Analytical tools to study the criticality at the outer boundary of potential centers

David Rojas Pérez

Dynamical Days 2016, Salou, 10 de novembre de 2016.

Table of Contents

1 Introduction

• The period function

2 Bifurcation from the outer boundary

- Definition of criticality at the outer boundary
- Some notation for potential centers
- Operators \mathscr{F} and \mathscr{L}
- Bounding criticality for potential centers with infinite energy level

1 Introduction

The period function

- Definition of criticality at the outer boundary
- Some notation for potential centers
- Operators \mathcal{F} and \mathcal{L}
- Bounding criticality for potential centers with infinite energy level

Definitions

Consider planar differential systems

$$\left\{ \begin{array}{l} \dot{x}=f(x,y),\\ \dot{y}=g(x,y), \end{array} \right.$$

where f and g are analytic functions on $U \subset \mathbb{R}^2$, with a center at $p \in U$. We denote the *period annulus* of the center by \mathscr{P} . If $\{\gamma_s\}_{s \in (0,1)}$ is a parametrization of the set of periodic orbits in \mathscr{P} , the *period function* can be written as the map $s \mapsto T(s) := \{\text{period of } \gamma_s\}$.

Definitions

Definition 1.1. For a given $\hat{s} \in (0,1)$ we say that $\gamma_{\hat{s}}$ is a *critical periodic* orbit of multiplicity k of the center if \hat{s} is an isolated zero of T'(s) of multiplicity k.

The period annulus \mathscr{P} may be unbounded. We compactify \mathbb{R}^2 into \mathbb{RP}^2 in order to define properly $\partial \mathscr{P}$ as a compact subset of \mathbb{RP}^2 .

We denote the *outer boundary* of \mathscr{P} by $\Pi := \partial \mathscr{P} \setminus \{p\}$.

Definitions

Definition 1.1. For a given $\hat{s} \in (0,1)$ we say that $\gamma_{\hat{s}}$ is a *critical periodic* orbit of multiplicity k of the center if \hat{s} is an isolated zero of T'(s) of multiplicity k.

The period annulus \mathscr{P} may be unbounded. We compactify \mathbb{R}^2 into \mathbb{RP}^2 in order to define properly $\partial \mathscr{P}$ as a compact subset of \mathbb{RP}^2 .

We denote the *outer boundary* of \mathscr{P} by $\Pi := \partial \mathscr{P} \setminus \{p\}$.

Introduction The period function

Definitions

Let us assume $X_{\mu} = f_{\mu}(x, y)\partial_x + g_{\mu}(x, y)\partial_y$ be a continuous family of analytic centers at p_{μ} , with $\mu \in \Lambda \subset \mathbb{R}^d$.

Aim

To decompose the parameter space $\Lambda = \bigcup \Lambda_i$ in such a way that if $\mu_1, \mu_2 \in \Lambda_i$ then T_{μ_1} and T_{μ_2} are qualitatively the same.

P. Mardešić, D. Marín, J. Villadelprat,

The period function of reversible quadratic centers, J. Differential Equations 134, (1997) 216-268.

Three places where a critical periodic orbit may bifurcate from:

- Bifurcation from p_{μ} .
- Bifurcation from the "interior" of \mathscr{P}_{μ} .
- Bifurcation from Π_{μ} .

Bifurcation from the outer boundary Definition of criticality at the outer boundary

Outline

• The period function

2 Bifurcation from the outer boundary

Definition of criticality at the outer boundary

- Some notation for potential centers
- \bullet Operators ${\mathscr F}$ and ${\mathscr L}$
- Bounding criticality for potential centers with infinite energy level

Bifurcation from the outer boundary Definition of criticality at the outer boundary

Bifurcation from the outer boundary

Definition 2.1. Consider a continuous family $\{X_{\mu}\}_{\mu \in \Lambda}$ of planar analytic vector fields with a center and fix some $\hat{\mu} \in \Lambda$.

Bifurcation from the outer boundary Definition of criticality at the outer boundary

Bifurcation from the outer boundary

Definition 2.1. Consider a continuous family $\{X_{\mu}\}_{\mu \in \Lambda}$ of planar analytic vector fields with a center and fix some $\hat{\mu} \in \Lambda$. Suppose that the outer boundary of the period annulus varies continuously at $\hat{\mu} \in \Lambda$.

