Dynamics of a particle in some cases of the *N*-body problem

Elipe, A.(1,2)

¹Grupo de Mecánica Espacial. (IUMA) ²Centro Universitario de la Defensa. Zaragoza

A.Elipe (GME, UZ)

D-Days 2016. Salou

November 2016 1 / 25

• • • • • • • • • • • • • •

Two-body problem (no secrets)

- N-body problem (too difficult)
- R3BP (still difficult and 200 years of history)
- Add complications to the R3BP (non spherity, radiation pressure ..., ribbon,...)
- Crazy models, but accepted in "journals"

・ 同 ト ・ ヨ ト ・ ヨ

- Two-body problem (no secrets)
- N-body problem (too difficult)
- R3BP (still difficult and 200 years of history)
- Add complications to the R3BP (non spherity, radiation pressure ..., ribbon,...)
- Crazy models, but accepted in "journals"

マロト イラト イラ

- Two-body problem (no secrets)
- N-body problem (too difficult)
- R3BP (still difficult and 200 years of history)
- Add complications to the R3BP (non spherity, radiation pressure ..., ribbon,...)
- Crazy models, but accepted in "journals"

- Two-body problem (no secrets)
- N-body problem (too difficult)
- R3BP (still difficult and 200 years of history)
- Add complications to the R3BP (non spherity, radiation pressure ..., ribbon,...)
- Crazy models, but accepted in "journals"

- Two-body problem (no secrets)
- N-body problem (too difficult)
- R3BP (still difficult and 200 years of history)
- Add complications to the R3BP (non spherity, radiation pressure ..., ribbon,...)
- Crazy models, but accepted in "journals"

thousands of exoplanets discovered

- extrasolar systems with one or several stars and none or several planets
- motion of small particles (dust) \Rightarrow force of radiation
- force can be very big compared with the gravity force (Lamy & Perrin, 1997)
- This problem is a generalization of the classical RTB with radiation emitted from the primaries (Schuerman, 1980).
- A rich dynamics

A (1) > A (2) > A (2)

- thousands of exoplanets discovered
- extrasolar systems with one or several stars and none or several planets
- motion of small particles (dust) \Rightarrow force of radiation
- force can be very big compared with the gravity force (Lamy & Perrin, 1997)
- This problem is a generalization of the classical RTB with radiation emitted from the primaries (Schuerman, 1980).
- A rich dynamics

- thousands of exoplanets discovered
- extrasolar systems with one or several stars and none or several planets
- motion of small particles (dust) \Rightarrow force of radiation
- force can be very big compared with the gravity force (Lamy & Perrin, 1997)
- This problem is a generalization of the classical RTB with radiation emitted from the primaries (Schuerman, 1980).
- A rich dynamics

< ロ > < 同 > < 回 > < 回 >

- thousands of exoplanets discovered
- extrasolar systems with one or several stars and none or several planets
- motion of small particles (dust) \Rightarrow force of radiation
- force can be very big compared with the gravity force (Lamy & Perrin, 1997)
- This problem is a generalization of the classical RTB with radiation emitted from the primaries (Schuerman, 1980).
- A rich dynamics

< ロ > < 同 > < 回 > < 回 > < 回 > <

- thousands of exoplanets discovered
- extrasolar systems with one or several stars and none or several planets
- motion of small particles (dust) \Rightarrow force of radiation
- force can be very big compared with the gravity force (Lamy & Perrin, 1997)
- This problem is a generalization of the classical RTB with radiation emitted from the primaries (Schuerman, 1980).

