Analytical tools to study the criticality at the outer boundary of potential centers

David Rojas Pérez

Dynamical Days 2016,
Salou, 10 de novembre de 2016.

Table of Contents

(1) Introduction

- The period function
(2) Bifurcation from the outer boundary
- Definition of criticality at the outer boundary
- Some notation for potential centers
- Operators \mathscr{F} and \mathscr{L}
- Bounding criticality for potential centers with infinite energy level

Outline

(1) Introduction

- The period function

2 Bifurcation from the outer boundary

- Definition of criticality at the outer boundary
- Some notation for potential centers
- Operators \mathscr{F} and \mathscr{L}
- Bounding criticality for potential centers with infinite energy level

Definitions

Consider planar differential systems

$$
\left\{\begin{array}{l}
\dot{x}=f(x, y), \\
\dot{y}=g(x, y),
\end{array}\right.
$$

where f and g are analytic functions on $U \subset \mathbb{R}^{2}$, with a center at $p \in U$. We denote the period annulus of the center by \mathscr{P}. If $\left\{\gamma_{s}\right\}_{s \in(0,1)}$ is a parametrization of the set of periodic orbits in \mathscr{P}, the period function can be written as the map $s \mapsto T(s):=\left\{\right.$ period of $\left.\gamma_{s}\right\}$.

Definitions

Definition 1.1. For a given $\hat{s} \in(0,1)$ we say that $\gamma_{\hat{s}}$ is a critical periodic orbit of multiplicity k of the center if \hat{s} is an isolated zero of $T^{\prime}(s)$ of multiplicity k.

The period annulus \mathscr{P} may be unbounded. We compactify \mathbb{R}^{2} into $\mathbb{R} \mathbb{P}^{2}$ in order to define properly $\partial \mathscr{P}$ as a compact subset of $\mathbb{R P}^{2}$.

We denote the outer boundary of \mathscr{P} by $\Pi:=\partial \mathscr{P} \backslash\{p\}$.

Definitions

Definition 1.1. For a given $\hat{s} \in(0,1)$ we say that $\gamma_{\hat{s}}$ is a critical periodic orbit of multiplicity k of the center if \hat{s} is an isolated zero of $T^{\prime}(s)$ of multiplicity k.

The period annulus \mathscr{P} may be unbounded. We compactify \mathbb{R}^{2} into $\mathbb{R} \mathbb{P}^{2}$ in order to define properly $\partial \mathscr{P}$ as a compact subset of $\mathbb{R P}^{2}$.

We denote the outer boundary of \mathscr{P} by $\Pi:=\partial \mathscr{P} \backslash\{p\}$.

Definitions

Let us assume $X_{\mu}=f_{\mu}(x, y) \partial_{x}+g_{\mu}(x, y) \partial_{y}$ be a continuous family of analytic centers at p_{μ}, with $\mu \in \Lambda \subset \mathbb{R}^{d}$.

Aim

To decompose the parameter space $\Lambda=\cup \Lambda_{i}$ in such a way that if $\mu_{1}, \mu_{2} \in \Lambda_{i}$ then $T_{\mu_{1}}$ and $T_{\mu_{2}}$ are qualitatively the same.
R. P. Mardešić, D. Marín, J. Villadelprat,

The period function of reversible quadratic centers, J. Differential Equations 134, (1997) 216-268.

Three places where a critical periodic orbit may bifurcate from:

- Bifurcation from p_{μ}.
- Bifurcation from the "interior" of \mathscr{P}_{μ}.
- Bifurcation from Π_{μ}.

Outline

(1) Introduction

- The period function
(2) Bifurcation from the outer boundary
- Definition of criticality at the outer boundary
- Some notation for potential centers
- Operators \mathscr{F} and \mathscr{L}
- Bounding criticality for potential centers with infinite energy level

Bifurcation from the outer boundary

Definition 2.1. Consider a continuous family $\left\{X_{\mu}\right\}_{\mu \in \Lambda}$ of planar analytic vector fields with a center and fix some $\hat{\mu} \in \Lambda$.

Bifurcation from the outer boundary

Definition 2.1. Consider a continuous family $\left\{X_{\mu}\right\}_{\mu \in \Lambda}$ of planar analytic vector fields with a center and fix some $\hat{\mu} \in \Lambda$. Suppose that the outer boundary of the period annulus varies continuously at $\hat{\mu} \in \Lambda$.