Definition 2.1. Consider a continuous family $\{X_{\mu}\}_{\mu\in\Lambda}$ of planar analytic vector fields with a center and fix some $\hat{\mu} \in \Lambda$. Suppose that the outer boundary of the period annulus varies continuously at $\hat{\mu} \in \Lambda$. Then, setting

$$N(\delta,\varepsilon) = \sup \left\{ \begin{aligned} \# \text{critical periodic orbits } \gamma \text{ of } X_{\mu} \\ \text{with } d_{H}(\gamma,\Pi_{\hat{\mu}}) \leqslant \varepsilon \text{ and } \|\mu - \hat{\mu}\| \leqslant \delta \end{aligned} \right\}$$

we define $\operatorname{Crit}((\Pi_{\hat{\mu}}, X_{\hat{\mu}}), X_{\mu}) := \inf_{\delta, \varepsilon} N(\delta, \varepsilon)$ to be the *criticality* of $(\Pi_{\hat{\mu}}, X_{\hat{\mu}})$ with respect to the deformation X_{μ} .

Bifurcation from the outer boundary Some notation for potential centers

Outline

• The period function

2 Bifurcation from the outer boundary

- Definition of criticality at the outer boundary
- Some notation for potential centers
- \bullet Operators ${\mathscr F}$ and ${\mathscr L}$
- Bounding criticality for potential centers with infinite energy level

Bifurcation from the outer boundary Some notation for potential centers

Some notation

Consider potential systems

$$\begin{cases} \dot{x} = -y, \\ \dot{y} = V'_{\mu}(x), \end{cases}$$

where V_{μ} is analytic and $V_{\mu}(0) = V'_{\mu}(0) = 0$ and $V''_{\mu}(0) > 0$.

- $\mathcal{I}_{\mu} = (x_{\ell}(\mu), x_r(\mu))$ denotes the projection of the period annulus \mathscr{P}_{μ} on the *x*-axis.
- $H_{\mu}(x,y) = \frac{1}{2}y^2 + V_{\mu}(x).$
- The energy level of Π_{μ} is $+\infty$. That is, $V_{\mu}(\mathcal{I}_{\mu}) = [0, +\infty)$.

•
$$g_{\mu}(x) := x \sqrt{V_{\mu}(x)/x^2}$$

Figure: Interpretation of the periodic orbit γ_h .

We parametrize the set of periodic orbits by the energy.

$$T_{\mu}(h) = \sqrt{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (g_{\mu}^{-1})'(\sqrt{h}\sin\theta)d\theta.$$

$$T_{\mu}(h) = \sqrt{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (g_{\mu}^{-1})'(\sqrt{h}\sin\theta)d\theta.$$

So,

$$T'_{\mu}(h) = \frac{1}{\sqrt{2h}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (g_{\mu}^{-1})''(\sqrt{h}\sin\theta)\sqrt{h}\sin\theta d\theta.$$

$$T_{\mu}(h) = \sqrt{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (g_{\mu}^{-1})'(\sqrt{h}\sin\theta)d\theta.$$

So,

$$T'_{\mu}(h) = \frac{1}{\sqrt{2}h} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (g_{\mu}^{-1})''(\sqrt{h}\sin\theta)\sqrt{h}\sin\theta d\theta.$$

Complications:

• The function $T_{\mu}(h)$ is not analytic in $h = +\infty$.

$$T_{\mu}(h) = \sqrt{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (g_{\mu}^{-1})'(\sqrt{h}\sin\theta)d\theta.$$

So,

$$T'_{\mu}(h) = \frac{1}{\sqrt{2}h} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (g_{\mu}^{-1})''(\sqrt{h}\sin\theta)\sqrt{h}\sin\theta d\theta.$$

Complications:

• The function $T_{\mu}(h)$ is not analytic in $h = +\infty$.

Idea:

- Show that $T'_{\mu}(h)$ has sign for $h \approx +\infty$.
- IMPORTANT: The uniformity on the parameters is required.

Outline

• The period function

2 Bifurcation from the outer boundary

- Definition of criticality at the outer boundary
- Some notation for potential centers
- ullet Operators ${\mathscr F}$ and ${\mathscr L}$
- Bounding criticality for potential centers with infinite energy level

The bifurcation problem at the outer boundary turns into give a uniform upper-bound of the number of zeroes of $T'_{\mu}(h)$ near $h \approx +\infty$.

