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Introduction

The period function

Definitions

Consider planar differential systems{
ẋ = f(x, y),

ẏ = g(x, y),

where f and g are analytic functions on U ⊂ R2, with a center at p ∈ U .
We denote the period annulus of the center by P. If {γs}s∈(0,1) is a
parametrization of the set of periodic orbits in P, the period function
can be written as the map s 7→ T (s) := {period of γs}.



Introduction

The period function

Definitions

Definition 1.1. For a given ŝ ∈ (0, 1) we say that γŝ is a critical periodic
orbit of multiplicity k of the center if ŝ is an isolated zero of T ′(s) of
multiplicity k. �

The period annulus P may be unbounded. We compactify R2 into RP2

in order to define properly ∂P as a compact subset of RP2.

We denote the outer boundary of P by Π:= ∂P \ {p}.
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multiplicity k. �

The period annulus P may be unbounded. We compactify R2 into RP2

in order to define properly ∂P as a compact subset of RP2.

We denote the outer boundary of P by Π:= ∂P \ {p}.



Introduction

The period function

Definitions

Let us assume Xµ = fµ(x, y)∂x + gµ(x, y)∂y be a continuous family of
analytic centers at pµ, with µ ∈ Λ ⊂ Rd.

Aim

To decompose the parameter space Λ = ∪Λi in such a way that if
µ1, µ2 ∈ Λi then Tµ1

and Tµ2
are qualitatively the same.

P. Mardešić, D. Maŕın, J. Villadelprat,
The period function of reversible quadratic centers, J. Differential
Equations 134, (1997) 216–268.

Three places where a critical periodic orbit may bifurcate from:

Bifurcation from pµ.

Bifurcation from the “interior” of Pµ.

Bifurcation from Πµ.
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Bifurcation from the outer boundary

Definition of criticality at the outer boundary

Bifurcation from the outer boundary

Definition 2.1. Consider a continuous family {Xµ}µ∈Λ of planar
analytic vector fields with a center and fix some µ̂ ∈ Λ.

Suppose that the
outer boundary of the period annulus varies continuously at µ̂ ∈ Λ.
Then, setting

N(δ, ε) = sup

{
#critical periodic orbits γ of Xµ

with dH(γ,Πµ̂) 6 ε and ‖µ− µ̂‖ 6 δ

}

we define Crit ((Πµ̂, Xµ̂), Xµ) := infδ,εN(δ, ε) to be the criticality of
(Πµ̂, Xµ̂) with respect to the deformation Xµ. �
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Some notation for potential centers

Some notation

Consider potential systems{
ẋ = −y,
ẏ = V ′µ(x),

where Vµ is analytic and
Vµ(0) = V ′µ(0) = 0 and V ′′µ (0) > 0.

Iµ = (x`(µ), xr(µ)) denotes
the projection of the period
annulus Pµ on the x-axis.

Hµ(x, y) = 1
2y

2 + Vµ(x).

The energy level of Πµ is +∞.
That is, Vµ(Iµ) = [0,+∞).

gµ(x) := x
√
Vµ(x)/x2.

Vµ

x

h

x−h x+
h

x

y γh

Figure: Interpretation of the periodic
orbit γh.
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Some notation for potential centers

We parametrize the set of periodic orbits by the energy.

The period of
the periodic orbit γh ⊂ { 1

2y
2 + Vµ(x) = h} can be written as

Tµ(h) =
√

2

∫ π
2

−π2
(g−1
µ )′(

√
h sin θ)dθ.

So,

T ′µ(h) =
1√
2h

∫ π
2

−π2
(g−1
µ )′′(

√
h sin θ)

√
h sin θdθ.

Complications:

The function Tµ(h) is not analytic in h = +∞.

Idea:

Show that T ′µ(h) has sign for h ≈ +∞.

IMPORTANT: The uniformity on the parameters is required.
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Bifurcation from the outer boundary

Operators F and L

The bifurcation problem at the outer boundary turns into give a uniform
upper-bound of the number of zeroes of T ′µ(h) near h ≈ +∞.

