Monomial multisummability through Borel-Laplace transforms. Applications to singularly perturbed differential equations and Pfaffian systems

DDays, Salou, 10 de Noviembre de 2016
Sergio Alejandro Carrillo Torres.
Advisors: Jorge Mozo Fernández
David Blázquez Sanz.

Departamento de Álgebra, Análisis Matemático, Geometría y Topología

The notion of monomial summability was introduced in the paper:

Canalis-Durand M.,Mozo-Fernández J., Schäfke R.: Monomial summability and doubly singular differential equations. J. Differential Equations, vol. 233, (2007) 485-511.,
in order to study the formal solutions of the doubly singular equation

$$
\varepsilon^{q} x^{p+1} \frac{d y}{d x}=F(x, \varepsilon, y)
$$

The method combines the variables x and ε in the new one $t=x^{p} \varepsilon^{q}$, corresponding to the source of divergence of the solutions.

Formal setting
UVa

We work in the \mathbb{C}-algebra $\mathbb{C}[[x, \varepsilon]]$ of formal power series in two variables with complex coefficients.

Formal setting

We work in the \mathbb{C}-algebra $\mathbb{C}[[x, \varepsilon]]$ of formal power series in two variables with complex coefficients.

Given a monomial $x^{p} \varepsilon^{q}$ and a formal power series \hat{f} we can write it uniquely as

$$
\hat{f}(x, \varepsilon)=\sum_{n=0}^{\infty} f_{n}(x, \varepsilon)\left(x^{p} \varepsilon^{q}\right)^{n}
$$

We work in the \mathbb{C}-algebra $\mathbb{C}[[x, \varepsilon]]$ of formal power series in two variables with complex coefficients.

Given a monomial $x^{p} \varepsilon^{q}$ and a formal power series \hat{f} we can write it uniquely as

$$
\hat{f}(x, \varepsilon)=\sum_{n=0}^{\infty} f_{n}(x, \varepsilon)\left(x^{p} \varepsilon^{q}\right)^{n}
$$

The series $\hat{f}=\sum a_{n, m} x^{n} \varepsilon^{m}$ is $s-$ Gevrey in the monomial $x^{p} \varepsilon^{q}$ if and only if there are positive constants C, A satisfying

$$
\left|a_{n, m}\right| \leq C A^{n+m} \min \left\{n!^{s / p}, m!^{s / q}\right\}
$$

for all $n, m \in \mathbb{N}$.

Analytic setting

A sector in the monomial $x^{p} \varepsilon^{q}$ is a set defined as

$$
\begin{aligned}
\Pi_{p, q}(a, b, r) & =S_{p, q}(d, b-a, r) \\
& =\left\{(x, \varepsilon) \in \mathbb{C}^{2}\left|0<|x|^{p},|\varepsilon|^{q}<r, a<\arg \left(x^{p} \varepsilon^{q}\right)<b\right\}\right.
\end{aligned}
$$

where $a, b \in \mathbb{R}$ with $a<b$ and $r>0$. The number r is called the radius, $b-a$ the opening and $d=(b+a) / 2$ the bisecting direction of the sector, respectively.

Figure: $\Pi_{p, q}(\pi / 2,3 \pi / 2, r)$ for $p=2, q=3$.

Definition
Let $f \in \mathcal{O}\left(\Pi_{p, q}\right), \Pi_{p, q}=\Pi_{p, q}(a, b, r)$ and $\hat{f} \in \mathcal{C}$ with
$\hat{T}_{p, q} \hat{f}=\sum f_{n} t^{n} \in \mathcal{E}_{r^{\prime}}^{(p, q)}[[t]]$ for some $0<r^{\prime} \leq r$.
We say that f has \hat{f} as asymptotic expansion in $x^{p} \varepsilon^{q}$ on $\Pi_{p, q}\left(f \sim^{(p, q)} \hat{f}\right.$ on $\Pi_{p, q}$) if for every subsector $\widetilde{\Pi}_{p, q}$ and $N \in \mathbb{N}$ there is a positive constant C_{N} such that for $(x, \varepsilon) \in \widetilde{\Pi}_{p, q}$ we have:

$$
\begin{equation*}
\left|f(x, \varepsilon)-\sum_{n=0}^{N-1} f_{n}(x, \varepsilon)\left(x^{p} \varepsilon^{q}\right)^{n}\right| \leq C_{N}\left|x^{p} \varepsilon^{q}\right|^{N} \tag{1}
\end{equation*}
$$