• A rich dynamics

< ロ > < 同 > < 回 > < 回 > < 回 > <

- thousands of exoplanets discovered
- extrasolar systems with one or several stars and none or several planets
- motion of small particles (dust) \Rightarrow force of radiation
- force can be very big compared with the gravity force (Lamy & Perrin, 1997)
- This problem is a generalization of the classical RTB with radiation emitted from the primaries (Schuerman, 1980).
- A rich dynamics

- we consider the Restricted collinear four-body problem with radiation pressure
- 3 primaries:

 (P_0, m_0, q_0) and two identical bodies (P_1, m, q) , (P_2, m, q)

• planar motion of a massless P in a synodic reference frame

A.Elipe (GME, UZ)

ъ

Radiation coefficients

$$b = \frac{F_r}{F_g} \to \quad q_i = 1 - b_i$$

• $b_i = 0$ classical problem

• $b_i \in (0,1)$ reduction of gravitational forces by radiation

• $b_i \ge 1$ radiation has overhelmed gravitational forces by radiation

So, $q_i \in (-\infty, 1]$ (i = 0, 1, 2)

-

Radiation coefficients

$$b = \frac{F_r}{F_g} \to \quad q_i = 1 - b_i$$

- $b_i = 0$ classical problem
- $b_i \in (0,1)$ reduction of gravitational forces by radiation
- $b_i \ge 1$ radiation has overhelmed gravitational forces by radiation

So, $q_i \in (-\infty, 1]$ (i = 0, 1, 2)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Radiation coefficients

$$b = \frac{F_r}{F_g} \to \quad q_i = 1 - b_i$$

- $b_i = 0$ classical problem
- $b_i \in (0,1)$ reduction of gravitational forces by radiation
- $b_i \ge 1$ radiation has overhelmed gravitational forces by radiation

So, $q_i \in (-\infty, 1]$ (i = 0, 1, 2)

Equations of motion

$$\ddot{x} - 2\dot{y} = \frac{\partial U}{\partial x}, \qquad \ddot{y} + 2\dot{x} = \frac{\partial U}{\partial y},$$

where the effective potential U is

$$U(x,y) = \frac{1}{2} \left(x^2 + y^2 \right) + \frac{1}{\Delta} \left(\frac{\beta q_0}{r_0} + \frac{q_1}{r_1} + \frac{q_1}{r_2} \right),$$

in which

$$r_{0} = \sqrt{x^{2} + y^{2}},$$

$$r_{1} = \sqrt{(x - 1/2)^{2} + y^{2}},$$

$$r_{2} = \sqrt{(x + 1/2)^{2} + y^{2}}.$$

< ロ > < 同 > < 回 > < 回 >

Equilibrium points

$$U_x = x - \frac{1}{\Delta} \left[\frac{\beta q_0}{r_0^3} x + \frac{q_1}{r_1^3} \left(x - \frac{1}{2} \right) + \frac{q_1}{r_2^3} \left(x + \frac{1}{2} \right) \right] = 0,$$

$$U_y = y \left[1 - \frac{1}{\Delta} \left(\frac{\beta q_0}{r_0^3} + \frac{q_1}{r_1^3} + \frac{q_1}{r_2^3} \right) \right] = 0.$$

Two types of solutions:

- triangular points when $y \neq 0$
- collinear points when y = 0

Are defined by the value of y verifying the equation

$$\Delta = \left[\frac{\beta q_0}{y^3} + \frac{2 q_1}{(y^2 + 1/4)^{3/2}}\right].$$

Proposition

The number of triangular equilibria is

a) 2, when $q_0 > 0$,

A.Elipe (GME, UZ)

- **b)** 0, when $q_0 < 0$ and $q_1 < 0$,
- c) if $q_0 < 0$ and $q_1 > 0$, for each value of β there exists a function $\Psi_{\beta}(q_0)$ such that the number of equilibria is

-

Are defined by the value of y verifying the equation

$$\Delta = \left[\frac{\beta \, q_0}{y^3} + \frac{2 \, q_1}{(y^2 + 1/4)^{3/2}}\right].$$

Proposition

The number of triangular equilibria is

- **a)** 2, when $q_0 > 0$,
- **b)** 0, when $q_0 < 0$ and $q_1 < 0$,
- c) if $q_0 < 0$ and $q_1 > 0$, for each value of β there exists a function $\Psi_{\beta}(q_0)$ such that the number of equilibria is

-

Are defined by the value of y verifying the equation

$$\Delta = \left[\frac{\beta q_0}{y^3} + \frac{2 q_1}{(y^2 + 1/4)^{3/2}}\right].$$