Definition 2.2. Let $f_0, f_1, \ldots, f_{n-1}$ be analytic functions on I. The ordered set $(f_0, f_1, \ldots, f_{n-1})$ is an *extended complete Chebyshev system* (ECT-system) on I if, for all $k = 1, 2, \ldots, n$, any nontrivial linear combination

$$a_0 f_0(x) + a_1 f_1(x) + \dots + a_{k-1} f_{k-1}(x)$$

has at most k-1 isolated zeros on I counted with multiplicities.

Definition 2.2. Let $f_0, f_1, \ldots, f_{n-1}$ be analytic functions on I. The ordered set $(f_0, f_1, \ldots, f_{n-1})$ is an *extended complete Chebyshev system* (ECT-system) on I if, for all $k = 1, 2, \ldots, n$, any nontrivial linear combination

$$a_0 f_0(x) + a_1 f_1(x) + \dots + a_{k-1} f_{k-1}(x)$$

has at most k-1 isolated zeros on I counted with multiplicities.

We consider the operator $\mathscr{F}:\mathcal{C}^\omega([0,+\infty))\to\mathcal{C}^\omega([0,+\infty))$ defined by

$$\mathscr{F}[f](x) := \int_0^{\frac{\pi}{2}} f(x\sin\theta) d\theta.$$

The main idea is to find some analytic real functions $\phi_{\mu}^{1}, \ldots, \phi_{\mu}^{n}$ satisfying that there exist $\varepsilon, M > 0$ such that if $\|\mu - \hat{\mu}\| < \varepsilon$ then $(\phi_{\mu}^{1}, \ldots, \phi_{\mu}^{n}, \mathscr{F}[f_{\mu}])$ form an ECT-system on the interval $(M, +\infty)$.

Definition 2.2. Let $f_0, f_1, \ldots, f_{n-1}$ be analytic functions on I. The ordered set $(f_0, f_1, \ldots, f_{n-1})$ is an *extended complete Chebyshev system* (ECT-system) on I if, for all $k = 1, 2, \ldots, n$, any nontrivial linear combination

$$a_0 f_0(x) + a_1 f_1(x) + \dots + a_{k-1} f_{k-1}(x)$$

has at most k-1 isolated zeros on I counted with multiplicities.

We consider the operator $\mathscr{F}:\mathcal{C}^\omega([0,+\infty))\to\mathcal{C}^\omega([0,+\infty))$ defined by

$$\mathscr{F}[f](x) := \int_0^{\frac{\pi}{2}} f(x\sin\theta) d\theta.$$

The main idea is to find some analytic real functions $\phi_{\mu}^{1}, \ldots, \phi_{\mu}^{n}$ satisfying that there exist $\varepsilon, M > 0$ such that if $\|\mu - \hat{\mu}\| < \varepsilon$ then $(\phi_{\mu}^{1}, \ldots, \phi_{\mu}^{n}, \mathscr{F}[f_{\mu}])$ form an ECT-system on the interval $(M, +\infty)$.

Lemma

Let $f_0, f_1, \ldots, f_{n-1}$ be analytic functions on I. $(f_0, f_1, \ldots, f_{n-1})$ in an ECT-system on I if and only if for each $k \in \{1, \ldots, n\}$, $W[f_0, f_1, \ldots, f_{k-1}](x) \neq 0$ for all $x \in I$.

We want to find continuous functions ν_1, \ldots, ν_n pairwise distinct at $\mu = \hat{\mu}$ satisfying that there exist $\varepsilon, M > 0$ such that if $\|\mu - \hat{\mu}\| < \varepsilon$ then the function

$$x \mapsto W[x^{\nu_1(\mu)}, \dots, x^{\nu_n(\mu)}, \mathscr{F}[f_\mu](x)]$$

has no zeros in $(M, +\infty)$.

We want to find continuous functions ν_1, \ldots, ν_n pairwise distinct at $\mu = \hat{\mu}$ satisfying that there exist $\varepsilon, M > 0$ such that if $\|\mu - \hat{\mu}\| < \varepsilon$ then the function

$$x \mapsto W[x^{\nu_1(\mu)}, \dots, x^{\nu_n(\mu)}, \mathscr{F}[f_\mu](x)]$$

has no zeros in $(M, +\infty)$. This is based in assuming that $\mathscr{F}[f_{\mu}](x)$ has an asymptotic development

$$\mathscr{F}[f_{\mu}](x) = a_1(\mu)x^{\nu_1(\mu)} + a_2(\mu)x^{\nu_2(\mu)} + \dots + a_n(\mu)x^{\nu_n(\mu)} + \dots$$

and the division-derivation algorithm.