Definition
Let $f \in \mathcal{O}\left(\Pi_{p, q}\right), \Pi_{p, q}=\Pi_{p, q}(a, b, r)$ and $\hat{f} \in \mathcal{C}$ with
$\hat{T}_{p, q} \hat{f}=\sum f_{n} t^{n} \in \mathcal{E}_{r^{\prime}}^{(p, q)}[[t]]$ for some $0<r^{\prime} \leq r$.
We say that f has \hat{f} as asymptotic expansion in $x^{p} \varepsilon^{q}$ on $\Pi_{p, q}\left(f \sim^{(p, q)} \hat{f}\right.$ on $\Pi_{p, q}$) if for every subsector $\widetilde{\Pi}_{p, q}$ and $N \in \mathbb{N}$ there is a positive constant C_{N} such that for $(x, \varepsilon) \in \widetilde{\Pi}_{p, q}$ we have:

$$
\begin{equation*}
\left|f(x, \varepsilon)-\sum_{n=0}^{N-1} f_{n}(x, \varepsilon)\left(x^{p} \varepsilon^{q}\right)^{n}\right| \leq C_{N}\left|x^{p} \varepsilon^{q}\right|^{N} \tag{1}
\end{equation*}
$$

The asymptotic expansion is said to be of s-Gevrey type $\left(f \sim_{s}^{(p, q)} \hat{f}\right.$ on $\left.\Pi_{p, q}\right)$ if it is possible to choose $C_{N}=C A^{N} N!^{s}$ for some C, A independent of N. In this case $\hat{f} \in \mathbb{C}[[x, \varepsilon]]_{s}^{(p, q)}$.

Definition

Let $k>0$ and $\hat{f} \in \mathcal{C}$ be given. We say that \hat{f} is k-summable in the monomial $x^{p} \varepsilon^{q}$ in the direction d if there is a sector $\Pi_{p, q}(a, b, r)$ bisected by d with opening $b-a>\pi / k$ and $f \in \mathcal{O}\left(\Pi_{p, q}(a, b, r)\right)$ with $f \sim_{1 / k}^{(p, q)} \hat{f}$ on $\Pi_{p, q}(a, b, r)$.

We simply say that \hat{f} is k-summable in the monomial $x^{p} \varepsilon^{q}$ if it is k-summable in the monomial $x^{p} \varepsilon^{q}$ in every direction d, with finitely many exceptions mod. 2π.

- $\mathbb{C}\{x, \varepsilon\}_{1 / k, d}^{(p, q)}: k$-summable series in $x^{p} \varepsilon^{q}$ in the direction d,
- $\mathbb{C}\{x, \varepsilon\}_{1 / k}^{(p, q)}: k$-summable series in $x^{p} \varepsilon^{q}$.

Monomial summability and blow-ups

UVa

Consider the charts of the classical blow-up of the origin of \mathbb{C}^{2}, given by

$$
\pi_{1}(x, \varepsilon)=(x \varepsilon, \varepsilon), \quad \pi_{2}(x, \varepsilon)=(x, x \varepsilon)
$$

Consider the charts of the classical blow-up of the origin of \mathbb{C}^{2}, given by

$$
\pi_{1}(x, \varepsilon)=(x \varepsilon, \varepsilon), \quad \pi_{2}(x, \varepsilon)=(x, x \varepsilon)
$$

Proposition

Let $\hat{f} \in \mathbb{C}\{x, \varepsilon\}_{1 / k, d}^{(p, q)}$ with sum f. Then $\hat{f} \circ \pi_{1} \in \mathbb{C}\{x, \varepsilon\}_{1 / k, d}^{(p, p+q)}$, $\hat{f} \circ \pi_{2} \in \mathbb{C}\{x, \varepsilon\}_{1 / k, d}^{(p+q, q)}$ and have sums $f \circ \pi_{1}, f \circ \pi_{2}$, respectively.