Proposition

The number of triangular equilibria is

- **a)** 2, when $q_0 > 0$,
- **b)** 0, when $q_0 < 0$ and $q_1 < 0$,

c) if $q_0 < 0$ and $q_1 > 0$, for each value of β there exists a function $\Psi_{\beta}(q_0)$ such that the number of equilibria is

c.1) 0, when $q_1 < \Psi_{eta}(q_0)$,

-

Are defined by the value of y verifying the equation

$$\Delta = \left[\frac{\beta q_0}{y^3} + \frac{2 q_1}{(y^2 + 1/4)^{3/2}}\right].$$

Proposition

The number of triangular equilibria is

- **a)** 2, when $q_0 > 0$,
- **b)** 0, when $q_0 < 0$ and $q_1 < 0$,
- c) if $q_0 < 0$ and $q_1 > 0$, for each value of β there exists a function $\Psi_{\beta}(q_0)$ such that the number of equilibria is
 - **c.1)** O, when $q_1 < \Psi_eta(q_0)$,
 - **c.2)** 2, when $q_1 = \Psi_{eta}(q_0)$,
 - **c.3)** 4, when $q_1 > \Psi_{eta}(q_0)$,

Are defined by the value of y verifying the equation

$$\Delta = \left[\frac{\beta q_0}{y^3} + \frac{2 q_1}{(y^2 + 1/4)^{3/2}}\right].$$

Proposition

The number of triangular equilibria is

- **a)** 2, when $q_0 > 0$,
- **b)** 0, when $q_0 < 0$ and $q_1 < 0$,
- c) if $q_0 < 0$ and $q_1 > 0$, for each value of β there exists a function $\Psi_{\beta}(q_0)$ such that the number of equilibria is
 - **c.1)** *0, when* $q_1 < \Psi_{\beta}(q_0)$ *,*
 - **c.2)** 2, when $q_1 = \Psi_{eta}(q_0)$,
 - **c.3)** *4, when* $q_1 > \Psi_eta(q_0)$ *,*

Are defined by the value of y verifying the equation

$$\Delta = \left[\frac{\beta q_0}{y^3} + \frac{2 q_1}{(y^2 + 1/4)^{3/2}}\right].$$

Proposition

The number of triangular equilibria is

- **a)** 2, when $q_0 > 0$,
- **b)** 0, when $q_0 < 0$ and $q_1 < 0$,
- c) if $q_0 < 0$ and $q_1 > 0$, for each value of β there exists a function $\Psi_{\beta}(q_0)$ such that the number of equilibria is
 - **c.1)** *0, when* $q_1 < \Psi_{\beta}(q_0)$ *,*
 - **c.2)** 2, when $q_1 = \Psi_\beta(q_0)$,
 - **2.3)** 4, when $q_1 > \Psi_{eta}(q_0)$,

Are defined by the value of y verifying the equation

$$\Delta = \left[\frac{\beta q_0}{y^3} + \frac{2 q_1}{(y^2 + 1/4)^{3/2}}\right].$$

Proposition

The number of triangular equilibria is

- **a)** 2, when $q_0 > 0$,
- **b)** 0, when $q_0 < 0$ and $q_1 < 0$,
- c) if $q_0 < 0$ and $q_1 > 0$, for each value of β there exists a function $\Psi_{\beta}(q_0)$ such that the number of equilibria is

c.1) 0, when
$$q_1 < \Psi_\beta(q_0)$$
,

c.2) 2, when
$$q_1 = \Psi_{\beta}(q_0)$$
,

c.3) 4, when $q_1 > \Psi_{\beta}(q_0)$,

-

The second equation is always satisfied. Then,

$$x - \frac{1}{\Delta} \left[\frac{\beta q_0}{r_0^3} x + \frac{q_1}{r_1^3} \left(x - \frac{1}{2} \right) + \frac{q_1}{r_2^3} \left(x + \frac{1}{2} \right) \right] = 0,$$

where now $r_0 = |x|$, $r_1 = |x - 1/2|$, $r_2 = |x + 1/2|$.