We want to find continuous functions ν_1, \ldots, ν_n pairwise distinct at $\mu = \hat{\mu}$ satisfying that there exist $\varepsilon, M > 0$ such that if $\|\mu - \hat{\mu}\| < \varepsilon$ then the function

$$x \mapsto W[x^{\nu_1(\mu)}, \dots, x^{\nu_n(\mu)}, \mathscr{F}[f_\mu](x)]$$

has no zeros in $(M, +\infty)$. This is based in assuming that $\mathscr{F}[f_{\mu}](x)$ has an asymptotic development

$$\mathscr{F}[f_{\mu}](x) = a_1(\mu)x^{\nu_1(\mu)} + a_2(\mu)x^{\nu_2(\mu)} + \dots + a_n(\mu)x^{\nu_n(\mu)} + \dots$$

and the division-derivation algorithm.

Definition 2.4. Let $\{f_{\mu}\}_{\mu\in\Lambda}$ be a continuous family of analytic functions in $[0, +\infty)$. Given $\hat{\mu} \in \Lambda$ we say that $\{f_{\mu}\}$ is *continuously quantifiable* in $\hat{\mu}$ at $+\infty$ by $\alpha(\mu)$ with limit ℓ if $\lim_{(x,\mu)\to(+\infty,\hat{\mu})} \frac{f_{\mu}(x)}{x^{\alpha(\mu)}} = \ell$ and $\ell \neq 0$. Let us denote it by $f_{\mu}(x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$.

Definition 2.5. For $f \in C^{\omega}([0, +\infty))$ we call $M_n[f] := \int_0^{+\infty} x^{2n-2} f(x) dx$ the *n*-th momentum of *f*, whenever it is well defined.

Case
$$n = 0$$
 (there are no functions ν_i)

Consider a continuous family $\{f_{\mu}\}_{\mu \in \Lambda}$ of analytic functions on $[0, +\infty)$.

Case
$$n = 0$$
 (there are no functions ν_i)

Consider a continuous family $\{f_{\mu}\}_{\mu\in\Lambda}$ of analytic functions on $[0, +\infty)$. Suppose that $f_{\mu}(x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$.

Case
$$n = 0$$
 (there are no functions ν_i)

Consider a continuous family $\{f_{\mu}\}_{\mu \in \Lambda}$ of analytic functions on $[0, +\infty)$. Suppose that $f_{\mu}(x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$. The following assertions hold: (a) If $\alpha(\hat{\mu}) > -1$, then $\mathscr{F}[f_{\mu}](x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$.

Case
$$n = 0$$
 (there are no functions ν_i)

Consider a continuous family $\{f_{\mu}\}_{\mu \in \Lambda}$ of analytic functions on $[0, +\infty)$. Suppose that $f_{\mu}(x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$. The following assertions hold: (a) If $\alpha(\hat{\mu}) > -1$, then $\mathscr{F}[f_{\mu}](x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$. (b) If $\alpha(\hat{\mu}) < -1$, let us take $n \in \mathbb{N}$ such that $\alpha(\hat{\mu}) + 2n \in [-1, 1)$.

Case
$$n = 0$$
 (there are no functions ν_i)

Consider a continuous family $\{f_{\mu}\}_{\mu \in \Lambda}$ of analytic functions on $[0, +\infty)$. Suppose that $f_{\mu}(x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$. The following assertions hold:

- (a) If $\alpha(\hat{\mu}) > -1$, then $\mathscr{F}[f_{\mu}](x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$.
- (b) If $\alpha(\hat{\mu}) < -1$, let us take $n \in \mathbb{N}$ such that $\alpha(\hat{\mu}) + 2n \in [-1, 1)$. In this case:
 - (b1) If $M_1[f_\mu] \equiv M_2[f_\mu] \equiv \ldots \equiv M_{j-1}[f_\mu] \equiv 0$ and $M_j[f_\mu] \neq 0$ for some $1 \leq j \leq n$, then

$$\mathscr{F}[f_{\mu}](x) \sim_{\infty} x^{1-2j}$$
 in $\hat{\mu}$.