Tauberian properties for monomial summability
UVa

Proposition

If $\hat{f} \in \mathbb{C}\{x, \varepsilon\}_{1 / k}^{(p, q)}$ has no singular directions then $\hat{f} \in \mathbb{C}\{x, \varepsilon\}$.

Proposition

If $\hat{f} \in \mathbb{C}\{x, \varepsilon\}_{1 / k}^{(p, q)}$ has no singular directions then $\hat{f} \in \mathbb{C}\{x, \varepsilon\}$.
Theorem
Let $k, l>0$ be positive real numbers and let $x^{p} \varepsilon^{q}$ and $x^{p^{\prime}} \varepsilon^{q^{\prime}}$ be two monomials. Then $\mathbb{C}\{x, \varepsilon\}_{1 / k}^{(p, q)} \cap \mathbb{C}\{x, \varepsilon\}_{1 / l^{\left(q^{\prime}\right)}}^{\left(q^{\prime}\right)}=\mathbb{C}\{x, \varepsilon\}$, except in the case $p / p^{\prime}=q / q^{\prime}=l / k$ where $\mathbb{C}\{x, \varepsilon\}_{1 / k}^{(p, q)}=\mathbb{C}\{x, \varepsilon\}_{1 / l}^{\left(p^{\prime}, q^{\prime}\right)}$.

Definition

Let $s_{1}, s_{2}>0$ such that $s_{1}+s_{2}=1$. The k-Borel transform associated to the monomial $x^{p} \varepsilon^{q}$ with weight (s_{1}, s_{2}) of a function f is defined by the formula

$$
\mathcal{B}_{k,\left(s_{1}, s_{2}\right)}^{(p, q)}(f)(\xi, v)=\frac{\left(\xi^{p} v^{q}\right)^{-k}}{2 \pi i} \int_{\gamma} f\left(\xi u^{-s_{1} / p k}, v u^{-s_{2} / q k}\right) e^{u} d u
$$

where γ denotes a Hankel path.

Definition

Let $s_{1}, s_{2}>0$ such that $s_{1}+s_{2}=1$. The k-Borel transform associated to the monomial $x^{p} \varepsilon^{q}$ with weight $\left(s_{1}, s_{2}\right)$ of a function f is defined by the formula

$$
\mathcal{B}_{k,\left(s_{1}, s_{2}\right)}^{(p, q)}(f)(\xi, v)=\frac{\left(\xi^{p} v^{q}\right)^{-k}}{2 \pi i} \int_{\gamma} f\left(\xi u^{-s_{1} / p k}, v u^{-s_{2} / q k}\right) e^{u} d u
$$

where γ denotes a Hankel path.

The formula is adapted from the papers:
Balser W.: Summability of power series in several variables, with applications to singular perturbation problems and partial differential equations. Ann. Fac. Sci. Toulouse Math, vol. XIV, ${ }^{\circ} 4$ (2005) 593-608.

Balser W., Mozo-Fernández J.: Multisummability of Formal Solutions of Singular Perturbation Problems. J. Differential Equations, vol. 183, (2002) 526-545.

