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N-Body Problem

N-body problem: N point masses mi, i = 1, . . . N moving under their
gravitational atractions

miq̈i =

n∑
j=1
j 6=i

Gmimj(qj − qi)

r3
ij

2-body problem: integrable problem. The masses move in Keplerian
orbits: elliptic, parabolic or hyperbolic, around their center of mass.

Restricted Three-Body problem: Two main bodies (primaries) moving in
a keplerian orbit + massless particle moving under the gravitational
attraction of the primaries, without affecting them.
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N-Body Problems

Main tools of the dynamical systems

Hamiltonian formulation:

ż = J · ∇H(z)

Invariant objects: equilibrium points, periodic and quasi-periodic orbits

Stability of the invariant objects

Invariant manifolds:

Wu(Γ) = {z(t); z(t) −→
t↗−∞

Γ}

W s(Γ) = {z(t); z(t) −→
t↘+∞

Γ}
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Galactic encounters: bridges and tails

10

 NGC 2535/6 NGC 7752/3

astromania.deyave.com/ www.etsu.edu/physics/bsmith/research/sg/arp.html www.spiral-galaxies.com/Galaxies-Pegasus.html

NGC 3808

Bridges!
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Galactic encounters: bridges and tails

9

Tails!

    Arp 173

• NGC 2992/3

http://www.astrooptik.com/Bildergalerie/PolluxGallery/NGC2623.htm    www.etsu.edu/physics/bsmith/research/sg/arp.html

http://www.ess.sunysb.edu/fwalter/SMARTS/findingcharts.html

NGC 2623
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Motivations and Aims

Close approach of two galaxies: it causes significant modification of the
mass distribution or disc structure. One particle that initially stays in one
galaxy (or around one star), after the close encounter, it can jump to the
other galaxy or escape.

To study the mechanisms that explain that a particle remains or not
around each galaxy, considering a very simple model: the planar
parabolic restricted three-body problem.
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The Planar Parabolic Restricted Three-Body Problem
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Equations (I)

Parabolic problem:

d2Z

dt2
= −(1− µ)

Z− Z1

|Z− Z1|3
− µ Z− Z2

|Z− Z2|3
,

Z2 = −Z1 = 1
2 (σ2 − 1, 2σ), and σ = tan(f/2)

Change to a synodic frame (primaries at fixed positions) + change of time:

z1 = (−1

2
, 0), z2 = (

1

2
, 0),

dt

ds
=
√

2 r3/2.

Compatification to extend the flow when the primaries are at infinity
(t, s→ ±∞):

sin(θ) = tanh(s).
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Equations (II)

Global system

 θ′ = cos θ,
z′ = w,
w′ = −A(θ)w +∇Ω(z)

where ′ =
d

ds
and

A(θ) =

(
sin θ 4 cos θ
−4 cos θ sin θ

)
,

Ω(z) = x2 + y2 + 2
1− µ√

(x− µ)2 + y2
+ 2

µ√
(x− µ+ 1)2 + y2

.
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Upper and Lower boundary problems

Global system Boundary problems θ′ = cos θ,
z′ = w,
w′ = −A(θ)w +∇Ω(z)

−→
θ=±π/2

{
z′ = w,
w′ = ∓w +∇Ω(z)

dim 5 dim 4
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Main properties (I)

Jacobi function: semi gradient property (no periodic orbits)

C = 2Ω(z)− |w|2, dC

ds
= 2 sin θ|w|2

Hill’s regions: {2Ω(z)− C ≥ 0} → C-criterium

−π/2 −→ θ −→ 0
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Main properties (II)

Equilibrium points at the boundaries (as in the RTBP):

Collinear: L±i = (xi(µ), 0, 0, 0,±π/2), i = 1, 2, 3

Triangular: L±i = (µ− 1
2 ,±
√

3/2, 0, 0,±π/2), i = 4, 5

Stability:

L+
1,2,3 L+

4,5

dim(Wu) 1 2
dim(W s) 4 3

L−1,2,3 L−4,5
dim(Wu) 4 3
dim(W s) 1 2
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Main properties (II)

Equilibrium points at the boundaries: L±i , i = 1, ..., 5 for θ = ±π/2 and
µ = 1/2

(xi, yi) C(L±i ) = Ci
L±1 (−1.198406145, 0) 6.91359245

L±2 (0, 0) 8

L±3 (1.198406145, 0) 6.91359245

L±4,5 (0,±
√

3/2) 5.5
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Main properties (III)

Homothetic solutions and connections

θ = π/2

θ = −π/2

θ = 0

L+
1

L+
4

L+
3

L−
3L−

4

L−
1
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Dynamics of the problem

In order to describe the dynamics of the parabolic problem, we will focus on
two aspects:

the final evolutions in the synodical system when time tends to infinity,

the richness in the intermediate stages due to

existence of invariant manifolds associated with the homothetic solutions

heteroclinic connections that allow the existence of orbits with passages
close to collinear and/or equilateral configurations.
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Final evolutions

Proposition (Final evolutions)

Let γ(s) = (θ(s), z(s),w(s)), s ∈ [0,∞), be a solution of
the global system. Then, either:

it is a collision orbit,

lims→∞ |z(s)| =∞ (escape orbit)

its ω-limit is an equilibrium point.
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Final evolutions

Definition
Let Z(t) be a solution of the parabolic problem. We say that

it is a capture orbit around the primary of mass mi, for
i = 1 or 2, if lim supt→∞ |Z(t)− Zi(t)| ≤ K, for some
constant K;

it is an escape orbit if lim supt→∞ |Z(t)| =∞ and
lim supt→∞ |Z(t)− Zi(t)| =∞ for i = 1 and 2.