There are four intervals in which the collinear equilibria can appear:

- the outer positive interval
- the inner positive interval
- the inner negative interval
- the outer negative interval

$$O = (1/2, \infty)$$

 $I = (0, 1/2)$
 $I_n = (-1/2, 0)$
 $O_n = (-\infty, -1/2)$

Outer collinear equilibria

Proposition

The number of positive outer collinear equilibria, regardless of the value of β , is

a) 0, when q₁ < 0,
b) 1, when q₁ > 0.

Outer collinear equilibria

Proposition

The number of positive outer collinear equilibria, regardless of the value of β , is

a) 0, when $q_1 < 0$,

b) 1, when $q_1 > 0$.

Outer collinear equilibria

Proposition

The number of positive outer collinear equilibria, regardless of the value of β , is

- a) 0, when $q_1 < 0$,
- **b)** 1, when $q_1 > 0$.

A.Elipe (GME, UZ)

4 3 5 4 3

Proposition

The number of positive inner collinear equilibria is

- a) 1, when $q_1 > 0$ and $q_0 > 0$,
- **b)** 0, when $q_1 > 0$ and $q_0 < 0$,
- c) 1, when $q_1 < 0$ and $q_0 < 0$,
- d) if $q_1 < 0$ and $q_0 > 0$, for each value of β there exists a function $\Phi_{\beta}(q_0)$ such that the number of equilibria is:
 - (4.1) 0, when $q_1 < \Phi_{m{eta}}(q_0)$,
 - d.2) 1, when $q_1 = \Phi_{\beta}(q_0)$,
 - 3) 2, when $q_1 > \overline{\Phi}_d(q_0)$.

< ロ > < 同 > < 回 > < 回 >

Proposition

The number of positive inner collinear equilibria is

- a) 1, when $q_1 > 0$ and $q_0 > 0$,
- **b)** 0, when $q_1 > 0$ and $q_0 < 0$,
- c) 1, when $q_1 < 0$ and $q_0 < 0$,
- d) if $q_1 < 0$ and $q_0 > 0$, for each value of β there exists a function $\Phi_{\beta}(q_0)$ such that the number of equilibria is:
 - ($q_1 < \Phi_{\beta}(q_0)$), when $q_1 < \Phi_{\beta}(q_0)$,
 - ($q_0 = \Phi_{\beta}(q_0)$, when $q_1 = \Phi_{\beta}(q_0)$,
 - 2. when $q_1 > \Phi_d(q_0)$.

マロト イラト イラト

Proposition

The number of positive inner collinear equilibria is

- a) 1, when $q_1 > 0$ and $q_0 > 0$,
- **b)** 0, when $q_1 > 0$ and $q_0 < 0$,
- c) 1, when $q_1 < 0$ and $q_0 < 0$,
- d) if $q_1 < 0$ and $q_0 > 0$, for each value of β there exists a function $\Phi_{\beta}(q_0)$ such that the number of equilibria is:

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition

The number of positive inner collinear equilibria is

- a) 1, when $q_1 > 0$ and $q_0 > 0$,
- **b)** 0, when $q_1 > 0$ and $q_0 < 0$,
- c) 1, when $q_1 < 0$ and $q_0 < 0$,

d) if $q_1 < 0$ and $q_0 > 0$, for each value of β there exists a function $\Phi_{\beta}(q_0)$ such that the number of equilibria is:

d.1) 0, when $q_1 < \Phi_{\beta}(q_0)$,

 $f_{ij} = \Phi_{\beta}(q_{ij}),$ $f_{ij} = \Phi_{\beta}(q_{ij}),$

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

Proposition

The number of positive inner collinear equilibria is

- a) 1, when $q_1 > 0$ and $q_0 > 0$,
- **b)** 0, when $q_1 > 0$ and $q_0 < 0$,
- c) 1, when $q_1 < 0$ and $q_0 < 0$,
- d) if $q_1 < 0$ and $q_0 > 0$, for each value of β there exists a function $\Phi_{\beta}(q_0)$ such that the number of equilibria is:
 - **d.1)** 0, when $q_1 < \Phi_{\beta}(q_0)$,
 - **d.2)** 1, when $q_1 = \Phi_\beta(q_0)$,
 - **d.3)** 2, when $q_1 > \Phi_\beta(q_0)$.