Laplace transform

Definition
Let $s_{1}, s_{2}>0$ such that $s_{1}+s_{2}=1$ and $|\alpha|<\pi / 2$. The k-Laplace transform associated to the monomial $x^{p} \varepsilon^{q}$ with weight $\left(s_{1}, s_{2}\right)$ in direction α of a function f is defined by the formula

$$
\mathcal{L}_{k, \alpha,\left(s_{1}, s_{2}\right)}^{(p, q)}(f)(x, \varepsilon)=\left(x^{p} \varepsilon^{q}\right)^{k} \int_{0}^{e^{i \alpha} \infty} f\left(x u^{s_{1} / p k}, \varepsilon u^{s_{2} / q k}\right) e^{-u} d u .
$$

Definition
Let $s_{1}, s_{2}>0$ such that $s_{1}+s_{2}=1$ and $|\alpha|<\pi / 2$. The k-Laplace transform associated to the monomial $x^{p} \varepsilon^{q}$ with weight $\left(s_{1}, s_{2}\right)$ in direction α of a function f is defined by the formula

$$
\mathcal{L}_{k, \alpha,\left(s_{1}, s_{2}\right)}^{(p, q)}(f)(x, \varepsilon)=\left(x^{p} \varepsilon^{q}\right)^{k} \int_{0}^{e^{i \alpha} \infty} f\left(x u^{s_{1} / p k}, \varepsilon u^{s_{2} / q k}\right) e^{-u} d u .
$$

We assume that f has an exponential growth of the form

$$
\begin{equation*}
|f(\xi, v)| \leq C e^{B \max \left\{|\xi|^{p k / s_{1}},|v|^{q k / s_{2}}\right\}} . \tag{2}
\end{equation*}
$$

Definition
Let \hat{f} be a $1 / k-$ Gevrey series in $x^{p} \varepsilon^{q}$ and set $\hat{\varphi}_{s_{1}, s_{2}}=\hat{\mathcal{B}}_{k,\left(s_{1}, s_{2}\right)}^{(p, q)}\left(\left(x^{p} \varepsilon^{q}\right)^{k} \hat{f}\right)$.
We will say that \hat{f} is $k-\left(s_{1}, s_{2}\right)$-Borel summable in the monomial $x^{p} \varepsilon^{q}$ in direction d if:

1. $\hat{\varphi}_{s_{1}, s_{2}}$ can be analytically continued, say as $\varphi_{s_{1}, s_{2}}$, to a monomial sector of the form $S_{p, q}(d, 2 \epsilon,+\infty)$,
2. $\varphi_{s_{1}, s_{2}}$ has exponential growth as in (2).

Definition
Let \hat{f} be a $1 / k-$ Gevrey series in $x^{p} \varepsilon^{q}$ and set $\hat{\varphi}_{s_{1}, s_{2}}=\hat{\mathcal{B}}_{k,\left(s_{1}, s_{2}\right)}^{(p, q)}\left(\left(x^{p} \varepsilon^{q}\right)^{k} \hat{f}\right)$.
We will say that \hat{f} is $k-\left(s_{1}, s_{2}\right)$-Borel summable in the monomial $x^{p} \varepsilon^{q}$ in direction d if:

1. $\hat{\varphi}_{s_{1}, s_{2}}$ can be analytically continued, say as $\varphi_{s_{1}, s_{2}}$, to a monomial sector of the form $S_{p, q}(d, 2 \epsilon,+\infty)$,
2. $\varphi_{s_{1}, s_{2}}$ has exponential growth as in (2).

In this case the $k-\left(s_{1}, s_{2}\right)$-Borel sum of \hat{f} in direction d is defined as

$$
f(x, \varepsilon)=\frac{1}{\left(x^{p} \varepsilon^{q}\right)^{k}} \mathcal{L}_{k,\left(s_{1}, s_{2}\right)}^{(p,,)}\left(\varphi_{s_{1}, s_{2}}\right)(x, \varepsilon)
$$

Theorem
Let $\hat{f} \in \mathbb{C}\left[[x, \varepsilon]_{1 / k}^{(p, q)}\right.$ be a $1 / k-$ Gevrey series in the monomial $x^{p} \varepsilon^{q}$. Then it is equivalent:

