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Given some observable, we aim at inferring the temporal
contribution of the synaptic current and discerning global
excitation from global inhibition arriving at a single cell.

[Allen-Lee et al 2005]
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From the mathematical point of view

{
CV̇ = f(V,w)− Isyn + Iapp
ẇ = g(V,w), w ∈ Rs

where

Isyn(t) = gE(t)(V (t)− VE) + gI(t)(V (t)− VI): Synaptic input
f(V,w): Ionic currents
Iapp: Applied current

Main Question

How to estimate gE(t) and gI(t) given V (t)?
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Drawbacks of the inverse methods

Nonlinearity: How to cope with the ionic currents f(V,w) in
this inverse problem?

Variability: Can we avoid repetitive trials? (gE(t) and gI(t)
traces may vary across trials)

Model dependency: Can we perform model-free estimations?

Noise: Experimental data is obtained with noise. Should it be
considered?
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Review of current strategies

Model-independent strategies

Median Filtering + Linear estimation [Borg-Graham et al. (1998)], [Anderson

et al. (2000)], [Wehr and Zador (2003)], ... Multiple trials

Oversampling method [Bédard et al. (2011)] 1 trial

Model-dependent strategies

Fokker-Planck equation approach [Rudolph and Destexhe (2003)] 2 trials

Statistical inference methods [Paninsky et al. (2012)], [Lankarani et al. (2013)],

[Berg and Ditlevsen (2013)],... 1 trial
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Ionic channel inactivity hypothesis{
CV̇ =���

�XXXXf(V,w)− Isyn + Iapp
ẇ = g(V,w), w ∈ Rn
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1 Are those misestimations on the spiking regime also presented
in the subthreshold regime under the presence of
subthreshold-activated ionic currents?

2 If misestimations in the subthreshold regime are relevant, can
we provide new strategies to overcome such problem having
also into account, as much as possible, the rest of obstacles of
the inverse methods?

3 Can we also provide a first strategy to estimate conductances
in those regimes where the target neuron presents an
oscillatory behaviour?
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Understand slow-fast PWL systems. The Canard phenomena

[Prohens R., Teruel A. and Vich C. (2016), Journal of Differential Equations]
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Model

u̇ =
du

dt
= εg(u, v), v̇ =

dv

dt
= f(u, v).

u ∈ Rs slow variable
v ∈ R fast variable

0 < ε� 1 ratio of time scales
n = s+ 1 system dimension

{
g(u, v) = Au+ av + b
f(u, v) = u1 + |v|

where
A = (aij)1≤i,j≤s s× s real matrix
a = (a1, a2, . . . , as)

T vector in Rs

b = (b1, b2, . . . , bs)
T vector in Rs
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Main results of this Chapter:

Theorem

Unperturbed and Perturbed Dynamics → Fenichel’s like
theorem
Necessary and Sufficient conditions for the existence of
Maximal Canard Orbits (Uniqueness)
Source of Maximal Canard Orbits (from the unperturbed
system to the perturbed one)

Catalina Vich Inverse methods to estimate synaptic conductances 14



Slow-fast n-dimensional piecewise linear systems
Effects of plasticity on synaptic conductances in a network

Estimation of conductances in single point neurons
Conclusions

Background

Brain
Connectivity

Non-smooth
dynamics &

GSPT

Diffusion processes
&

statistical inferenceNeural models
&

Data treatment

Effects of plasticity
on synaptic

conductances in
a network with
slow oscillation

Slow-fast
n-dimensional

piecewise
linear systems

Estimation of conductances in single point neurons

Deterministic
framework

Non-deterministic
framework

in the Subthreshold Regime

Estimation in
the Spiking

Regime

Conclusions
&

Future work

Catalina Vich Inverse methods to estimate synaptic conductances 15



Slow-fast n-dimensional piecewise linear systems
Effects of plasticity on synaptic conductances in a network

Estimation of conductances in single point neurons
Conclusions

Understand brain connectivity

[C. Vich, P. Massobrio, A. Guillamon, work in progress]
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320 neurons

20 outcoming connections per neuron

20% inhibitory neurons: 1 compartment

80% excitatory neurons: 2 compartments

Short term depression (STD)
effects: Prel ← fD Prel
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Short term facilitation (STF)
effects: Prel ← fF (1− Prel)
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[Compte et al 2003] and [Benita et al 2012]
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On the dynamics of the network

Effects of the STD Effects of the STF

N
e

u
ro

n
 #

0  

40 

80 

120

160

200

240

280

320

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

Time (s)

IF
R

 (
s
p

/s
)

 

 

Exc

Inh

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

200

IFR
exc

IF
R

in
h

N
e

u
ro

n
 #

0  

40 

80 

120

160

200

240

280

320

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Time (s)

IF
R

 (
s
p

/s
)

 

 

Exc

Inh

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

IFR
exc

IF
R

in
h

N
e

u
ro

n
 #

0  

40 

80 

120

160

200

240

280

320

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

Time (s)

IF
R

 (
s
p

/s
)

 

 

Exc

Inh

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

IFR
exc

IF
R

in
h

N
e

u
ro

n
 #

0  

40 

80 

120

160

200

240

280

320

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

Time (s)

IF
R

 (
s
p

/s
)

 

 