Proposition

The number of positive inner collinear equilibria is

- a) 1, when $q_1 > 0$ and $q_0 > 0$,
- **b)** 0, when $q_1 > 0$ and $q_0 < 0$,
- c) 1, when $q_1 < 0$ and $q_0 < 0$,
- d) if $q_1 < 0$ and $q_0 > 0$, for each value of β there exists a function $\Phi_{\beta}(q_0)$ such that the number of equilibria is:
 - **d.1)** 0, when $q_1 < \Phi_\beta(q_0)$,

1.2) 1, when $q_1 = \Phi_eta(q_0)_{s}$

d.3) 2, when $q_1 > \Phi_eta(q_0).$

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

Proposition

The number of positive inner collinear equilibria is

- a) 1, when $q_1 > 0$ and $q_0 > 0$,
- **b)** 0, when $q_1 > 0$ and $q_0 < 0$,
- c) 1, when $q_1 < 0$ and $q_0 < 0$,
- d) if $q_1 < 0$ and $q_0 > 0$, for each value of β there exists a function $\Phi_{\beta}(q_0)$ such that the number of equilibria is:
 - **d.1)** 0, when $q_1 < \Phi_{\beta}(q_0)$,
 - **d.2)** 1, when $q_1 = \Phi_\beta(q_0)$,

d.3) 2, when $q_1 > \Phi_eta(q_0).$

-

< ロ > < 同 > < 回 > < 回 > < 回 > <
Inner collinear equilibria

Proposition

The number of positive inner collinear equilibria is

- a) 1, when $q_1 > 0$ and $q_0 > 0$,
- **b)** 0, when $q_1 > 0$ and $q_0 < 0$,
- c) 1, when $q_1 < 0$ and $q_0 < 0$,
- d) if $q_1 < 0$ and $q_0 > 0$, for each value of β there exists a function $\Phi_{\beta}(q_0)$ such that the number of equilibria is:
 - **d.1)** *0, when* $q_1 < \Phi_\beta(q_0)$ *,*
 - **d.2)** 1, when $q_1 = \Phi_\beta(q_0)$,
 - **d.3)** 2, when $q_1 > \Phi_\beta(q_0)$.

-

4 3 5 4 3 5 5

< 🗇 🕨

Region	For any β		Equilibria
			$(T; N_O, N_I, P_I, P_O)$
I	$q_0 \in [0,1]$	$q_1 \in [0, 1]$	(2; 1,1,1,1)
II	$q_0 \in [0,1]$	$q_1 \in (\Phi_\beta(q_0), 0)$	(2; 0,2,2,0)
Φ_{eta} curve	$q_0 \in [0,1]$	$q_1 = \Phi_\beta(q_0)$	(2; 0,1,1,0)
III	$q_0 \in [0,1]$	$q_1 < \Phi_\beta(q_0)$	(2; 0,0,0,0)
IV	$q_0 < 0$	$q_1 < 0$	(0; 0,1,1,0)
V	$q_0 < 0$	$q_1 \in (0, \Psi_\beta(q_0))$	(0; 1,0,0,1)
Ψ_eta curve	$q_0 < 0$	$q_1 = \Psi_\beta(q_0)$	(2; 1,0,0,1)
VI	$q_0 < 0$	$q_1 > \Psi_\beta(q_0)$	(4; 1,0,0,1)

Six regions and two bifurcation curves

э

< ロ > < 同 > < 回 > < 回 >

Each T_i represents a transition between adjacent regions.

< A >

38 N

Transitions between adjacent regions (a)

Transitions between adjacent regions (b)

A.Elipe (GME, UZ)

D-Days 2016. Salou

3

Transitions between adjacent regions (c)

э

Transition \mathcal{T}_2

Transition from region VI to region V. Through a saddle-node bifurcation.

Figure: Transition \mathcal{T}_2 : saddle-node bifurcation of triangular equilibrium on curve $q_1 = \Psi_\beta(q_0)$. Left: two equilibria in region VI. Center: one cusp equilibrium in bifurcation line. Right: no equilibrium in region V

A (1) > A (2) > A (2)

Transition T_5 from region II to region III

It appears when the value of q_0 crosses the bifurcation line. The two inner collinear equilibria approach and collide into a cup equilibrium point when $q_0 = \Phi_\beta(q_1)$. After that, the equilibrium disappears.