Bifurcation from the outer boundary

Definition 2.1. Consider a continuous family $\left\{X_{\mu}\right\}_{\mu \in \Lambda}$ of planar analytic vector fields with a center and fix some $\hat{\mu} \in \Lambda$. Suppose that the outer boundary of the period annulus varies continuously at $\hat{\mu} \in \Lambda$. Then, setting

$$
N(\delta, \varepsilon)=\sup \left\{\begin{array}{l}
\# \text { critical periodic orbits } \gamma \text { of } X_{\mu} \\
\text { with } d_{H}\left(\gamma, \Pi_{\hat{\mu}}\right) \leqslant \varepsilon \text { and }\|\mu-\hat{\mu}\| \leqslant \delta
\end{array}\right\}
$$

we define Crit $\left(\left(\Pi_{\hat{\mu}}, X_{\hat{\mu}}\right), X_{\mu}\right):=\inf _{\delta, \varepsilon} N(\delta, \varepsilon)$ to be the criticality of ($\Pi_{\hat{\mu}}, X_{\hat{\mu}}$) with respect to the deformation X_{μ}.

Outline

(1) Introduction

- The period function
(2) Bifurcation from the outer boundary
- Definition of criticality at the outer boundary
- Some notation for potential centers
- Operators \mathscr{F} and \mathscr{L}
- Bounding criticality for potential centers with infinite energy level

Some notation

Consider potential systems

$$
\left\{\begin{array}{l}
\dot{x}=-y, \\
\dot{y}=V_{\mu}^{\prime}(x),
\end{array}\right.
$$

where V_{μ} is analytic and
$V_{\mu}(0)=V_{\mu}^{\prime}(0)=0$ and $V_{\mu}^{\prime \prime}(0)>0$.

- $\mathcal{I}_{\mu}=\left(x_{\ell}(\mu), x_{r}(\mu)\right)$ denotes the projection of the period annulus \mathscr{P}_{μ} on the x-axis.
- $H_{\mu}(x, y)=\frac{1}{2} y^{2}+V_{\mu}(x)$.
- The energy level of Π_{μ} is $+\infty$.

That is, $V_{\mu}\left(\mathcal{I}_{\mu}\right)=[0,+\infty)$.

- $g_{\mu}(x):=x \sqrt{V_{\mu}(x) / x^{2}}$.

Figure: Interpretation of the periodic orbit γ_{h}.

We parametrize the set of periodic orbits by the energy.

We parametrize the set of periodic orbits by the energy. The period of the periodic orbit $\gamma_{h} \subset\left\{\frac{1}{2} y^{2}+V_{\mu}(x)=h\right\}$ can be written as

$$
T_{\mu}(h)=\sqrt{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(g_{\mu}^{-1}\right)^{\prime}(\sqrt{h} \sin \theta) d \theta
$$

We parametrize the set of periodic orbits by the energy. The period of the periodic orbit $\gamma_{h} \subset\left\{\frac{1}{2} y^{2}+V_{\mu}(x)=h\right\}$ can be written as

$$
T_{\mu}(h)=\sqrt{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(g_{\mu}^{-1}\right)^{\prime}(\sqrt{h} \sin \theta) d \theta
$$

So,

$$
T_{\mu}^{\prime}(h)=\frac{1}{\sqrt{2} h} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(g_{\mu}^{-1}\right)^{\prime \prime}(\sqrt{h} \sin \theta) \sqrt{h} \sin \theta d \theta
$$

We parametrize the set of periodic orbits by the energy. The period of the periodic orbit $\gamma_{h} \subset\left\{\frac{1}{2} y^{2}+V_{\mu}(x)=h\right\}$ can be written as

$$
T_{\mu}(h)=\sqrt{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(g_{\mu}^{-1}\right)^{\prime}(\sqrt{h} \sin \theta) d \theta
$$

So,

$$
T_{\mu}^{\prime}(h)=\frac{1}{\sqrt{2} h} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(g_{\mu}^{-1}\right)^{\prime \prime}(\sqrt{h} \sin \theta) \sqrt{h} \sin \theta d \theta
$$

Complications:

- The function $T_{\mu}(h)$ is not analytic in $h=+\infty$.

