EXPANDING BAKER MAPS

A first tool to study homoclinic bifurcations of 3-D diffeomorphisms

Enrique Vigil Álvarez
Postdoc Researcher at CMUP
Ddays 2016
Salou, November 10, 2016

Table of Contents

Introduction

1. The family $T_{a, b}$
2. Expanding Baker Maps
3. The family $\left\{\Lambda_{t}\right\}_{t}$

Final remarks

Introduction

Strange Attractor

Let $f: \mathcal{M} \rightarrow \mathcal{M}$ be a map and $\mathcal{A} \subset \mathcal{M}$. The set \mathcal{A} is said to be an strange attractor if
(Attractor) \mathcal{A} is a compact, invariant and transitive set and its stable set has a non-empty interior.
(Strange) \mathcal{A} contains a dense expansive orbit $\mathcal{O}(Q)$ displaying exponential growth, i.e., there exists some constant $c>0$ such that

$$
\left\|D f^{n}(Q)\right\| \geq \exp (c n)
$$

for every $n \geq 0$.

The starting point

"Three-dimensional" limit return maps

$$
\begin{aligned}
F_{a, b, n}(x, y, z) \underset{n \rightarrow \infty}{\longrightarrow} & F_{a, b}(x, y, z)=\left(z, a+b y+z^{2}, y\right) \\
& \hookrightarrow T_{a, b}(x, y)=\left(a+y^{2}, x+b y\right)
\end{aligned}
$$

Results

For a positive Lebesgue measure set of parameters, the numerical analysis seems to indicate that $T_{a, b}$ exhibits an strange attractor.

References

- J.C. Tatjer, Three-dimensional dissipative diffeomorphisms with homoclinic tangencies. Ergodic Theory and Dynamical Systems, 21 (2001).
- A. Pumariño and J.C. Tatjer, Attractors for return maps near homoclinic tangencies of three-dimensional dissipative diffeomorphisms. Discrete and Continuous Dynamical Systems, series B, vol 8, 4 (2007).

1. The family $T_{a, b}$

Region in the plane where $T_{a, b}$ has inv. domains

- Blue: sinks
- Green: one of the Lyapounov exponents is zero
- Red: the sum and the product of the two Lyapunov exponents is negative
- Black: the sum of the Lyapunov exponents is positive
$\mathcal{G}=\left\{(a(s), b(s))=\left(-\frac{s^{3}}{4}\left(s^{3}-2 s^{2}+2 s-2\right),-s^{2}+s\right): s \in[0,2]\right\}$

Possible strange attractors outside \mathcal{G}

Possible strange attractors along \mathcal{G}

Invariant domain

Numerically obtained strange attractors

$$
s=1.8939
$$

$$
s=1.99
$$

The special value $s=2$

Let \mathcal{T} be the triangle with vertices $(0,0),(1,1)$ and $(2,0)$ and let $\Lambda_{1}: \mathcal{T} \rightarrow \mathcal{T}$ be the map defined by

$$
\Lambda_{1}(x, y)= \begin{cases}(x+y, x-y) & , \text { if } x \leq 1 \\ (2-x+y, 2-x-y) & , \text { if } x \geq 1\end{cases}
$$

The special value $s=2$

Let \mathcal{T} be the triangle with vertices $(0,0),(1,1)$ and $(2,0)$ and let $\Lambda_{1}: \mathcal{T} \rightarrow \mathcal{T}$ be the map defined by

$$
\Lambda_{1}(x, y)= \begin{cases}(x+y, x-y) & , \text { if } x \leq 1 \\ (2-x+y, 2-x-y) & , \text { if } x \geq 1\end{cases}
$$

Proposition

The map $\Lambda_{1} \mid \mathcal{T}$ is conjugated to the shift with two symbols and to $T_{a(2), b(2)}$.
Therefore, $T_{a(2), b(2)}$ has an unique ergodic ACIM and a dense orbit with two positive Lyapounov exponents.

