## EXPANDING BAKER MAPS

A first tool to study homoclinic bifurcations of 3-D diffeomorphisms



Enrique Vigil Álvarez Postdoc Researcher at CMUP Ddays 2016

Salou, November 10, 2016

| Table of Contents |  |  |  |  |
|-------------------|--|--|--|--|
|                   |  |  |  |  |

#### Introduction

- 1. The family  $T_{a,b}$
- 2. Expanding Baker Maps
- 3. The family  $\{\Lambda_t\}_t$

#### Final remarks

Introduction

| Strange Attractor                          |                                                   |                                      |                                    |      |
|--------------------------------------------|---------------------------------------------------|--------------------------------------|------------------------------------|------|
| Let $f:\mathcal{M} ightarrow$ strange attr | $\mathcal{M}$ be a map and $\mathbf{actor}$ if    | $\mathcal{A}\subset\mathcal{M}.$ The | e set ${\mathcal A}$ is said to be | e an |
| (Attractor)                                | ${\cal A}$ is a compact, i<br>stable set has a no |                                      |                                    | its  |
| (Strange)                                  | $\mathcal{A}$ contains a dense                    | se expansive                         | orbit $\mathcal{O}(Q)$ display     | ving |

exponential growth, i.e., there exists some constant c > 0 such that

 $\|Df^n(Q)\| \ge \exp(cn)$ 

for every  $n \ge 0$ .

Introduction

| <br>ntroduction | The family T <sub>a,b</sub> | EBIVIS    | The family $\{\Lambda_t\}_t$ | Final remarks |
|-----------------|-----------------------------|-----------|------------------------------|---------------|
| The starting po | int                         |           |                              |               |
| "Three-dim      | nensional" limit re         | turn maps |                              |               |
|                 |                             |           |                              | -             |

$$F_{a,b,n}(x,y,z) \xrightarrow[n \to \infty]{} F_{a,b}(x,y,z) = (z,a+by+z^2,y)$$
$$\hookrightarrow T_{a,b}(x,y) = (a+y^2,x+by)$$

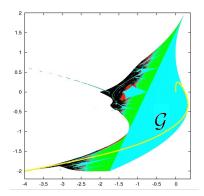
#### Results

For a positive Lebesgue measure set of parameters, the **numerical** analysis seems to indicate that  $T_{a,b}$  exhibits an strange attractor.

#### References

- J.C. Tatjer, Three-dimensional dissipative diffeomorphisms with homoclinic tangencies. Ergodic Theory and Dynamical Systems, 21 (2001).
- A. Pumariño and J.C. Tatjer, Attractors for return maps near homoclinic tangencies of three-dimensional dissipative diffeomorphisms. Discrete and Continuous Dynamical Systems, series B, vol 8, 4 (2007).

1. The family  $T_{a,b}$ 

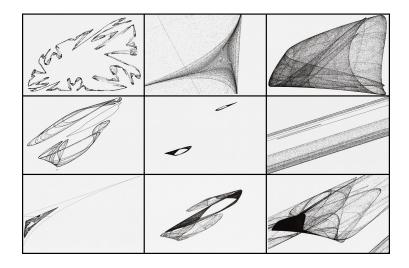


- Blue: sinks
- Green: one of the Lyapounov exponents is zero
- Red: the sum and the product of the two Lyapunov exponents is negative
- Black: the sum of the Lyapunov exponents is positive

$$\mathcal{G} = \left\{ (a(s), b(s)) = \left( -\frac{s^3}{4}(s^3 - 2s^2 + 2s - 2), -s^2 + s \right) : s \in [0, 2] \right\}$$

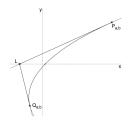
|                 | The family $T_{a,b}$ | EBMs   | The family $\{\Lambda_t\}_t$ |  |
|-----------------|----------------------|--------|------------------------------|--|
| Describle store |                      | · 1. 0 |                              |  |

#### Possible strange attractors outside $\mathcal{G}$

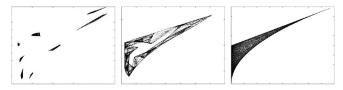




#### Invariant domain



#### Numerically obtained strange attractors



s = 1.8909 s = 1.8939 s = 1.99

E. Vigil - EBMs. A first tool to study homoclinic bifurcations of 3-D diffeomorphisms

|               | The family $T_{a,b}$ |  |  |
|---------------|----------------------|--|--|
| The special v | value $s = 2$        |  |  |

Let  $\mathcal{T}$  be the triangle with vertices (0,0), (1,1) and (2,0) and let  $\Lambda_1: \mathcal{T} \to \mathcal{T}$  be the map defined by

$$\Lambda_1(x,y) = \left\{ egin{array}{cc} (x+y,x-y) &, \mbox{ if } x \leq 1 \ (2-x+y,2-x-y) &, \mbox{ if } x \geq 1 \end{array} 
ight.$$

|                          | The family $T_{a,b}$ |  |  |
|--------------------------|----------------------|--|--|
| The special $\mathbf{v}$ | value <i>s</i> = 2   |  |  |

Let  $\mathcal{T}$  be the triangle with vertices (0,0), (1,1) and (2,0) and let  $\Lambda_1: \mathcal{T} \to \mathcal{T}$  be the map defined by

$$egin{aligned} &\Lambda_1(x,y)=\left\{egin{aligned} &(x+y,x-y)&, ext{ if }x\leq 1\ &(2-x+y,2-x-y)&, ext{ if }x\geq 1 \end{aligned}
ight. \end{aligned}$$

#### Proposition

The map  $\Lambda_1|_{\mathcal{T}}$  is conjugated to the shift with two symbols and to  $\mathcal{T}_{a(2),b(2)}.$ 

Therefore,  $T_{a(2),b(2)}$  has an unique ergodic ACIM and a dense orbit with two positive Lyapounov exponents.

