
point?

General Problems / Family Problems

Theorem

For a general system, the number of limit cycles that bifurcate
from a weak-focus of order k (V2k+1 6= 0) is k.
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Maximum order of a weak-focus and cyclicity problem

Theorem

Consider a one-parameter family of differential systems of the form{
x ′ = −y + akx(x2 + y2) + aP(x , y , a),
y ′ = −x + aky(x2 + y2) + aQ(x , y , a),

where P and Q are analytic functions, starting at least with terms
of degree 4 in x and y, and k ≥ 1 is an integer number. Then:

The first Lyapunov constant is V3 = 2πak and the origin is a
center if and only a = 0.

The cyclicity of the origin is at most k − 1 and there are
analytic functions, P and Q, for which this upper bound is
sharp.

A. Gasull & J. Giné. “Cyclicity versus Center problem”. Qual.
Theory Dyn. Syst. 9 (2010) 101–111.
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The center problem in PWDS
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I. I. Plešskan & K. S. Sibirskĭı. “On the problem of the center
for systems with discontinuous right-hand sides”.
Differencial’nye Uravnenija 9 (1973), 1817–1825.

B. Coll, R. Prohens & A. Gasull. “The center problem for
discontinuous Liénard differential equation.” Internat. J. Bifur.
Chaos Appl. Sci. Engrg. 9 (1999), no. 9, 1751–1761.

Joan Torregrosa (UAB) The center-focus problem in piecewise systems



Degenerate Hopf bifurcation in PWDS
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Y. Zou, T. Küpper & W.-J. Beyn. “Generalized Hopf
bifurcation for planar Filippov systems continuous at the
origin”. J. Nonlinear Sci. 16 (2006), no. 2, 159–177.

F. Liang & M. Han. “Degenerate Hopf bifurcation in
nonsmooth planar systems”. Internat. J. Bifur. Chaos Appl.
Sci. Engrg. 22 (2012), no. 3, 1250057, 16 pp.

Joan Torregrosa (UAB) The center-focus problem in piecewise systems



Degenerate Hopf bifurcation in Liénard PWDS

X. Liu & M. Han. “Hopf bifurcation for nonsmooth Liénard
systems”. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 19
(2009), no. 7, 2401–2415.

Y. Xiong & M. Han. “Hopf bifurcation of limit cycles in
discontinuous Liénard systems”. Abstr. Appl. Anal. (2012),
Art. ID 690453.
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Lyapunov constants (nonsmooth case)

Smooth / nonsmooth

Tangential points, real and virtual singular points,. . .

Vk 6= 0 for every k (in general)

Polynomial in parameters and exp (trace).

If the origin is a singular point of focus-focus type, and for a
system that writes

z ′ = (i + λ±)z + . . .

in y > 0 (y < 0), we have

V1 = eπ(λ
++λ−) − 1.
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If the origin is a singular point of focus-focus type, and for a
system that writes

z ′ = (i + λ±)z + . . .

in y > 0 (y < 0), we have

V1 = eπ(λ
++λ−) − 1.
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Tangential points
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Centers in piecewise linear systems without sliding

Proposition

If µ±0 6= 0, the origin of system

(x ′, y ′) =

{
(µ+0 + µ+1 x + µ+2 y , x) if y > 0,
(µ−0 + µ−1 x + µ−2 y , x) if y < 0

is a center if and only if

µ−1 µ
+
0 − µ

+
1 µ
−
0 = µ+1 (µ+2 (µ−0 )2 − µ−2 (µ+0 )2) = 0.

Proof.

V1 = 0, V2 =
2

3

µ−1 µ
+
0 − µ

+
1 µ
−
0

µ−0 µ
+
0

, V3 = 0,

V4 =
2

15

µ+1
(µ−0 )2(µ+0 )3

(−µ+2 (µ−0 )2 + µ−2 (µ+0 )2), when V2 = 0.

If V2 = V4 = 0 the system is reversible ((x , y , t)→ (x ,−y ,−t)).�
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Cyclicity in piecewise linear systems without sliding

Proposition

When µ±0 6= 0, the maximal cyclicity of the origin of the vector field

(x ′, y ′) =

{
(µ+0 + µ+1 x + µ+2 y , x) if y > 0,
(µ−0 + µ−1 x + µ−2 y , x) if y < 0

is one.

J. C. Medrado & J. Torregrosa “Uniqueness of limit cycles for
sewing planar piecewise linear systems”. Preprint.
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A homogeneous quadratic/center family: Centers

Proposition

Consider the system{
x ′ = −y +p20x2+p11xy +p02y2,
y ′ = x +q20x2+q11xy +q02y2,

{
x ′ = −y ,
y ′ = x ,

y > 0, y < 0.

Then, it has a center at the origin if and only if one of the
following conditions holds:

(i) p11 = q20 = q02 = 0,
(ii) p20 = p11 + q20 = p02 + q11 = q02 = 0,
(iii) 2p20 + q11 = p11 + 2q02 = q20 = 0,
(iv) p20 = −p11 + q20 = q02 + q20 = p02 = 0,
(v) 2p11q20+3p2

20−2q2
20 =2q11+5p20=8p02q2

20−3p2
20+8q2

20 =
4q02q20 − 3p2

20 + 4q2
20 = 0.