Reference

A. Pumariño and J.C. Tajter, Dynamics near homoclinic bifurcations of three-dimensional dissipative diffeomorphisms, Nonlinearity, 19 (2006).

Two-dimensional tent map

We can write Λ_{1} as follows: $\Lambda_{1}=A_{1} \circ \mathcal{F}_{\mathcal{C}}$, being

$$
\begin{aligned}
& \mathcal{F}_{\mathcal{C}}(x, y)= \begin{cases}(x, y) & , \text { if } x \leq 1 \\
(2-x, y) & , \text { if } x \geq 1\end{cases} \\
& A_{1}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) .
\end{aligned}
$$

Two-dimensional tent map

We can write Λ_{1} as follows: $\Lambda_{1}=A_{1} \circ \mathcal{F}_{\mathcal{C}}$, being

$$
\begin{aligned}
& \mathcal{F}_{\mathcal{C}}(x, y)= \begin{cases}(x, y) & , \text { if } x \leq 1 \\
(2-x, y) & , \text { if } x \geq 1\end{cases} \\
& A_{1}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) .
\end{aligned}
$$

From the geometry of this map, the term Expanding Baker Map arises.

2. Expanding Baker Maps

Folds and good folds

Let $\mathcal{K} \subset \mathbb{R}^{2}$ be a polygonal domain, $P \in \mathcal{K}$ an \mathcal{L} a straight line dividing \mathcal{K} into two subsets \mathcal{K}_{0} and \mathcal{K}_{1} (assume that $P \in \mathcal{K}_{0}$). We define the fold of \mathcal{K} by \mathcal{L} as

$$
\mathcal{F}_{\mathcal{L}}(x, y)= \begin{cases}(x, y) & , \text { if }(x, y) \in \mathcal{K}_{0} \\ (\bar{x}, \bar{y}) & , \text { if }(x, y) \in \mathcal{K}_{1}\end{cases}
$$

being (\bar{x}, \bar{y}) the symmetric point of (x, y) with respect to \mathcal{L}.

Folds and good folds

Let $\mathcal{K} \subset \mathbb{R}^{2}$ be a polygonal domain, $P \in \mathcal{K}$ an \mathcal{L} a straight line dividing \mathcal{K} into two subsets \mathcal{K}_{0} and \mathcal{K}_{1} (assume that $P \in \mathcal{K}_{0}$). We define the fold of \mathcal{K} by \mathcal{L} as

$$
\mathcal{F}_{\mathcal{L}}(x, y)= \begin{cases}(x, y) & , \text { if }(x, y) \in \mathcal{K}_{0} \\ (\bar{x}, \bar{y}) & , \text { if }(x, y) \in \mathcal{K}_{1}\end{cases}
$$

being (\bar{x}, \bar{y}) the symmetric point of (x, y) with respect to \mathcal{L}.
The $\operatorname{map} \mathcal{F}_{\mathcal{L}}$ is said to be a good fold if $\mathcal{F}_{\mathcal{L}}(\mathcal{K})=\mathcal{K}_{0}$.

Sequence of folds

Let $\mathcal{K} \subset \mathbb{R}^{2}$ be a polygonal domain and let P be a point in \mathcal{K}.

- Let $\mathcal{F}_{\mathcal{L}_{1}}$ be a good fold defined in the domain \mathcal{K}. We obtain the set \mathcal{K}_{0}.
- Let $\mathcal{F}_{\mathcal{L}_{2}}$ be a good fold defined in the domain \mathcal{K}_{0}. We obtain the set \mathcal{K}_{00}.
- We can repeat the process folding by $\mathcal{F}_{\mathcal{L}_{3}} \ldots \mathcal{F}_{\mathcal{L}_{n}}(n \in \mathbb{N})$

After n good folds we obtain a set $\mathcal{K}_{0 . n .0} \subset \mathcal{K}$ with $P \in \mathcal{K}_{0, n .0}$.

Expanding Baker Maps

Let us consider a polygonal domain \mathcal{K} and a point $P \in \mathcal{K}$.