< ロ > < 同 > < 回 > < 回 >

Linear stability of the equilibrium points

It is characterized by the roots of the characteristic equation:

$$\lambda^4 + a\,\lambda^2 + b = 0,$$

where coefficients

$$a = 4 - U_{xx} - U_{yy}, \quad b = U_{xx}U_{yy} - U_{xy}^2$$

depend on the three parameters β , q_0 , q_1 and the coordinates, $x(\beta, q_0, q_1)$ and $y(\beta, q_0, q_1)$, of the equilibrium points

Stability of triangular equilibria

Coefficients of the characteristic equation, in this case, are

$$\begin{aligned} a &= 4 - (1 + \frac{T_x}{\Delta_T}) - (1 + \frac{T_y}{\Delta_T}) = 2 - \frac{T_x + T_y}{\Delta_T} = 1, \\ b &= (1 + \frac{T_x}{\Delta_T})(1 + \frac{T_y}{\Delta_T}) = 2 + \frac{T_x T_y}{\Delta_T^2}. \end{aligned}$$

Proposition

In region I there is a β -parameter family of bifurcation lines, $q_1 = \sigma_{\beta}(q_0)$, such as, for a given β , the line σ_{β} separates region Ia, $q_1 > \sigma_{\beta}(q_0)$, from region Ib, $q_1 < \sigma_{\beta}(q_0)$. In region Ia, the equilibrium is unstable, while in region Ib is stable.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Proposition

In region I there is a β -parameter family of bifurcation lines, $q_1 = \sigma_{\beta}(q_0)$, such as, for a given β , the line σ_{β} separates region Ia, $q_1 > \sigma_{\beta}(q_0)$, from region Ib, $q_1 < \sigma_{\beta}(q_0)$. In region Ia, the triangular equilibrium is unstable, while in region Ib is stable.

Figure: Left: Bifurcation lines for $\beta = 1/10, 1, 10, 20$. Right: Zones Ia and Ib The equilibria are stable on the colored region Ib.

A.Elipe (GME, UZ)

D-Days 2016. Salou

Proposition

Triangular equilibrium points in regions II and III are unstable.

Proposition

Inside region VI there exists a β -parameter family of bifurcation lines, $q_1 = \psi_{\beta}(q_0)$, such as, for a given β , the line ψ_{β} separates region VIa $= \{q_1 | \psi_{\beta}(q_0) < q_1 < \psi_{\beta}(q_0)\}$, from region VIb = $\{q_1 | \psi_{\beta}(q_0) < q_1\}$. In region VIa the triangular equilibrium farthest to the origin is stable, while in VIb it is unstable; in the rest of region VI it is always unstable.

Figure: The equilibrium point is stable on the colored region VIa.

A.Elipe (GME, UZ)

Image: A Image: A

Image: A math

Proposition

Triangular equilibrium points in regions II and III are unstable.

Proposition

Inside region VI there exists a β -parameter family of bifurcation lines, $q_1 = \psi_{\beta}(q_0)$, such as, for a given β , the line ψ_{β} separates region VIa $= \{q_1 | \psi_{\beta}(q_0) < q_1 < \psi_{\beta}(q_0)\}$, from region VIb $= \{q_1 | \psi_{\beta}(q_0) < q_1\}$. In region VIa the triangular equilibrium farthest to the origin is stable, while in VIb it is unstable; in the rest of region VI it is always unstable.

Figure: The equilibrium point is stable on the colored region VIa.

A.Elipe (GME, UZ)

Stability of collinear equilibria (a)

Two kind of positive collinear equilibria: the outer equilibria, in $O = (1/2, \infty)$, and the inner ones, in I = (0, 1/2).

Proposition

Outer collinear equilibria in regions I, V and VI are unstable.

Proposition

Inner collinear equilibria in regions I and IV are unstable.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Stability of collinear equilibria (a)

Two kind of positive collinear equilibria: the outer equilibria, in $O = (1/2, \infty)$, and the inner ones, in I = (0, 1/2).