1. $\hat{f} \in \mathbb{C}\{x, \varepsilon\}_{1 / k, d^{\prime}}^{(p, q)}$,
2. There are $s_{1}, s_{2}>0$ with $s_{1}+s_{2}=1$ such that \hat{f} is $k-\left(s_{1}, s_{2}\right)$-Borel summable in the monomial $x^{p} \varepsilon^{q}$ in direction d.
3. For all $s_{1}, s_{2}>0$ such that $s_{1}+s_{2}=1, \hat{f}$ is $k-\left(s_{1}, s_{2}\right)$-Borel summable in the monomial $x^{p} \varepsilon^{q}$ in direction d.
In all cases the corresponding sums coincide.

UVa

Applications

Doubly singular equations

Theorem
Consider the singularly perturbed differential equation

$$
\varepsilon^{q} x^{p+1} \frac{d y}{d x}=F(x, \varepsilon, y),
$$

where $y \in \mathbb{C}^{l}, p, q \in \mathbb{N}^{*}, F$ analytic in a neighborhood of $(0,0, \mathbf{0})$ and $F(0,0, \mathbf{0})=\mathbf{0}$.

If $\partial F / \partial y(0,0, \mathbf{0})$ is invertible then the previous equation has a unique formal solution \hat{y}. Furthermore it is 1 -summable in $x^{p} \varepsilon^{q}$.

Monomial summability of a family of PDEs

Consider the problem

$$
\begin{equation*}
x^{p} \varepsilon^{q}\left(\frac{s_{1}}{p} x \frac{\partial y}{\partial x}+\frac{s_{2}}{q} \varepsilon \frac{\partial y}{\partial \varepsilon}\right)=C(x, \varepsilon) y(x, \varepsilon)+\gamma(x, \varepsilon) \tag{3}
\end{equation*}
$$

where $p, q \in \mathbb{N}^{*}, s_{1}, s_{2}>0$ satisfy $s_{1}+s_{2}=1$ and $C \in \operatorname{Mat}(l \times l, \mathbb{C}\{x, \varepsilon\})$, $\gamma \in \mathbb{C}\{x, \varepsilon\}^{l}$.

Theorem
If $C(0,0)$ is invertible then equation (3) has a unique formal solution \hat{y} and it is 1 -summable in $x^{p} \varepsilon^{q}$. Its possible singular directions are the directions passing through the eigenvalues of $C(0,0)$.

Pfaffian system with normal crossings
UVa

Consider the following the system of PDEs:

$$
\left\{\begin{array}{l}
\varepsilon^{q} x^{p+1} \frac{\partial y}{\partial x}=f_{1}(x, \varepsilon, y) \tag{4a}\\
x^{p^{\prime}} \varepsilon^{q^{\prime}+1} \frac{\partial y}{\partial \varepsilon}=f_{2}(x, \varepsilon, y)
\end{array}\right.
$$

where $p, q, p^{\prime}, q^{\prime} \in \mathbb{N}^{*}, y \in \mathbb{C}^{l}$, and f_{1}, f_{2} are analytic in a neighborhood of $(0,0, \mathbf{0})$.

Consider the following the system of PDEs:

$$
\left\{\begin{array}{l}
\varepsilon^{q} x^{p+1} \frac{\partial y}{\partial x}=f_{1}(x, \varepsilon, y) \tag{4a}\\
x^{p^{\prime}} \varepsilon^{q^{\prime}+1} \frac{\partial y}{\partial \varepsilon}=f_{2}(x, \varepsilon, y)
\end{array}\right.
$$

where $p, q, p^{\prime}, q^{\prime} \in \mathbb{N}^{*}, y \in \mathbb{C}^{l}$, and f_{1}, f_{2} are analytic in a neighborhood of $(0,0, \mathbf{0})$.