- $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is an expanding linear map centered in P such that $A\left(\mathcal{K}_{0 .!.0}\right) \subset \mathcal{K}$.
We define the Expanding Baker Map associated to $\mathcal{K}, \mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$,
P and A as the $\operatorname{map} \Gamma: \mathcal{K} \rightarrow \mathcal{K}$ given by

$$
\Gamma=A \circ \mathcal{F}_{\mathcal{L}_{n}} \circ \ldots \circ \mathcal{F}_{\mathcal{L}_{1}} .
$$

Expanding Baker Maps

Let us consider a polygonal domain \mathcal{K} and a point $P \in \mathcal{K}$.

- $\left\{\mathcal{F}_{\mathcal{L}_{1}} \ldots \mathcal{F}_{\mathcal{L}_{n}}\right\}$ is a sequence of good folds of \mathcal{K}.
- $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is an expanding linear map centered in P such that $A\left(\mathcal{K}_{0, n, 0}\right) \subset \mathcal{K}$.
We define the Expanding Baker Map associated to $\mathcal{K}, \mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$,
P and A as the map $\Gamma: \mathcal{K} \rightarrow \mathcal{K}$ given by

$$
\Gamma=A \circ \mathcal{F}_{\mathcal{L}_{n}} \circ \ldots \circ \mathcal{F}_{\mathcal{L}_{1}} .
$$

For short, $\Gamma=E B M\left(\mathcal{K}, \mathcal{L}_{1}, \ldots, \mathcal{L}_{n}, P, A\right)$.

3. The family $\left\{\Lambda_{t}\right\}_{t}$

Notation

From now on, we will consider:

- $\mathcal{T} \equiv$ triangle with vertices $(0,0),(1,1)$ and $(2,0)$.
- $\mathcal{O} \equiv$ origin of the plane.
- $\mathcal{C} \equiv$ straight line $\{(x, y) \in \mathcal{T}: x=1\}$.
- $A_{t} \equiv$ linear map defined by

$$
A_{t}=\left(\begin{array}{cc}
t & t \\
t & -t
\end{array}\right)
$$

The family $\left\{\Lambda_{t}\right\}_{t}$

For each $t \in[0,1]$, we define the map $\Lambda_{t}=A_{t} \circ \mathcal{F}_{\mathcal{C}}$, i.e.,

$$
\Lambda_{t}(x, y)= \begin{cases}(t(x+y), t(x-y)) & , \text { if } x \leq 1 \\ (t(2-x+y), t(2+x-y)) & , \text { if } x>1\end{cases}
$$

Dynamics

The family $\left\{\Lambda_{t}\right\}_{t}$

For each $t \in[0,1]$, we define the map $\Lambda_{t}=A_{t} \circ \mathcal{F}_{\mathcal{C}}$, i.e.,

$$
\Lambda_{t}(x, y)= \begin{cases}(t(x+y), t(x-y)) & , \text { if } x \leq 1 \\ (t(2-x+y), t(2+x-y)) & , \text { if } x>1\end{cases}
$$

Dynamics

For every $\frac{1}{\sqrt{2}}<t \leq 1, \quad \Lambda_{t}=\operatorname{EBM}\left(\mathcal{T}, \mathcal{C}, \mathcal{O}, A_{t}\right)$.

Dynamics of Λ_{t}

$\Lambda_{t}=\operatorname{EBM}\left(\mathcal{T}, \mathcal{C}, \mathcal{O}, A_{t}\right)$ displays three kinds of non-trivial attractors: non-connected, connected but non simply-connected and convex attractors.

Reference

A. Pumariño, J. A. Rodríguez, J.C. Tatjer and E. Vigil, Expanding Baker Maps as models for the dynamics emerging from 3D-homoclinic bifurcations. Contin. Dyn. Syst. Ser. B, 19, 2 (2014).

Convex attractors

In the case $\frac{1}{\sqrt[3]{2}} \leq t \leq 1$ the attracting set is formed by a unique piece without holes.