A. Gasull & J. Torregrosa, “Center-focus problem for
discontinuous planar differential equations”. Internat. J. Bifur.
Chaos Appl. Sci. Engrg., 13 (2003), 1755–1765.
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Proof: 1. Lyapunov constants

V1 =0,

V2 =
2

3
(p11 + q20 + 2q02),

V3 =− π

8
(2p20q02 + q02q11 + 3p20q20 + q11q20 + p02q20),

V4 =
1

15
(2q3

20 − 2p2
11q20− 18p2

20q20 + 6p11p20q11 + 12p11p2
20

− 6q11p20q20),

V5 =
π

64
q20p20(p2

20 − 2q11p20 + 4p11q20 − 4q2
20),

V6 =
8

105
q20(p11 − q20)(p11 + q20)(−5p11q20 + 5q2

20 + 3q11p20).

Solving the system {V2 = V3 = V4 = V5 = V6 = 0} we obtain the
families of the statement.
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Proof: 2. Why are they centers?

The first family is invariant with respect the change

(x , y , t)→ (−x , y ,−t).

The other families satisfy Hi (x , 0) = Hi (−x , 0) where
Hi = Hi (x , y) are their first integrals:

H2 =x2 + y2,

H3 =
1

2
(x2 + y2) +

q11

2
x2y + q02xy2 − p02

3
y3,

H4 =(q20x − 1)

(
q20x +

(q11 − γ)

2
y + 1

)α(
q20x +

(q11 + γ)

2
y + 1

)(1−α)
,

H5 =(−2q20x + p20y + 2)2
(

4(q20x + 1)2 − (4p20 + 12p20q20x)y

+ (3p2
20 − 8q2

20)y2
)
,

with α = 4q2
20(γ(γ + q11))−1 and γ =

√
q2
11 + 8q2

20.
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A homogeneous quadratic/center family: Cyclicity

Proposition

Consider the system

(x ′, y ′) =


(−y +w1x +x2+p11xy +p02y2,

x +w1y +x2+q11xy +q02y2) if y > 0,

(−y , x) if y < 0,

(1)

where p11 = 7
5 + α, p02 = −17

50 + 3
20α−

99
40w2 + 32

25w5 + 16
5 αw5

+3
2w4 − 3

2αw2 + 24w2w5 − 8w3, q11 = 13
10 + 2α− 32w3, and

q02 = −6
5 −

1
2α + 3

4w2, being α = α(w4,w5) the solution of the
quadratic equation 50α2 + (−960w5 + 95)α− 75w4 − 384w5 = 0,
such that α(0, 0) = 0. Then, if we choose w1,w2, w3,w4, and w5

such that w1 < 0, w2 > 0, w3 < 0, w4 > 0, w5 < 0 and
|w1| � |w2| � |w3| � |w4| � |w5| � 1, the system has five small
amplitude limit cycles.
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Proof

If w1 = 0, from the Lyapunov constants, we get that Vi = wi for
i = 2, 3, 4, 5. Hence the return map close to the origin is

Π(ρ,w1,w2,w3,w4,w5) = ew1πρ

+ (w2 + f2(w1,w2,w3,w4,w5))ρ2

+ (w3 + f3(w1,w2,w3,w4,w5))ρ3

+ (w4 + f4(w1,w2,w3,w4,w5))ρ4

+ (w5 + f5(w1,w2,w3,w4,w5))ρ5

+ (
608

4375
+ f6(w1,w2,w3,w4,w5))ρ6 + O(ρ7),

where fi , i = 2, . . . , 6, are continuous functions satisfying
f2(0,w2,w3,w4,w5)≡0, f3(0, 0,w3,w4,w5)≡0,
f4(0, 0, 0,w4,w5)≡0, f5(0, 0, 0, 0,w5)≡0 and f6(0, 0, 0, 0, 0)≡0.
Choosing the parameters adequately the function Π(ρ)− ρ changes
sign six times and Π has at least five fix points.
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Centers in discontinuous Liénard

Consider the Liénard systems

(x ′, y ′) =


(
−y +

n∑
i=2

aix
i , x
)

if y > 0,(
−y +

n∑
i=2

bix
i , x
)

if y < 0.

If

(i) a2k+1 = b2k+1 = 0 or

(ii) ak + bk = 0

for all k ∈ N, the system has a center at the origin.

B. Coll, R. Prohens & A. Gasull. “The center problem for
discontinuous Liénard differential equation.” Internat. J. Bifur.
Chaos Appl. Sci. Engrg. 9 (1999), no. 9, 1751–1761.
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Centers in discontinuous Liénard: Equivalence

If for the particular systems

(x ′, y ′) =

{(
−y + x2j+1 + x2(k−j), x

)
if y > 0,(

−y − x2j+1, x
)

if y < 0,

for 1 ≤ j < k , the Lyapunov constant V2k = Ck,j is not zero, then
the above two families are the only centers for the Liénard
discontinuous system.
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