It is called completely integrable if $f_{1}(x, \varepsilon, \mathbf{0})=f_{2}(x, \varepsilon, \mathbf{0})=\mathbf{0}$ and the functions f_{1}, f_{2} satisfy the following identity on their domains of definition:

$$
\begin{aligned}
& \frac{\partial}{\partial \varepsilon}\left(\frac{1}{x^{p+1} \varepsilon^{q}}\right) f_{1}+\frac{1}{x^{p+1} \varepsilon^{q}}\left(\frac{\partial f_{1}}{\partial \varepsilon}+\frac{\partial f_{1}}{\partial y} \frac{f_{2}}{x^{p^{\prime}} \varepsilon^{q^{\prime}+1}}\right)= \\
& \frac{\partial}{\partial x}\left(\frac{1}{x^{p^{\prime}} \varepsilon^{q^{\prime}+1}}\right) f_{2}+\frac{1}{x^{p^{\prime}} \varepsilon^{q^{\prime}+1}}\left(\frac{\partial f_{2}}{\partial x}+\frac{\partial f_{2}}{\partial y} \frac{f_{1}}{x^{p+1} \varepsilon^{q}}\right) .
\end{aligned}
$$

If the system is completely integrable, $f_{1}=A y+h . o . t$. and $f_{2}=B y+h . o . t$. then A and B satisfy

$$
x^{p^{\prime}} \varepsilon^{q^{\prime}}\left(\varepsilon \frac{\partial A}{\partial \varepsilon}-q A\right)-x^{p} \varepsilon^{q}\left(x \frac{\partial B}{\partial x}-p^{\prime} B\right)+A B-B A=0 .
$$

If the system is completely integrable, $f_{1}=A y+h . o . t$. and $f_{2}=B y+h . o . t$. then A and B satisfy

$$
x^{p^{\prime}} \varepsilon^{q^{\prime}}\left(\varepsilon \frac{\partial A}{\partial \varepsilon}-q A\right)-x^{p} \varepsilon^{q}\left(x \frac{\partial B}{\partial x}-p^{\prime} B\right)+A B-B A=0 .
$$

From this equation we have deduced that:

1. If $p^{\prime}<p$ or $q^{\prime}<q$ then $A(0,0)$ is nilpotent.
2. If $p<p^{\prime}$ or $q<q^{\prime}$ then $B(0,0)$ is nilpotent.
3. If $p=p^{\prime}$ and $q=q^{\prime}$, for every eigenvalue μ of $B(0,0)$ there is an eigenvalue λ of $A(0,0)$ such that $q \lambda=p \mu$. The number λ is an eigenvalue of $A(0,0)$, when restricted to its invariant subspace $E_{\mu}=\left\{v \in \mathbb{C}^{n} \mid(B(0,0)-\mu I)^{k} v=0\right.$ for some $\left.k \in \mathbb{N}\right\}$.

Theorem (Gérard-Sibuya)
Consider the completely integrable Pffafian system (4a), (4b), with $q=p^{\prime}=0$. If $\frac{\partial f_{1}}{\partial y}(0,0, \mathbf{0})$ and $\frac{\partial f_{2}}{\partial y}(0,0, \mathbf{0})$ are invertible then the Pfaffian system admits a unique analytic solution y at the origin such that $y(0,0)=\mathbf{0}$.

Theorem (Gérard-Sibuya)
Consider the completely integrable Pffafian system (4a), (4b), with $q=p^{\prime}=0$. If $\frac{\partial f_{1}}{\partial y}(0,0, \mathbf{0})$ and $\frac{\partial f_{2}}{\partial y}(0,0, \mathbf{0})$ are invertible then the Pfaffian system admits a unique analytic solution y at the origin such that $y(0,0)=\mathbf{0}$.