Convex attractors

We have proved that if $t \in\left(t_{0}, 1\right]$, being $t_{0} \approx 0.882$, then:
(1) Λ_{t} has a strange attractor \mathcal{R}_{t} with two positive Lyapounov exponents.
(2) Λ_{t} is strongly topologically mixing on \mathcal{R}_{t}.
(3) \mathcal{R}_{t} supports a unique ergodic $\mathbf{A C I M} \mu_{t}$.
(4) The family $\left\{\Lambda_{t}\right\}_{t}$ is statistically stable.

References

- A. Pumariño, J. A. Rodríguez, J.C. Tatjer and E. Vigil, Chaotic dynamics for 2-D tent maps, Nonlinearity, 28, 407-434 (2015).
- J.F. Alves, A. Pumariño and E. Vigil, Statistical stability for multidimensional piecewise expanding maps. To appear in Proceedings of the AMS (2016).

Convex attractors

We have proved that if $t \in\left(t_{0}, 1\right]$, being $t_{0} \approx 0.882$, then:
(1) Λ_{t} has a strange attractor \mathcal{R}_{t} with two positive Lyapounov exponents.
(2) Λ_{t} is strongly topologically mixing on \mathcal{R}_{t}.
(3) \mathcal{R}_{t} supports a unique ergodic $\mathbf{A C I M} \mu_{t}$.
(4) The family $\left\{\Lambda_{t}\right\}_{t}$ is statistically stable.

References

- A. Pumariño, J. A. Rodríguez, J.C. Tatjer and E. Vigil, Chaotic dynamics for 2-D tent maps, Nonlinearity, 28, 407-434 (2015).
- J.F. Alves, A. Pumariño and E. Vigil, Statistical stability for multidimensional piecewise expanding maps. To appear in Proceedings of the AMS (2016).

$$
\text { In fact, these results hold for } t \in\left[\frac{1}{\sqrt[3]{2}}, 1\right] \text {. }
$$

Connected but non simply-connected attractors

In the case $\frac{1}{\sqrt[5]{4}} \leq t<\frac{1}{\sqrt[3]{2}}$, the attracting set is formed by a single piece with a hole.

Connected but non simply-connected attractors

- The hole appears when the symmetric point of P_{t} with respect to \mathcal{C} leaves the attractor, so there are no preimages of P_{t} in the attractor.
- The hole is determined by the first images of the critical line.
- The attractor becomes an octagon when $t<t_{1} \approx 0.771$

Non-connected attractors

In the case $\frac{1}{\sqrt{2}}<t<\frac{1}{\sqrt[5]{4}}$, the attracting set is formed by several pieces.

Non-connected attractors

How many pieces are obtained? Is there only one attractor?

```
(a) If 0.723 
    attractor.
(b) If 0.717~ t3 st<t we obtain a unique 32-pieces attractor
(c) If 0.711 }\approx\mp@subsup{t}{4}{}\leqt<\mp@subsup{t}{3}{}\mathrm{ we obtain TWO attractors formed by
32-pieces.
```


Non-connected attractors

How many pieces are obtained? Is there only one attractor?
(a) If $0.723 \approx t_{2} \leq t<\frac{1}{\sqrt[5]{4}}$ we obtain a unique 8 -pieces attractor.
(b) If $0.717 \approx t_{3} \leq t<t_{2}$ we obtain a unique 32-pieces attractor. (c) If $0.711 \approx t_{4} \leq t<t_{3}$ we obtain TWO attractors formed by 32 -pieces.

Non-connected attractors

How many pieces are obtained? Is there only one attractor?
(a) If $0.723 \approx t_{2} \leq t<\frac{1}{\sqrt[5]{4}}$ we obtain a unique 8 -pieces attractor.
(b) If $0.717 \approx t_{3} \leq t<t_{2}$ we obtain a unique 32 -pieces attractor. (c) If $0.711 \approx t_{4} \leq t<t_{3}$ we obtain TWO attractors formed by 32 -pieces.