Case
$$n = 0$$
 (there are no functions ν_i)

Consider a continuous family $\{f_{\mu}\}_{\mu \in \Lambda}$ of analytic functions on $[0, +\infty)$. Suppose that $f_{\mu}(x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$. The following assertions hold: (a) If $\alpha(\hat{\mu}) > -1$, then $\mathscr{F}[f_{\mu}](x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$. (b) If $\alpha(\hat{\mu}) < -1$, let us take $n \in \mathbb{N}$ such that $\alpha(\hat{\mu}) + 2n \in [-1, 1)$. In this case: (b) If $M_{\nu}[f_{\nu}] = M_{\nu}[f_{\nu}] = M_{\nu}[f_{\nu}] = 0$ and $M_{\nu}[f_{\nu}] \neq 0$ for some

(b1) If $M_1[f_\mu] \equiv M_2[f_\mu] \equiv \ldots \equiv M_{j-1}[f_\mu] \equiv 0$ and $M_j[f_\mu] \neq 0$ for some $1 \leq j \leq n$, then

$$\mathscr{F}[f_{\mu}](x) \sim_{\infty} x^{1-2j}$$
 in $\hat{\mu}$.

(b2) If $M_1[f_{\mu}] \equiv M_2[f_{\mu}] \equiv \cdots \equiv M_n[f_{\mu}] \equiv 0$ and $\alpha(\hat{\mu}) + 2n \notin \{-1, 0\}$, then

$$\mathscr{F}[f_{\mu}](x) \sim_{\infty} x^{\alpha(\mu)}$$
 in $\hat{\mu}$.

Case
$$n = 0$$
 (there are no functions ν_i)

Consider a continuous family $\{f_{\mu}\}_{\mu \in \Lambda}$ of analytic functions on $[0, +\infty)$. Suppose that $f_{\mu}(x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$. The following assertions hold: (a) If $\alpha(\hat{\mu}) > -1$, then $\mathscr{F}[f_{\mu}](x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$. (b) If $\alpha(\hat{\mu}) < -1$, let us take $n \in \mathbb{N}$ such that $\alpha(\hat{\mu}) + 2n \in [-1, 1)$. In this case: (b1) If $M_1[f_{\mu}] \equiv M_2[f_{\mu}] \equiv \ldots \equiv M_{j-1}[f_{\mu}] \equiv 0$ and $M_j[f_{\hat{\mu}}] \neq 0$ for some $1 \leq j \leq n$, then $\mathscr{F}[f_{\mu}](x) \sim_{\infty} x^{1-2j}$ in $\hat{\mu}$. (b2) If $M_1[f_{\mu}] \equiv M_2[f_{\mu}] \equiv \cdots \equiv M_n[f_{\mu}] \equiv 0$ and $\alpha(\hat{\mu}) + 2n \notin \{-1, 0\}$,

b2) If $M_1[f_\mu] \equiv M_2[f_\mu] \equiv \cdots \equiv M_n[f_\mu] \equiv 0$ and $\alpha(\hat{\mu}) + 2n \notin \{-1, 0\}$, then $\mathscr{F}[f_\mu](x) \sim_\infty x^{\alpha(\mu)}$ in $\hat{\mu}$.

So we have $\mathscr{F}[f_{\mu}](x) = x^{\nu(\mu)}(\Delta(\mu) + r_{\mu}(x))$ for $x \approx +\infty$, where $r_{\mu}(x)$ is a reminder that tends uniformly to zero as x tends to infinity.

Case n > 0. Given $\nu_1, \nu_2, \ldots, \nu_n \in \mathbb{R}$ we define the differential operator $\mathscr{L}_{\boldsymbol{\nu}_n} : \mathscr{C}^{\omega}((0, +\infty)) \longrightarrow \mathscr{C}^{\omega}((0, +\infty))$ given by

$$\mathscr{L}_{\boldsymbol{\nu}_n}[f](x) := \frac{W[x^{\nu_1}, x^{\nu_2}, \dots, x^{\nu_n}, f(x)]}{x^{\sum_{i=1}^n (\nu_i - i)}},$$

where $\boldsymbol{\nu}_n = (\nu_1, \dots, \nu_n)$ and $\mathscr{L}_{\boldsymbol{\nu}_0} = id$.

Idea: to apply Theorem A with the function $\mathscr{L}_{\nu_n}[f](x)$.