Theorem
Consider the system (4a), (4b). Suppose the system has a formal solution \hat{y}. If $\frac{\partial f_{1}}{\partial y}(0,0, \mathbf{0})$ and $\frac{\partial f_{2}}{\partial y}(0,0, \mathbf{0})$ are invertible and $x^{p} \varepsilon^{q} \neq x^{p^{\prime}} \varepsilon^{q^{\prime}}$ then \hat{y} is convergent.

Convergence of solutions for the same monomial

For the same monomial, in the linear case we have

$$
\left\{\begin{array}{l}
\varepsilon^{q} x^{p+1} \frac{\partial y}{\partial x}=A(x, \varepsilon) y(x, \varepsilon)+a(x, \varepsilon) \tag{5a}\\
x^{p} \varepsilon^{q+1} \frac{\partial y}{\partial \varepsilon}=B(x, \varepsilon) y(x, \varepsilon)+b(x, \varepsilon)
\end{array}\right.
$$

Corollary
If the system has a formal solution \hat{y} and there are $s_{1}, s_{2}>0$ such that $s_{1}+s_{2}=1$ and $s_{1} / p A(0,0)+s_{2} / q B(0,0)$ is invertible, then \hat{y} is 1 -summable in $x^{p} \varepsilon^{q}$. Its possible singular directions are the directions passing through the eigenvalues of $s_{1} / p A(0,0)+s_{2} / q B(0,0)$.

Towards Monomial Multisummability

Examples of series not k-summable in any monomial

Theorem
Let $\hat{f}_{j} \in \mathbb{C}\{x, \varepsilon\}_{1 / k_{j}}^{\left(p_{j}, q_{j}\right)} \backslash \mathbb{C}\{x, \varepsilon\}$ be k_{j}-summable in $x^{p_{j}} \varepsilon^{q_{j}}$, for $j=1, \ldots, r$, respectively.

Then $\hat{f}_{0}=\hat{f}_{1}+\cdots+\hat{f}_{r}$ is $k_{0}-$ summable in $x^{p_{0}} \varepsilon^{q_{0}}$ if and only if $k_{0} p_{0}=k_{j} p_{j}$ and $k_{0} q_{0}=k_{j} q_{j}$ for all $j=1, \ldots, r$.

Monomial acceleration operators

Following the same idea as in the one variable case, we formally compute the composition of a Borel and Laplace transform for different indexes. Indeed, we see that

$$
\mathcal{B}_{l,\left(s_{1}^{\prime}, s_{2}^{\prime}\right)}^{\left(p^{\prime}, q^{\prime}\right)} \circ \mathcal{L}_{k, d,\left(s_{1}, s_{2}\right)}^{(p, q)}(f)(\xi, v)=\frac{\left(\xi^{p} v^{q}\right)^{k}}{\left(\xi^{p^{\prime}} v^{q^{\prime}}\right)^{l}} \int_{0}^{e^{i \theta} \infty} f\left(\xi \tau^{s_{1} / p k}, v \tau^{s_{2} / q k}\right) C_{\Lambda l / k}(\tau) d \tau
$$

where the parameters satisfy the relations

$$
\begin{gathered}
\Lambda:=\frac{s_{1}}{s_{1}^{\prime}} \frac{p^{\prime}}{p}=\frac{s_{2}}{s_{2}^{\prime}} \frac{q^{\prime}}{q} \\
s_{1}\left(p^{\prime} q-p q^{\prime}\right)>\frac{p}{l}\left(q k-q^{\prime} l\right)
\end{gathered}
$$