Proposition

Outer collinear equilibria in regions I, V and VI are unstable.

Proposition

Inner collinear equilibria in regions I and IV are unstable.

イロト イポト イラト イラト

Stability of collinear equilibria (b)

Region II: there are two β -parameter families of bifurcation lines $q_1 = \phi_{\beta}(q_0)$ and $q_1 = \phi_{\beta}^*(q_0)$ that separates region im $IIb = \{q_1 \mid \phi_{\beta}(q_0) < q_1 < \phi_{\beta}^*(q_0)\},\$ $IIa = \{q_1 \mid q_1 > \phi_{\alpha}^*(q_0)\}$ $IIc = \{q_1 \mid \Phi_{\beta}(q_0) < q_1 < \phi_{\beta}(q_0)\}.$

Inner collinear equil.	unstable	stable
nearest to the origin	in IIb	in IIa and IIc
farthest to the origin	in II	

A.Elipe (GME, UZ)

Another problem

Periodic solutions and their parametric evolution in the planar case of the (n+1) ring problem with oblateness

Problem:

- $\star n$ equal bodies of mass m at the vertices of a regular n- gon
- \star a central body of mass $m_0 = \beta m$ at the center of the *n* gon
- \star the n- gon is rotating on its plane
- \star an infinitesimal mass orbiting around the bodies

An old problem (Maxwell, 1859), Saturn ring Recent interest:

Astrodynamics, Dynamical systems, ...

- Scheeres (1992)
- Kalvouridis (1999, 2000, ...)
- Arribas and Elipe (2004, 2005)
- Pinotsis (2005)

_ _ _

New problem:

Consider the central body spheroid or radiating source

Consequences:

- \star A new parameter ϵ
- \star New equilibria
- \star New bifurcations
- \star Dynamics much richer

Equations of motion

$$\ddot{x} - 2\dot{y} = -\frac{\partial U}{\partial x}, \qquad \ddot{y} + 2\dot{x} = -\frac{\partial U}{\partial y},$$

effective potential

$$U(x,y) = -\frac{1}{2}(x^2 + y^2) - \frac{1}{\Delta} \left(\beta \left(\frac{1}{r_0} + \frac{\epsilon}{r_0^2} \right) + \sum_{i=1}^n \frac{1}{r_i} \right),$$

Introduce the angle $\theta = \pi/n$, then

$$x_i = \frac{1}{M} \cos 2(i-1)\theta, \qquad y_i = \frac{1}{M} \sin 2(i-1)\theta,$$

with $M = 2\sin\theta$, and $\Delta = M(\Lambda + \beta M^2)$ a constant

$$\Lambda = \sin^2 \theta \sum_{i=2}^n \frac{1}{\sin(i-1)\theta}$$

The parameter $\epsilon \leq 0$,

Jacobian first integral $C = 2U + (\dot{x}^2 + \dot{y}^2)$

Periodic orbits

 $\beta = 2, n = 7, \epsilon = -0.1, -0.14$ and -0.3;

Grid search in the plane $C - x_0$

Periodic orbits with x- symmetry, then, $y_0 = 0$, $\dot{x}_0 = 0$

$$C = (\dot{x}_0^2 + \dot{y}_0^2) + 2U(x_0, y_0) \Longrightarrow C, x_0, y_0 = 0, \dot{x}_0 = 0, \quad \dot{y}_0$$

Integrate until the orbit crosses the x- axis (T/2);

Keep the value $\dot{x}(T/2)$

Repeat for $x'_0 = x_0 + \delta x_0$

Check the sign $\dot{x}(T/2)\dot{x}'(T/2)$ until negative

Repeat the procedure for another $C + \delta C$

Family F

Stability

Family G

Stability

Family I

Stability

Family IA

Stability

Family IB

Family J

Stability

Family K

Stability

Groups N's and P's

Evolution of family NB and of families of group N for e=-0.1, v=7, β =2.

Families N and NB

Families NL and PL

Stability

Families NL and PL (cont.)

Families PL and PR