We parametrize the set of periodic orbits by the energy. The period of the periodic orbit $\gamma_{h} \subset\left\{\frac{1}{2} y^{2}+V_{\mu}(x)=h\right\}$ can be written as

$$
T_{\mu}(h)=\sqrt{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(g_{\mu}^{-1}\right)^{\prime}(\sqrt{h} \sin \theta) d \theta
$$

So,

$$
T_{\mu}^{\prime}(h)=\frac{1}{\sqrt{2} h} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(g_{\mu}^{-1}\right)^{\prime \prime}(\sqrt{h} \sin \theta) \sqrt{h} \sin \theta d \theta
$$

Complications:

- The function $T_{\mu}(h)$ is not analytic in $h=+\infty$.

Idea:

- Show that $T_{\mu}^{\prime}(h)$ has sign for $h \approx+\infty$.
- IMPORTANT: The uniformity on the parameters is required.

Outline

(1) Introduction

- The period function
(2) Bifurcation from the outer boundary
- Definition of criticality at the outer boundary
- Some notation for potential centers
- Operators \mathscr{F} and \mathscr{L}
- Bounding criticality for potential centers with infinite energy level

The bifurcation problem at the outer boundary turns into give a uniform upper-bound of the number of zeroes of $T_{\mu}^{\prime}(h)$ near $h \approx+\infty$.

Definition 2.2. Let $f_{0}, f_{1}, \ldots, f_{n-1}$ be analytic functions on I. The ordered set $\left(f_{0}, f_{1}, \ldots, f_{n-1}\right)$ is an extended complete Chebyshev system (ECT-system) on I if, for all $k=1,2, \ldots, n$, any nontrivial linear combination

$$
a_{0} f_{0}(x)+a_{1} f_{1}(x)+\cdots a_{k-1} f_{k-1}(x)
$$

has at most $k-1$ isolated zeros on I counted with multiplicities.

Definition 2.2. Let $f_{0}, f_{1}, \ldots, f_{n-1}$ be analytic functions on I. The ordered set $\left(f_{0}, f_{1}, \ldots, f_{n-1}\right)$ is an extended complete Chebyshev system (ECT-system) on I if, for all $k=1,2, \ldots, n$, any nontrivial linear combination

$$
a_{0} f_{0}(x)+a_{1} f_{1}(x)+\cdots a_{k-1} f_{k-1}(x)
$$

has at most $k-1$ isolated zeros on I counted with multiplicities.
We consider the operator $\mathscr{F}: \mathcal{C}^{\omega}([0,+\infty)) \rightarrow \mathcal{C}^{\omega}([0,+\infty))$ defined by

$$
\mathscr{F}[f](x):=\int_{0}^{\frac{\pi}{2}} f(x \sin \theta) d \theta .
$$

The main idea is to find some analytic real functions $\phi_{\mu}^{1}, \ldots, \phi_{\mu}^{n}$ satisfying that there exist $\varepsilon, M>0$ such that if $\|\mu-\hat{\mu}\|<\varepsilon$ then $\left(\phi_{\mu}^{1}, \ldots, \phi_{\mu}^{n}, \mathscr{F}\left[f_{\mu}\right]\right)$ form an ECT-system on the interval $(M,+\infty)$.

Definition 2.2. Let $f_{0}, f_{1}, \ldots, f_{n-1}$ be analytic functions on I. The ordered set $\left(f_{0}, f_{1}, \ldots, f_{n-1}\right)$ is an extended complete Chebyshev system (ECT-system) on I if, for all $k=1,2, \ldots, n$, any nontrivial linear combination

$$
a_{0} f_{0}(x)+a_{1} f_{1}(x)+\cdots a_{k-1} f_{k-1}(x)
$$

has at most $k-1$ isolated zeros on I counted with multiplicities.
We consider the operator $\mathscr{F}: \mathcal{C}^{\omega}([0,+\infty)) \rightarrow \mathcal{C}^{\omega}([0,+\infty))$ defined by

$$
\mathscr{F}[f](x):=\int_{0}^{\frac{\pi}{2}} f(x \sin \theta) d \theta .
$$

The main idea is to find some analytic real functions $\phi_{\mu}^{1}, \ldots, \phi_{\mu}^{n}$ satisfying that there exist $\varepsilon, M>0$ such that if $\|\mu-\hat{\mu}\|<\varepsilon$ then $\left(\phi_{\mu}^{1}, \ldots, \phi_{\mu}^{n}, \mathscr{F}\left[f_{\mu}\right]\right)$ form an ECT-system on the interval $(M,+\infty)$.