Exc

Inh

0 50 100 150
0

20

40

60

80

100

120

140

160

180

200

IFR
exc

IF
R

in
h

N
e

u
ro

n
 #

0  

40 

80 

120

160

200

240

280

320

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

Time (s)

IF
R

 (
s
p

/s
)

 

 

Exc

Inh

10 20 30 40 50 60 70
40

50

60

70

80

90

100

110

IFR
exc

IF
R

in
h

N
e

u
ro

n
 #

0

40

80

120

160

200

240

280

320

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

Time (s)

IF
R

 (
s
p

/s
)

 

 

Exc

Inh

0 50 100 150
0

20

40

60

80

100

120

140

160

180

200

IFR
exc

IF
R

in
h

f∗D

fD > f∗D

fD < f∗D

f∗F

fF < f∗F

fF > f∗F

Catalina Vich Inverse methods to estimate synaptic conductances 18



Slow-fast n-dimensional piecewise linear systems
Effects of plasticity on synaptic conductances in a network

Estimation of conductances in single point neurons
Conclusions

On the synaptic conductances

Effects of the STD Effects of the STF
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Estimation in the subthreshold
Estimation in the spiking regime

Problem of the Synaptic Conductances Estimation
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Estimation in the subthreshold
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Estimation of conductances in the
subthreshold regime

Are the subthreshold-activated ionic currents causing
misestimations in this regime?

In this case, can we provide new strategies to overcome the
problem?

[Vich C. and Guillamon A. (2015), Journal of Computational

Neuroscience]

[Vich C., Berg R., Ditlevsen S., and Guillamon A. (2016), submitted]
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Estimation in the subthreshold
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Ionic channel inactivity
hypothesis{

Cv̇ =���
�XXXXf(v,w)− Isyn + Iapp

ẇ = h(v,w), w ∈ Rn

Quadratic Ionic channel
activity hypothesis{

Cv̇ = av2 − w − Isyn + Iapp
ẇ = h(v, w).
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Estimation in the subthreshold
Estimation in the spiking regime

Avoiding Multiple Trials + Considering noise
[Vich C., Berg R., Ditlevsen S., and Guillamon A. (2016), Preprint submitted]

We consider the stochastic version of the Quadratic Integrate
and Fire (QIF) model

C
dV

dt
= α (V (t)− VT )2 − IE(t)− II(t)− IT + Iapp + η(t)

IE(t) = gE(t) (V (t)− VE) ,
II(t) = gI(t) (V (t)− VI)

Procedure

Using a recursive process based on the Maximum Likelihood
Estimator inside a time window W , we compute α̂, ĝE(t) and ĝI(t)
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Results of the comparison

Excitatory conductance Inhibitory conductance
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Experimental data results

Intracellular recordings in current-clamp mode of spinal
motoneurons of red-eared turtles [Prof. R. Berg].
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Estimation of conductances in the spiking
regime

Can we also provide a first strategy to estimate conductances
in those regimes where the target neuron presents an
oscillatory behaviour?

[Guillamon A., Prohens R., Teruel A.E. and Vich C. (2016), preprint

submitted]
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We consider a version of the McKean model given by{
Cv̇ = f(v)− w − w0 + Isyn−Isyn(v),
ẇ = v − γw − v0,

where

Isyn(v) = gsyn(v − Vsyn)

f(v) =


−v v < a/2,
v − a a/2 ≤ v ≤ (1 + a)/2,
1− v v > (1 + a)/2.

v

w

a/2 (1 + a)/2
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Aim

We want to find an expression of the period T of the periodic orbit
as a function of gsyn and I, i.e. T (I, gsyn).

Some approximations have been done by [Coombes (2001)], [Fernández-Garćıa et al (2015)]
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Aim

We want to find an expression of the period T of the periodic orbit
as a function of gsyn and I, i.e. T (I, gsyn).

TL
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Aim

We want to find an expression of the period T of the periodic orbit
as a function of gsyn and I, i.e. T (I, gsyn).

TM,1
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Estimation in the subthreshold
Estimation in the spiking regime

Aim

We want to find an expression of the period T of the periodic orbit
as a function of gsyn and I, i.e. T (I, gsyn).

TR
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Aim

We want to find an expression of the period T of the periodic orbit
as a function of gsyn and I, i.e. T (I, gsyn).

TM,2

Procedure

Solving T̂ (I∗, gsyn) = T ∗ , we estimate gsyn
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Estimation procedure for gsyn(t):

1 Given v(t) for an specific I∗ such that the neuron oscillates,

extract a sequence of times {T (k)
i }Nk=1 such that
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}

2 Solve T̂ (I∗, g
(k)
syn) = T (k), for each T (k), to find g

(k)
syn.

3 Interpolate (t(k), g
(k)
syn) and obtain ĝsyn(t).
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Results using prescribed conductances from a V1 computational
network [Tao et al (2004)]
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In the preliminar chapters...

We have studied Slow-fast n-dimensional systems by using
geometric singular perturbation theory.

We gave necessary and sufficient conditions to ensure the
existence of Maximal Canard Orbits

The effects caused by the Short Term Plasticity (both
depression and facilitation)
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In the subthreshold regime...

Subthreshold ionic currents can cause misestimations on the
estimation of conductances.

Solutions, in both deterministic and stochastic frameworks,
have been obtained by considering second order
approximations.

In the spiking regime...

A proof-of concept to estimate synaptic conductances in the
deterministic case has been obtained.
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