Key point:

Proposition

$$\mathscr{F} \circ \mathscr{L}_{\boldsymbol{\nu}_n} = \mathscr{L}_{\boldsymbol{\nu}_n} \circ \mathscr{F}$$

Theorem B

Let $\{f_{\mu}\}_{\mu \in \Lambda}$ be a continuous family of analytic functions on $[0, +\infty)$. Assume that there exist $n \ge 0$ continuous functions $\nu_1, \nu_2, \ldots, \nu_n$ such that $\mathscr{L}_{\boldsymbol{\nu}_n(\mu)}[f_{\mu}](x) \sim_{\infty} x^{\xi(\mu)}$ in $\hat{\mu}$. The following assertions hold:

- $(a) \ \ \text{If} \ \xi(\hat{\mu})>-1, \ \text{then} \ (\mathscr{L}_{\boldsymbol{\nu}_n(\mu)}\circ \mathscr{F})[f_{\mu}](x)\sim_{\infty} x^{\xi(\mu)} \ \ \text{in} \ \hat{\mu}.$
- (b) If $\xi(\hat{\mu}) < -1$, let us take $m \in \mathbb{N}$ such that $\xi(\hat{\mu}) + 2m \in [-1, 1)$. In this case:

(b1) If
$$M_1[\mathscr{L}_{\boldsymbol{\nu}_n(\mu)}[f_{\mu}]] \equiv \ldots \equiv M_{j-1}[\mathscr{L}_{\boldsymbol{\nu}_n(\mu)}[f_{\mu}]] \equiv 0$$
 and $M_j[\mathscr{L}_{\boldsymbol{\nu}_n(\hat{\mu})}[f_{\hat{\mu}}]] \neq 0$ for some $1 \leq j \leq m$, then

$$(\mathscr{L}_{\nu_n(\mu)} \circ \mathscr{F})[f_\mu](x) \sim_\infty x^{1-2j} \text{ in } \hat{\mu}.$$

(b2) If $M_1[\mathscr{L}_{\boldsymbol{\nu}_n(\mu)}[f_{\mu}]] \equiv \ldots \equiv M_m[\mathscr{L}_{\boldsymbol{\nu}_n(\mu)}[f_{\mu}]] \equiv 0$ and $\xi(\hat{\mu}) + 2m \notin \{-1, 0\}$, then

 $(\mathscr{L}_{\boldsymbol{\nu}_n(\mu)} \circ \mathscr{F})[f_{\mu}](x) \sim_{\infty} x^{\xi(\mu)} \text{ in } \hat{\mu}.$

Consequently, there exist $\eta:\Lambda\to\mathbb{R}$ such that

$$(\mathscr{L}_{\boldsymbol{\nu}_n(\mu)} \circ \mathscr{F})[f_{\mu}](x) = x^{\eta(\mu)}(\Delta(\mu) + r_{\mu}(x))$$

for $x\approx+\infty,$ where $r_{\mu}(x)$ is a reminder that tends to zero uniformly as x tends to infinity. That is,

$$W[x^{\nu_1(\mu)}, \dots, x^{\nu_n(\mu)}, \mathscr{F}[f_{\mu}]](x) = x^{\eta(\mu) + \sum_{i=1}^n (\nu_i(\mu) - i)} (\Delta(\mu) + r_{\mu}(x))$$

for $x \approx +\infty$.

Bifurcation from the outer boundary Bounding criticality for potential centers with infinite energy level

• The period function

2 Bifurcation from the outer boundary

- Definition of criticality at the outer boundary
- Some notation for potential centers
- Operators ${\mathscr F}$ and ${\mathscr L}$
- Bounding criticality for potential centers with infinite energy level

Bounding criticality for potential centers with infinite energy level

Bounding criticality for potential centers with infinite energy level

Remember that

$$T'_{\mu}(h) = \frac{1}{\sqrt{2h}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (g_{\mu}^{-1})''(\sqrt{h}\sin\theta)\sqrt{h}\sin\theta d\theta.$$

Bounding criticality for potential centers with infinite energy level

Bounding criticality for potential centers with infinite energy level

Remember that

$$T'_{\mu}(h) = \frac{1}{\sqrt{2h}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (g_{\mu}^{-1})''(\sqrt{h}\sin\theta)\sqrt{h}\sin\theta d\theta.$$