Lemma

Let $f_{0}, f_{1}, \ldots, f_{n-1}$ be analytic functions on $I .\left(f_{0}, f_{1}, \ldots, f_{n-1}\right)$ in an ECT-system on I if and only if for each $k \in\{1, \ldots, n\}$, $W\left[f_{0}, f_{1}, \ldots, f_{k-1}\right](x) \neq 0$ for all $x \in I$.

We want to find continuous functions ν_{1}, \ldots, ν_{n} pairwise distinct at $\mu=\hat{\mu}$ satisfying that there exist $\varepsilon, M>0$ such that if $\|\mu-\hat{\mu}\|<\varepsilon$ then the function

$$
x \mapsto W\left[x^{\nu_{1}(\mu)}, \ldots, x^{\nu_{n}(\mu)}, \mathscr{F}\left[f_{\mu}\right](x)\right]
$$

has no zeros in $(M,+\infty)$.

We want to find continuous functions ν_{1}, \ldots, ν_{n} pairwise distinct at $\mu=\hat{\mu}$ satisfying that there exist $\varepsilon, M>0$ such that if $\|\mu-\hat{\mu}\|<\varepsilon$ then the function

$$
x \mapsto W\left[x^{\nu_{1}(\mu)}, \ldots, x^{\nu_{n}(\mu)}, \mathscr{F}\left[f_{\mu}\right](x)\right]
$$

has no zeros in $(M,+\infty)$.
This is based in assuming that $\mathscr{F}\left[f_{\mu}\right](x)$ has an asymptotic development

$$
\mathscr{F}\left[f_{\mu}\right](x)=a_{1}(\mu) x^{\nu_{1}(\mu)}+a_{2}(\mu) x^{\nu_{2}(\mu)}+\cdots+a_{n}(\mu) x^{\nu_{n}(\mu)}+\ldots
$$

and the division-derivation algorithm.

We want to find continuous functions ν_{1}, \ldots, ν_{n} pairwise distinct at $\mu=\hat{\mu}$ satisfying that there exist $\varepsilon, M>0$ such that if $\|\mu-\hat{\mu}\|<\varepsilon$ then the function

$$
x \mapsto W\left[x^{\nu_{1}(\mu)}, \ldots, x^{\nu_{n}(\mu)}, \mathscr{F}\left[f_{\mu}\right](x)\right]
$$

has no zeros in $(M,+\infty)$.
This is based in assuming that $\mathscr{F}\left[f_{\mu}\right](x)$ has an asymptotic development

$$
\mathscr{F}\left[f_{\mu}\right](x)=a_{1}(\mu) x^{\nu_{1}(\mu)}+a_{2}(\mu) x^{\nu_{2}(\mu)}+\cdots+a_{n}(\mu) x^{\nu_{n}(\mu)}+\ldots
$$

and the division-derivation algorithm.
Definition 2.4. Let $\left\{f_{\mu}\right\}_{\mu \in \Lambda}$ be a continuous family of analytic functions in $[0,+\infty)$. Given $\hat{\mu} \in \Lambda$ we say that $\left\{f_{\mu}\right\}$ is continuously quantifiable in $\hat{\mu}$ at $+\infty$ by $\alpha(\mu)$ with limit ℓ if $\lim _{(x, \mu) \rightarrow(+\infty, \hat{\mu})} \frac{f_{\mu}(x)}{x^{\alpha(\mu)}}=\ell$ and $\ell \neq 0$. Let us denote it by $f_{\mu}(x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$.

Definition 2.5. For $f \in \mathcal{C}^{\omega}([0,+\infty))$ we call $M_{n}[f]:=\int_{0}^{+\infty} x^{2 n-2} f(x) d x$ the n-th momentum of f, whenever it is well defined.

Case $n=0$ (there are no functions ν_{i})

Theorem A

Consider a continuous family $\left\{f_{\mu}\right\}_{\mu \in \Lambda}$ of analytic functions on $[0,+\infty)$.

Case $n=0$ (there are no functions ν_{i})

Theorem A

Consider a continuous family $\left\{f_{\mu}\right\}_{\mu \in \Lambda}$ of analytic functions on $[0,+\infty)$. Suppose that $f_{\mu}(x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$.