Non-connected attractors

How many pieces are obtained? Is there only one attractor?
(a) If $0.723 \approx t_{2} \leq t<\frac{1}{\sqrt[5]{4}}$ we obtain a unique 8 -pieces attractor.
(b) If $0.717 \approx t_{3} \leq t<t_{2}$ we obtain a unique 32 -pieces attractor.
(c) If $0.711 \approx t_{4} \leq t<t_{3}$ we obtain TWO attractors formed by $32-$ pieces.

Non-connected attractors

How many pieces are obtained? Is there only one attractor?
(a) If $0.723 \approx t_{2} \leq t<\frac{1}{\sqrt[5]{4}}$ we obtain a unique 8 -pieces attractor.
(b) If $0.717 \approx t_{3} \leq t<t_{2}$ we obtain a unique 32 -pieces attractor.
(c) If $0.711 \approx t_{4} \leq t<t_{3}$ we obtain TWO attractors formed by $32-$ pieces.
(d) \ldots

Non-connected attractors

Suppose that an attractor has k pieces and let \mathcal{P} be one of them.

- The other pieces can be obtained as $\Lambda_{t}^{n}(\mathcal{P}), n=1 \ldots k-1$
- $\Lambda_{t}^{k}(\mathcal{P})=\mathcal{P}$.

Non-connected attractors

Suppose that an attractor has k pieces and let \mathcal{P} be one of them.

- The other pieces can be obtained as $\Lambda_{t}^{n}(\mathcal{P}), n=1 \ldots k-1$
- $\Lambda_{t}^{k}(\mathcal{P})=\mathcal{P}$.

> This is the main reason behind the idea of using a renormalization scheme.

Definition

An $E B M \Gamma$ is said to be renormalizable if there exists a domain \mathcal{D} and a natural number k such that $\Gamma_{\mid \mathcal{D}}^{k}$ is, up to an affine change in coordinates, an EBM defined on \mathcal{K}.
If $\Gamma_{\mid \mathcal{D}}^{k}$ is renormalizable, we call Γ twice renormalizable.
In general, we can speak about \mathbf{n} times renormalizable EBMs or even infinitely renormalizable EBMs.

Renormalization scheme: The First Renormalization

There exists an interval of parameters \mathcal{I}_{1} and a domain \mathcal{T}_{1} such that Λ_{t}^{8} is, up to an affine change in coordinates, the EBM

$$
\Gamma_{1, t}=E B M\left(\mathcal{T}, \mathcal{C}, \mathcal{L}_{1, t}, \mathcal{O}, B_{1, t}\right)
$$

Renormalization scheme: The Second Renormalization

Moreover, there exists an interval of parameters $\mathcal{I}_{2} \subset \mathcal{I}_{1}$ and two domains $\mathcal{T}_{2,1}, \mathcal{T}_{2,2}$ such that $\Gamma_{1, t}^{4}$ (and therefore Λ_{t}^{32} restricted to each domain is, up to an affine change in coordinates, an EBM defined on \mathcal{T}. In other words,

- Λ_{t} is a twice renormalizable EBM.
- Two strange attractors are coexisting.

Conjectures

Conjecture 1

For every natural number n there exists an interval of parameters I_{n} such that Λ_{t} is a n times renormalizable EBM displaying, at least, n different strange attractors for every $t \in I_{n}$.

Conjecture 2

There is no value of t for which Λ_{t} is infinitely many renormalizable.

Reference

A. Pumariño, J. A. Rodríguez and E. Vigil, Renormalizable Expanding Baker Maps: Coexistence of Strange Attractors. To appear in Discrete and Continuous Dynamical System - A (2016).

Final remarks

Outstanding work

1. To complete the renormalization scheme.
2. To study the "hole case".
3. To study new kinds of attractors.
4. (For the afterlife) By using the possible results obtained, prove the existence of two-dimensional strange attractors for the return maps associated to a neighbourhood of a generalized homoclinic tangency.

Bread is ready ...
 Thank you so much!