We
consider the operator F : Cω([0,+∞))→ Cω([0,+∞)) defined by

F [f ](x) :=

∫ π
2

0

f(x sin θ)dθ.

The main idea is to find some analytic real functions φ1
µ, . . . , φ

n
µ

satisfying that there exist ε,M > 0 such that if ‖µ− µ̂‖ < ε then
(φ1
µ, . . . , φ

n
µ,F [fµ]) form an ECT-system on the interval (M,+∞).

Lemma

Let f0, f1, . . . , fn−1 be analytic functions on I. (f0, f1, . . . , fn−1) in an
ECT-system on I if and only if for each k ∈ {1, . . . , n},
W [f0, f1, . . . , fk−1](x) 6= 0 for all x ∈ I.
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Operators F and L

Definition 2.2. Let f0, f1, . . . , fn−1 be analytic functions on I. The
ordered set (f0, f1, . . . , fn−1) is an extended complete Chebyshev system
(ECT-system) on I if, for all k = 1, 2, . . . , n, any nontrivial linear
combination

a0f0(x) + a1f1(x) + · · · ak−1fk−1(x)

has at most k − 1 isolated zeros on I counted with multiplicities. �
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Operators F and L

We want to find continuous functions ν1, . . . , νn pairwise distinct at
µ = µ̂ satisfying that there exist ε,M > 0 such that if ‖µ− µ̂‖ < ε then
the function

x 7→W [xν1(µ), . . . , xνn(µ),F [fµ](x)]

has no zeros in (M,+∞).

This is based in assuming that F [fµ](x) has an asymptotic development

F [fµ](x) = a1(µ)xν1(µ) + a2(µ)xν2(µ) + · · ·+ an(µ)xνn(µ) + ...

and the division-derivation algorithm.

Definition 2.4. Let {fµ}µ∈Λ be a continuous family of analytic
functions in [0,+∞). Given µ̂ ∈ Λ we say that {fµ} is continuously

quantifiable in µ̂ at +∞ by α(µ) with limit ` if lim(x,µ)→(+∞,µ̂)
fµ(x)

xα(µ) = `

and ` 6= 0. Let us denote it by fµ(x) ∼∞ xα(µ) in µ̂. �

Definition 2.5. For f ∈ Cω([0,+∞)) we call

Mn[f ] :=
∫ +∞

0
x2n−2f(x)dx the n-th momentum of f , whenever it is

well defined. �
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Operators F and L

Case n = 0 (there are no functions νi)

Theorem A

Consider a continuous family {fµ}µ∈Λ of analytic functions on [0,+∞).

Suppose that fµ(x) ∼∞ xα(µ) in µ̂. The following assertions hold:

(a) If α(µ̂) > −1, then F [fµ](x) ∼∞ xα(µ) in µ̂.

(b) If α(µ̂) < −1, let us take n ∈ N such that α(µ̂) + 2n ∈ [−1, 1). In
this case:

(b1) If M1[fµ] ≡M2[fµ] ≡ . . . ≡Mj−1[fµ] ≡ 0 and Mj [fµ̂] 6= 0 for some
1 6 j 6 n, then

F [fµ](x) ∼∞ x1−2j in µ̂.

(b2) If M1[fµ] ≡M2[fµ] ≡ · · · ≡Mn[fµ] ≡ 0 and α(µ̂) + 2n /∈ {−1, 0},
then

F [fµ](x) ∼∞ xα(µ) in µ̂.

So we have F [fµ](x) = xν(µ)(∆(µ) + rµ(x)) for x ≈ +∞, where rµ(x)
is a reminder that tends uniformly to zero as x tends to infinity.
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Case n = 0 (there are no functions νi)

Theorem A

Consider a continuous family {fµ}µ∈Λ of analytic functions on [0,+∞).
Suppose that fµ(x) ∼∞ xα(µ) in µ̂. The following assertions hold:

(a) If α(µ̂) > −1, then F [fµ](x) ∼∞ xα(µ) in µ̂.