Case $n=0$ (there are no functions ν_{i})

Theorem A

Consider a continuous family $\left\{f_{\mu}\right\}_{\mu \in \Lambda}$ of analytic functions on $[0,+\infty)$. Suppose that $f_{\mu}(x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$. The following assertions hold:
(a) If $\alpha(\hat{\mu})>-1$, then $\mathscr{F}\left[f_{\mu}\right](x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$.

Case $n=0$ (there are no functions ν_{i})

Theorem A

Consider a continuous family $\left\{f_{\mu}\right\}_{\mu \in \Lambda}$ of analytic functions on $[0,+\infty)$. Suppose that $f_{\mu}(x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$. The following assertions hold:
(a) If $\alpha(\hat{\mu})>-1$, then $\mathscr{F}\left[f_{\mu}\right](x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$.
(b) If $\alpha(\hat{\mu})<-1$, let us take $n \in \mathbb{N}$ such that $\alpha(\hat{\mu})+2 n \in[-1,1)$.

Case $n=0$ (there are no functions ν_{i})

Theorem A

Consider a continuous family $\left\{f_{\mu}\right\}_{\mu \in \Lambda}$ of analytic functions on $[0,+\infty)$. Suppose that $f_{\mu}(x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$. The following assertions hold:
(a) If $\alpha(\hat{\mu})>-1$, then $\mathscr{F}\left[f_{\mu}\right](x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$.
(b) If $\alpha(\hat{\mu})<-1$, let us take $n \in \mathbb{N}$ such that $\alpha(\hat{\mu})+2 n \in[-1,1)$. In this case:
(b1) If $M_{1}\left[f_{\mu}\right] \equiv M_{2}\left[f_{\mu}\right] \equiv \ldots \equiv M_{j-1}\left[f_{\mu}\right] \equiv 0$ and $M_{j}\left[f_{\hat{\mu}}\right] \neq 0$ for some $1 \leqslant j \leqslant n$, then

$$
\mathscr{F}\left[f_{\mu}\right](x) \sim_{\infty} x^{1-2 j} \text { in } \hat{\mu} .
$$

Case $n=0$ (there are no functions ν_{i})

Theorem A

Consider a continuous family $\left\{f_{\mu}\right\}_{\mu \in \Lambda}$ of analytic functions on $[0,+\infty)$. Suppose that $f_{\mu}(x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$. The following assertions hold:
(a) If $\alpha(\hat{\mu})>-1$, then $\mathscr{F}\left[f_{\mu}\right](x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$.
(b) If $\alpha(\hat{\mu})<-1$, let us take $n \in \mathbb{N}$ such that $\alpha(\hat{\mu})+2 n \in[-1,1)$. In this case:
(b1) If $M_{1}\left[f_{\mu}\right] \equiv M_{2}\left[f_{\mu}\right] \equiv \ldots \equiv M_{j-1}\left[f_{\mu}\right] \equiv 0$ and $M_{j}\left[f_{\hat{\mu}}\right] \neq 0$ for some $1 \leqslant j \leqslant n$, then

$$
\mathscr{F}\left[f_{\mu}\right](x) \sim_{\infty} x^{1-2 j} \text { in } \hat{\mu} .
$$

(b2) If $M_{1}\left[f_{\mu}\right] \equiv M_{2}\left[f_{\mu}\right] \equiv \cdots \equiv M_{n}\left[f_{\mu}\right] \equiv 0$ and $\alpha(\hat{\mu})+2 n \notin\{-1,0\}$, then

$$
\mathscr{F}\left[f_{\mu}\right](x) \sim_{\infty} x^{\alpha(\mu)} \quad \text { in } \hat{\mu} .
$$

Case $n=0$ (there are no functions ν_{i})