Then, setting $f_{\mu}(x) := \mathcal{P}[z(g_{\mu}^{-1})''(z)](x)$, where $\mathcal{P}[f](x) := f(x) - f(-x)$, we have

$$\sqrt{2}h^2 T'_{\mu}(h^2) = \mathscr{F}[f_{\mu}](h).$$

Bounding criticality for potential centers with infinite energy level

Bounding criticality for potential centers with infinite energy level

Remember that

$$T'_{\mu}(h) = \frac{1}{\sqrt{2h}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (g_{\mu}^{-1})''(\sqrt{h}\sin\theta)\sqrt{h}\sin\theta d\theta.$$

Then, setting $f_{\mu}(x) := \mathcal{P}[z(g_{\mu}^{-1})''(z)](x)$, where $\mathcal{P}[f](x) := f(x) - f(-x)$, we have

$$\mathscr{L}_{\boldsymbol{\nu}_n(\mu)}[\sqrt{2}h^2T'_{\mu}(h^2)] = (\mathscr{L}_{\boldsymbol{\nu}_n(\mu)} \circ \mathscr{F})[f_{\mu}](h)$$

Bounding criticality for potential centers with infinite energy level

Bounding criticality for potential centers with infinite energy level

Remember that

$$T'_{\mu}(h) = \frac{1}{\sqrt{2h}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (g_{\mu}^{-1})''(\sqrt{h}\sin\theta)\sqrt{h}\sin\theta d\theta.$$

Then, setting $f_{\mu}(x) := \mathcal{P}[z(g_{\mu}^{-1})''(z)](x)$, where $\mathcal{P}[f](x) := f(x) - f(-x)$, we have

$$\mathscr{L}_{\boldsymbol{\nu}_n(\mu)}[\sqrt{2}h^2T'_{\mu}(h^2)] = (\mathscr{L}_{\boldsymbol{\nu}_n(\mu)} \circ \mathscr{F})[f_{\mu}](h).$$

Using Theorem B, if $\mathscr{L}_{\nu_n(\mu)}[f_\mu](x)\sim_\infty x^{\xi(\mu)}$ (and hypothesis of momenta),

$$\mathscr{L}_{\nu_n(\mu)}[\sqrt{2}h^2 T'_{\mu}(h^2)] = h^{\eta(\mu)}(\Delta(\mu) + r_{\mu}(h))$$

for $h\approx+\infty,$ where $r_{\mu}(h)$ is a reminder that tends uniformly to zero as $h\rightarrow+\infty.$

Bounding criticality for potential centers with infinite energy level

Bounding criticality for potential centers with infinite energy level

Remember that

$$T'_{\mu}(h) = \frac{1}{\sqrt{2h}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (g_{\mu}^{-1})''(\sqrt{h}\sin\theta)\sqrt{h}\sin\theta d\theta.$$

Then, setting $f_{\mu}(x) := \mathcal{P}[z(g_{\mu}^{-1})''(z)](x)$, where $\mathcal{P}[f](x) := f(x) - f(-x)$, we have

$$\mathscr{L}_{\boldsymbol{\nu}_n(\mu)}[\sqrt{2}h^2T'_{\mu}(h^2)] = (\mathscr{L}_{\boldsymbol{\nu}_n(\mu)} \circ \mathscr{F})[f_{\mu}](h).$$

Using Theorem B, if $\mathscr{L}_{\nu_n(\mu)}[f_{\mu}](x) \sim_{\infty} x^{\xi(\mu)}$ (and hypothesis of momenta),

$$\mathscr{L}_{\boldsymbol{\nu}_n(\mu)}[\sqrt{2}h^2 T'_{\mu}(h^2)] = h^{\eta(\mu)}(\Delta(\mu) + r_{\mu}(h))$$

for $h \approx +\infty$, where $r_{\mu}(h)$ is a reminder that tends uniformly to zero as $h \rightarrow +\infty$. Then, $W[h^{\nu_1(\mu)}, \dots, h^{\nu_n(\mu)}, \sqrt{2}h^2 T'_{\mu}(h^2)] = h^{\eta(\mu) + \sum_{i=1}^n (\nu_i(\mu) - i)} (\Delta(\mu) + r_{\mu}(h))$ for $h \approx +\infty$. Consequently, $\operatorname{Crit}((\Pi_{\hat{\mu}}, X_{\hat{\mu}}), X_{\mu}) \leq n$. Bifurcation from the outer boundary Bounding criticality for potential centers with infinite energy level

References

Thank you very much for your attention!