(b) If α(µ̂) < −1, let us take n ∈ N such that α(µ̂) + 2n ∈ [−1, 1). In
this case:

(b1) If M1[fµ] ≡M2[fµ] ≡ . . . ≡Mj−1[fµ] ≡ 0 and Mj [fµ̂] 6= 0 for some
1 6 j 6 n, then

F [fµ](x) ∼∞ x1−2j in µ̂.

(b2) If M1[fµ] ≡M2[fµ] ≡ · · · ≡Mn[fµ] ≡ 0 and α(µ̂) + 2n /∈ {−1, 0},
then

F [fµ](x) ∼∞ xα(µ) in µ̂.

So we have F [fµ](x) = xν(µ)(∆(µ) + rµ(x)) for x ≈ +∞, where rµ(x)
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Case n > 0. Given ν1, ν2, . . . , νn ∈ R we define the differential operator
Lνn : C ω

(
(0,+∞)

)
−→ C ω

(
(0,+∞)

)
given by

Lνn [f ](x) :=
W [xν1 , xν2 , . . . , xνn , f(x)]

x
∑n
i=1(νi−i)

,

where νn = (ν1, . . . , νn) and Lν0 = id.

Idea: to apply Theorem A with the function Lνn [f ](x).

Key point:

Proposition

F ◦Lνn = Lνn ◦F
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Theorem B

Let {fµ}µ∈Λ be a continuous family of analytic functions on [0,+∞).
Assume that there exist n > 0 continuous functions ν1, ν2, . . . , νn such
that Lνn(µ)[fµ](x) ∼∞ xξ(µ) in µ̂. The following assertions hold:

(a) If ξ(µ̂) > −1, then (Lνn(µ) ◦F )[fµ](x) ∼∞ xξ(µ) in µ̂.

(b) If ξ(µ̂) < −1, let us take m ∈ N such that ξ(µ̂) + 2m ∈ [−1, 1). In
this case:

(b1) If M1

[
Lνn(µ)[fµ]

]
≡ . . . ≡Mj−1

[
Lνn(µ)[fµ]

]
≡ 0 and

Mj

[
Lνn(µ̂)[fµ̂]

]
6= 0 for some 1 6 j 6 m, then

(Lνn(µ) ◦F )[fµ](x) ∼∞ x1−2j in µ̂.

(b2) If M1

[
Lνn(µ)[fµ]

]
≡ . . . ≡Mm

[
Lνn(µ)[fµ]

]
≡ 0 and

ξ(µ̂) + 2m /∈ {−1, 0}, then

(Lνn(µ) ◦F )[fµ](x) ∼∞ xξ(µ) in µ̂.
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Consequently, there exist η : Λ→ R such that

(Lνn(µ) ◦F )[fµ](x) = xη(µ)(∆(µ) + rµ(x))

for x ≈ +∞, where rµ(x) is a reminder that tends to zero uniformly as x
tends to infinity. That is,

W [xν1(µ), . . . , xνn(µ),F [fµ]](x) = xη(µ)+
∑n
i=1(νi(µ)−i)(∆(µ) + rµ(x))

for x ≈ +∞.
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Bounding criticality for potential centers with infinite
energy level

Remember that

T ′µ(h) =
1√
2h

∫ π
2

−π2
(g−1
µ )′′(

√
h sin θ)

√
h sin θdθ.

Then, setting fµ(x) := P[z(g−1
µ )′′(z)](x), where

P[f ](x) := f(x)− f(−x), we have

Lνn(µ)[
√

2h2T ′µ(h2)] = (Lνn(µ) ◦F )[fµ](h).

Using Theorem B, if Lνn(µ)[fµ](x) ∼∞ xξ(µ) (and hypothesis of
momenta),

Lνn(µ)[
√

2h2T ′µ(h2)] = hη(µ)(∆(µ) + rµ(h))

for h ≈ +∞, where rµ(h) is a reminder that tends uniformly to zero as
h→ +∞. Then,

W [hν1(µ), . . . , hνn(µ),
√

2h2T ′µ(h2)] = hη(µ)+
∑n
i=1(νi(µ)−i)(∆(µ) + rµ(h))

for h ≈ +∞. Consequently, Crit
(
(Πµ̂, Xµ̂), Xµ

)
6 n.
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Thank you very much for your attention!
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