Theorem A

Consider a continuous family $\left\{f_{\mu}\right\}_{\mu \in \Lambda}$ of analytic functions on $[0,+\infty)$. Suppose that $f_{\mu}(x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$. The following assertions hold:
(a) If $\alpha(\hat{\mu})>-1$, then $\mathscr{F}\left[f_{\mu}\right](x) \sim_{\infty} x^{\alpha(\mu)}$ in $\hat{\mu}$.
(b) If $\alpha(\hat{\mu})<-1$, let us take $n \in \mathbb{N}$ such that $\alpha(\hat{\mu})+2 n \in[-1,1)$. In this case:
(b1) If $M_{1}\left[f_{\mu}\right] \equiv M_{2}\left[f_{\mu}\right] \equiv \ldots \equiv M_{j-1}\left[f_{\mu}\right] \equiv 0$ and $M_{j}\left[f_{\hat{\mu}}\right] \neq 0$ for some $1 \leqslant j \leqslant n$, then

$$
\mathscr{F}\left[f_{\mu}\right](x) \sim_{\infty} x^{1-2 j} \text { in } \hat{\mu} .
$$

(b2) If $M_{1}\left[f_{\mu}\right] \equiv M_{2}\left[f_{\mu}\right] \equiv \cdots \equiv M_{n}\left[f_{\mu}\right] \equiv 0$ and $\alpha(\hat{\mu})+2 n \notin\{-1,0\}$, then

$$
\mathscr{F}\left[f_{\mu}\right](x) \sim_{\infty} x^{\alpha(\mu)} \quad \text { in } \hat{\mu} .
$$

So we have $\mathscr{F}\left[f_{\mu}\right](x)=x^{\nu(\mu)}\left(\Delta(\mu)+r_{\mu}(x)\right)$ for $x \approx+\infty$, where $r_{\mu}(x)$ is a reminder that tends uniformly to zero as x tends to infinity.

Case $n>0$. Given $\nu_{1}, \nu_{2}, \ldots, \nu_{n} \in \mathbb{R}$ we define the differential operator $\mathscr{L}_{\nu_{n}}: \mathscr{C}^{\omega}((0,+\infty)) \longrightarrow \mathscr{C}^{\omega}((0,+\infty))$ given by

$$
\mathscr{L}_{\boldsymbol{\nu}_{n}}[f](x):=\frac{W\left[x^{\nu_{1}}, x^{\nu_{2}}, \ldots, x^{\nu_{n}}, f(x)\right]}{x^{\sum_{i=1}^{n}\left(\nu_{i}-i\right)}}
$$

where $\boldsymbol{\nu}_{n}=\left(\nu_{1}, \ldots, \nu_{n}\right)$ and $\mathscr{L}_{\boldsymbol{\nu}_{0}}=i d$.
Idea: to apply Theorem A with the function $\mathscr{L}_{\boldsymbol{\nu}_{n}}[f](x)$.
Key point:

Proposition

$\mathscr{F} \circ \mathscr{L}_{\boldsymbol{\nu}_{n}}=\mathscr{L}_{\boldsymbol{\nu}_{n}} \circ \mathscr{F}$

Theorem B

Let $\left\{f_{\mu}\right\}_{\mu \in \Lambda}$ be a continuous family of analytic functions on $[0,+\infty)$. Assume that there exist $n \geqslant 0$ continuous functions $\nu_{1}, \nu_{2}, \ldots, \nu_{n}$ such that $\mathscr{L}_{\nu_{n}(\mu)}\left[f_{\mu}\right](x) \sim_{\infty} x^{\xi(\mu)}$ in $\hat{\mu}$. The following assertions hold:
(a) If $\xi(\hat{\mu})>-1$, then $\left(\mathscr{L}_{\boldsymbol{\nu}_{n}(\mu)} \circ \mathscr{F}\right)\left[f_{\mu}\right](x) \sim_{\infty} x^{\xi(\mu)}$ in $\hat{\mu}$.
(b) If $\xi(\hat{\mu})<-1$, let us take $m \in \mathbb{N}$ such that $\xi(\hat{\mu})+2 m \in[-1,1)$. In this case:
(b1) If $M_{1}\left[\mathscr{L}_{\boldsymbol{\nu}_{n}(\mu)}\left[f_{\mu}\right]\right] \equiv \ldots \equiv M_{j-1}\left[\mathscr{L}_{\boldsymbol{\nu}_{n}(\mu)}\left[f_{\mu}\right]\right] \equiv 0$ and $M_{j}\left[\mathscr{L}_{\boldsymbol{\nu}_{n}(\hat{\mu})}\left[f_{\hat{\mu}}\right]\right] \neq 0$ for some $1 \leqslant j \leqslant m$, then

$$
\left(\mathscr{L}_{\boldsymbol{\nu}_{n}(\mu)} \circ \mathscr{F}\right)\left[f_{\mu}\right](x) \sim_{\infty} x^{1-2 j} \text { in } \hat{\mu}
$$