Let $I=\left(p^{\prime}, q^{\prime}, l, s_{1}^{\prime}, s_{2}^{\prime}, p, q, k, s_{1}, s_{2}\right)$, with parameters as before. The acceleration operator associated to I in direction θ is given by

$$
\mathfrak{A}_{I, \theta}(f)(\xi, v)=\frac{\left(\xi^{p} v^{q}\right)^{k}}{\left(\xi^{p^{\prime}} v^{q^{\prime}}\right)^{l}} \int_{0}^{e^{i \theta} \infty} f\left(\xi \tau^{s_{1} / p k}, v \tau^{s_{2} / q k}\right) C_{\Lambda l / k}(\tau) d \tau
$$

and it is defined for functions f with exponential growth

$$
\begin{gather*}
|f(\xi, v)| \leq C e^{M \max \left\{|\xi|^{\kappa_{1}},|v|^{\kappa_{2}}\right\}} \tag{6}\\
\frac{1}{\kappa_{1}}:=\frac{s_{1}}{p k}-\frac{s_{1}^{\prime}}{p^{\prime} l}, \quad \frac{1}{\kappa_{2}}:=\frac{s_{2}}{q k}-\frac{s_{2}^{\prime}}{q^{\prime} l}
\end{gather*}
$$

Definition
We say that \hat{f} is I-multisummable in the multidirection $\left(d_{1}, d_{2}\right)$ if the following conditions are satisfied

1. \hat{f} is $1 / k$-Gevrey in the monomial $x^{p} \varepsilon^{q}$,
2. $\hat{\mathcal{B}}_{k,\left(s_{1}, s_{2}\right)}^{(p, q)}(\hat{f})$ can be analytically continued, say φ, to some $S_{p, q}\left(d_{1}, \theta_{1},+\infty\right)$, with exponential growth as in (6).
3. $\mathfrak{A}_{I}(\varphi)$ can be analytically continued, say ψ, to
$S_{p, q}\left(d_{1}, \theta_{1}^{\prime},+\infty\right) \cap S_{p^{\prime}, q^{\prime}}\left(d_{2}, \theta_{2}^{\prime},+\infty\right)$, with exponential growth as in (2).

Definition

We say that \hat{f} is I-multisummable in the multidirection $\left(d_{1}, d_{2}\right)$ if the following conditions are satisfied

1. \hat{f} is $1 / k$-Gevrey in the monomial $x^{p} \varepsilon^{q}$,
2. $\hat{\mathcal{B}}_{k,\left(s_{1}, s_{2}\right)}^{(p, q)}(\hat{f})$ can be analytically continued, say φ, to some $S_{p, q}\left(d_{1}, \theta_{1},+\infty\right)$, with exponential growth as in (6).
3. $\mathfrak{A}_{I}(\varphi)$ can be analytically continued, say ψ, to
$S_{p, q}\left(d_{1}, \theta_{1}^{\prime},+\infty\right) \cap S_{p^{\prime}, q^{\prime}}\left(d_{2}, \theta_{2}^{\prime},+\infty\right)$, with exponential growth as in (2).
The I-multisum of \hat{f} in the multidirection $\left(d_{1}, d_{2}\right)$ is defined as

$$
f(x, \varepsilon)=\mathcal{L}_{l,\left(s_{1}^{\prime}, s_{2}^{\prime}\right)}^{\left(p^{\prime}, q^{\prime}\right)}(\psi)(x, \varepsilon)
$$

and it is analytic on some $S_{p, q}\left(d_{1}, \theta_{1}^{\prime \prime}+\pi / l \Lambda, r\right) \cap S_{p^{\prime}, q^{\prime}}\left(d_{2}, \theta_{2}^{\prime \prime}+\pi / l, r\right)$, where $\theta_{1}^{\prime \prime}<\theta_{1}^{\prime}, \theta_{2}^{\prime \prime}<\theta_{2}^{\prime}$ and r is small enough.

The results of this thesis are contained in the following papers:

1. Carrillo, S. A., Mozo-Fernández, J. An extension of Borel-Laplace methods and monomial summability. Submitted to publication. Available at arxiv.org/abs/1609.07893.
2. Carrillo, S. A., Mozo-Fernández, J. Tauberian properties for monomial summability with appliactions to Pffafian systems. Journal of Differential Equations 261 (2016) pp. 7237-7255. ISSN 0022-0396, http://dx.doi.org/10.1016/j.jde.2016.09.017.

Thanks for your attention.