Remark: the definition is given in the inertial frame: |Z− Zi| = r|z− zi|
capture orbit → |z− zi| → 0 (collision orbit)

lim infs→∞ |z(s)| ≥ K → escape orbit
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C-criterium

Proposition

Let q ∈ Int(D) with θ ≥ 0, and γ(s) = (θ(s), z(s),w(s)),
s ∈ [0,∞), the solution of the global system through q. Then,

(i) if for some time s0 the value of the Jacobi function
C(γ(s0)) > C2 and z(s) is located in one of the bounded
components of the Hill’s region, then it is a collision orbit;

(ii) if for some time s0 the value of the Jacobi function
C(γ(s0)) > C3 and z(s) is located in the unbounded
component of the Hill’s region, then it is an escape orbit.
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Connections in the the upper boundary problem

m1 m2∞

m1 ∞ m2

L+
4

L+
5

L+
1 L+

3

L+
2
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Heteroclinic L+
4 → L+

3

Invariant manifold Wu(L+
4 ) (dim=2) and its intersections with

ΣC∗ = {(z,w) | C(z,w) = C∗}
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Heteroclinic L+
4 → L+

3

Invariant manifold Wu(L+
4 ) (dim=2) and its intersections with

ΣC∗ = {(z,w) | C(z,w) = C∗}
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Heteroclinic L+
4 → L+

3

Invariant manifold Wu(L+
4 ) (dim=2) and its intersections with

ΣC∗ = {(z,w) | C(z,w) = C∗}
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Explorations

Role of the invariant manifolds in the sets of connecting orbits between
primaries

Equal masses (µ = 0.5):
Barrabés, Cors, Ollé Dynamics of the parabolic restricted three-body
problem Communications in Nonlinear Science and Numerical Simulation,
29: 400–415, 2015

Different masses (µ < 0.5):
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Connecting orbits with passages to collinear or triangular
configurations

Connection of type mi − Lk −mj :

collision orbit with mi backwards in time

collision orbit with mj forwards in time

along its trajectory it has a close passage to Lk

Barrabés, Cors, Garcia, Ollé (November 10, 2016) Parabolic problem 23 / 36



Introduction Dynamics of the parabolic problem Numerical results Conclusions

Connecting orbits: examples (µ = 0.5)
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Connecting orbits: examples (µ = 0.5)
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Connecting orbits: examples (µ = 0.5)
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Symmetric connecting orbits (µ = 0.5)

Connection mi −mi: crosses the section θ = 0 such that y = x′ = 0

I.C. (x0, 0, 0, y
′
0)

Connection mi −mj : crosses the section θ = 0 such that x = y′ = 0

I.C. (0, y0, x
′
0, 0)
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Symmetric connecting orbits (µ = 0.5)

mi −mi
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Symmetric connecting orbits (µ = 0.5)

mi −mj
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Symmetric connecting orbits (µ = 0.5)
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Symmetric connecting orbits (µ = 0.5)
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Evolution of sets of symmetric connecting orbits
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Evolution of sets of symmetric connecting orbits
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Evolution of sets of symmetric connecting orbits

-6

-4

-2

 0

 2

 4

 6

-4 -3 -2 -1  0  1  2  3  4

y’

x

-6

-4

-2

 0

 2

 4

 6

-4 -3 -2 -1  0  1  2  3  4

y’
x

µ = 0.2 µ = 0.1
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Bridges and Tails?

We consider a bunch of initial conditions around m1 for θ = −π/4 and a value
C ≥ C2 = 8 (for µ = 1/2). For this value of C, we fix a radius, r (distance to
m1) and move α ∈ [0, 2π]. Since, velocity module is given by position and
Jacobi function C, we move β ∈ [0, 2π] (velocity direction).
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Tails
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Bridges
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A Movie
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A Movie
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A Movie
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Conclusions

Using the invariant manifolds, the symmetries of the problem and the
C-criterium it is possible to construct connecting orbits of different types.

The regions of the phase space where the test particles remain or not
around each galaxy are confined by the invariant manifolds of the
collinear equilibrium points.
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Further work

How does the mass parameter of the parabolic problem affects Bridges
and tails?

Explorations varying the inclination (Spatial parabolic problem)

Hyperbolic problem (make sense)
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