(b2) If $M_{1}\left[\mathscr{L}_{\boldsymbol{\nu}_{n}(\mu)}\left[f_{\mu}\right]\right] \equiv \ldots \equiv M_{m}\left[\mathscr{L}_{\boldsymbol{\nu}_{n}(\mu)}\left[f_{\mu}\right]\right] \equiv 0$ and $\xi(\hat{\mu})+2 m \notin\{-1,0\}$, then

$$
\left(\mathscr{L}_{\nu_{n}(\mu)} \circ \mathscr{F}\right)\left[f_{\mu}\right](x) \sim_{\infty} x^{\xi(\mu)} \text { in } \hat{\mu} .
$$

Consequently, there exist $\eta: \Lambda \rightarrow \mathbb{R}$ such that

$$
\left(\mathscr{L}_{\boldsymbol{\nu}_{n}(\mu)} \circ \mathscr{F}\right)\left[f_{\mu}\right](x)=x^{\eta(\mu)}\left(\Delta(\mu)+r_{\mu}(x)\right)
$$

for $x \approx+\infty$, where $r_{\mu}(x)$ is a reminder that tends to zero uniformly as x tends to infinity. That is,

$$
W\left[x^{\nu_{1}(\mu)}, \ldots, x^{\nu_{n}(\mu)}, \mathscr{F}\left[f_{\mu}\right]\right](x)=x^{\eta(\mu)+\sum_{i=1}^{n}\left(\nu_{i}(\mu)-i\right)}\left(\Delta(\mu)+r_{\mu}(x)\right)
$$

for $x \approx+\infty$.

Outline

(1) Introduction

- The period function
(2) Bifurcation from the outer boundary
- Definition of criticality at the outer boundary
- Some notation for potential centers
- Operators \mathscr{F} and \mathscr{L}
- Bounding criticality for potential centers with infinite energy level

Bounding criticality for potential centers with infinite energy level

Bounding criticality for potential centers with infinite energy level

Remember that

$$
T_{\mu}^{\prime}(h)=\frac{1}{\sqrt{2} h} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(g_{\mu}^{-1}\right)^{\prime \prime}(\sqrt{h} \sin \theta) \sqrt{h} \sin \theta d \theta
$$

Bounding criticality for potential centers with infinite energy level

Remember that

$$
T_{\mu}^{\prime}(h)=\frac{1}{\sqrt{2} h} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(g_{\mu}^{-1}\right)^{\prime \prime}(\sqrt{h} \sin \theta) \sqrt{h} \sin \theta d \theta .
$$

Then, setting $f_{\mu}(x):=\mathcal{P}\left[z\left(g_{\mu}^{-1}\right)^{\prime \prime}(z)\right](x)$, where $\mathcal{P}[f](x):=f(x)-f(-x)$, we have

$$
\sqrt{2} h^{2} T_{\mu}^{\prime}\left(h^{2}\right)=\mathscr{F}\left[f_{\mu}\right](h) .
$$

Bounding criticality for potential centers with infinite energy level

Remember that

$$
T_{\mu}^{\prime}(h)=\frac{1}{\sqrt{2} h} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(g_{\mu}^{-1}\right)^{\prime \prime}(\sqrt{h} \sin \theta) \sqrt{h} \sin \theta d \theta .
$$

Then, setting $f_{\mu}(x):=\mathcal{P}\left[z\left(g_{\mu}^{-1}\right)^{\prime \prime}(z)\right](x)$, where $\mathcal{P}[f](x):=f(x)-f(-x)$, we have

$$
\mathscr{L}_{\boldsymbol{\nu}_{n}(\mu)}\left[\sqrt{2} h^{2} T_{\mu}^{\prime}\left(h^{2}\right)\right]=\left(\mathscr{L}_{\boldsymbol{\nu}_{n}(\mu)} \circ \mathscr{F}\right)\left[f_{\mu}\right](h) .
$$

Bounding criticality for potential centers with infinite energy level

Remember that

$$
T_{\mu}^{\prime}(h)=\frac{1}{\sqrt{2} h} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(g_{\mu}^{-1}\right)^{\prime \prime}(\sqrt{h} \sin \theta) \sqrt{h} \sin \theta d \theta .
$$

Then, setting $f_{\mu}(x):=\mathcal{P}\left[z\left(g_{\mu}^{-1}\right)^{\prime \prime}(z)\right](x)$, where $\mathcal{P}[f](x):=f(x)-f(-x)$, we have

$$
\mathscr{L}_{\boldsymbol{\nu}_{n}(\mu)}\left[\sqrt{2} h^{2} T_{\mu}^{\prime}\left(h^{2}\right)\right]=\left(\mathscr{L}_{\boldsymbol{\nu}_{n}(\mu)} \circ \mathscr{F}\right)\left[f_{\mu}\right](h) .
$$

Using Theorem B, if $\mathscr{L}_{\boldsymbol{\nu}_{n}(\mu)}\left[f_{\mu}\right](x) \sim_{\infty} x^{\xi(\mu)}$ (and hypothesis of momenta),

$$
\mathscr{L}_{\boldsymbol{\nu}_{n}(\mu)}\left[\sqrt{2} h^{2} T_{\mu}^{\prime}\left(h^{2}\right)\right]=h^{\eta(\mu)}\left(\Delta(\mu)+r_{\mu}(h)\right)
$$

for $h \approx+\infty$, where $r_{\mu}(h)$ is a reminder that tends uniformly to zero as $h \rightarrow+\infty$.

Bounding criticality for potential centers with infinite energy level

Remember that

$$
T_{\mu}^{\prime}(h)=\frac{1}{\sqrt{2} h} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(g_{\mu}^{-1}\right)^{\prime \prime}(\sqrt{h} \sin \theta) \sqrt{h} \sin \theta d \theta
$$

Then, setting $f_{\mu}(x):=\mathcal{P}\left[z\left(g_{\mu}^{-1}\right)^{\prime \prime}(z)\right](x)$, where $\mathcal{P}[f](x):=f(x)-f(-x)$, we have

$$
\mathscr{L}_{\boldsymbol{\nu}_{n}(\mu)}\left[\sqrt{2} h^{2} T_{\mu}^{\prime}\left(h^{2}\right)\right]=\left(\mathscr{L}_{\boldsymbol{\nu}_{n}(\mu)} \circ \mathscr{F}\right)\left[f_{\mu}\right](h) .
$$

Using Theorem B, if $\mathscr{L}_{\boldsymbol{\nu}_{n}(\mu)}\left[f_{\mu}\right](x) \sim_{\infty} x^{\xi(\mu)}$ (and hypothesis of momenta),

$$
\mathscr{L}_{\boldsymbol{\nu}_{n}(\mu)}\left[\sqrt{2} h^{2} T_{\mu}^{\prime}\left(h^{2}\right)\right]=h^{\eta(\mu)}\left(\Delta(\mu)+r_{\mu}(h)\right)
$$

for $h \approx+\infty$, where $r_{\mu}(h)$ is a reminder that tends uniformly to zero as $h \rightarrow+\infty$. Then,
$W\left[h^{\nu_{1}(\mu)}, \ldots, h^{\nu_{n}(\mu)}, \sqrt{2} h^{2} T_{\mu}^{\prime}\left(h^{2}\right)\right]=h^{\eta(\mu)+\sum_{i=1}^{n}\left(\nu_{i}(\mu)-i\right)}\left(\Delta(\mu)+r_{\mu}(h)\right)$
for $h \approx+\infty$. Consequently, $\operatorname{Crit}\left(\left(\Pi_{\hat{\mu}}, X_{\hat{\mu}}\right), X_{\mu}\right) \leqslant n$.

References

R. Mañosas, D. Rojas, J. Villadelprat,

The criticality of centers of potential systems at the outer boundary., J. Differential Equations 260, (2016) 4918-4972.
R. Mañosas, D. Rojas, J. Villadelprat,

Study of the period function of a two-parameter family of centers., Preprint, (2016).
囲 F. Mañosas, D. Rojas, J. Villadelprat,
Analytic tools to bound the criticality at the outer boundary of the period annulus., J. Dynamics and Differential Equations, DOI 10.1007/s10884-016-9559-x, (2016).
D. Rojas,

Analytical tools to study the criticality at the outer boundary of potential centers., Ph.D. Dissertation, (2016).

Thank you very much for your attention!