#### Reference

**A. Pumariño and J.C. Tajter,** *Dynamics near homoclinic bifurcations of three-dimensional dissipative diffeomorphisms,* Nonlinearity, 19 (2006).

| Introduction | The family T <sub>a,b</sub>                                                            | The family $\{\Lambda_t\}_t$ | Final remarks |
|--------------|----------------------------------------------------------------------------------------|------------------------------|---------------|
| Two-dimens   | ional tent map                                                                         |                              |               |
|              | write $\Lambda_1$ as follows<br>$(x, y) = \begin{cases} (x, y) \\ (2 - x) \end{cases}$ | <br>•, 0                     |               |

$$A_1 = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right).$$



| Introduction | The family $T_{a,b}$                                                                                                           | EBMs                         | The family $\{\Lambda_t\}_t$ | Final remarks |
|--------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|---------------|
| Two-dimen    | sional tent map                                                                                                                |                              |                              |               |
| ${\cal F}$   | n write $\Lambda_1$ as follow<br>$C(x,y) = \begin{cases} (x,y) \\ (2-x) \\ 1 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$ |                              | <b>e</b> , <b>e</b>          |               |
|              | U                                                                                                                              | metry of this<br>ing Baker M | map, the term ap arises.     |               |
|              | $\xrightarrow{\mathcal{F}_{\mathcal{C}}}$                                                                                      |                              | $\xrightarrow{A_1}$          |               |

### 2. Expanding Baker Maps

IntroductionThe family  $T_{a,b}$ EBMsThe family  $\{\Lambda_t\}_t$ Final remarksFolds and good folds

Let  $\mathcal{K} \subset \mathbb{R}^2$  be a polygonal domain,  $P \in \mathcal{K}$  an  $\mathcal{L}$  a straight line dividing  $\mathcal{K}$  into two subsets  $\mathcal{K}_0$  and  $\mathcal{K}_1$  (assume that  $P \in \mathcal{K}_0$ ). We define the **fold** of  $\mathcal{K}$  by  $\mathcal{L}$  as

$$\mathcal{F}_{\mathcal{L}}(x,y) = \begin{cases} (x,y) & \text{, if } (x,y) \in \mathcal{K}_0\\ (\overline{x},\overline{y}) & \text{, if } (x,y) \in \mathcal{K}_1 \end{cases}$$

being  $(\overline{x}, \overline{y})$  the symmetric point of (x, y) with respect to  $\mathcal{L}$ .

IntroductionThe family  $T_{a,b}$ EBMsThe family  $\{\Lambda_t\}_t$ Final remarksFolds and good folds

Let  $\mathcal{K} \subset \mathbb{R}^2$  be a polygonal domain,  $P \in \mathcal{K}$  an  $\mathcal{L}$  a straight line dividing  $\mathcal{K}$  into two subsets  $\mathcal{K}_0$  and  $\mathcal{K}_1$  (assume that  $P \in \mathcal{K}_0$ ). We define the **fold** of  $\mathcal{K}$  by  $\mathcal{L}$  as

$$\mathcal{F}_{\mathcal{L}}(x,y) = \left\{ egin{array}{cc} (x,y) & , \mbox{ if } (x,y) \in \mathcal{K}_0 \ (\overline{x},\overline{y}) & , \mbox{ if } (x,y) \in \mathcal{K}_1 \end{array} 
ight.$$

being  $(\overline{x}, \overline{y})$  the symmetric point of (x, y) with respect to  $\mathcal{L}$ . The map  $\mathcal{F}_{\mathcal{L}}$  is said to be a **good fold** if  $\mathcal{F}_{\mathcal{L}}(\mathcal{K}) = \mathcal{K}_0$ .

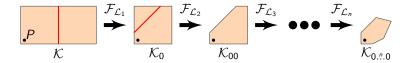


| Se | quence of fold                        | S                    |              |                            |          |
|----|---------------------------------------|----------------------|--------------|----------------------------|----------|
|    | Let $\mathcal{K}\subset \mathbb{R}^2$ | be a polygonal       | domain and   | let <i>P</i> be a point in | К.       |
|    | • Let $\mathcal{F}_{\mathcal{L}_{2}}$ | $_{1}$ be a good fol | d defined in | the domain ${\cal K}.$ We  | e obtain |

EBMs

- the set  $\mathcal{K}_{\Omega}$ .
- Let  $\mathcal{F}_{\mathcal{L}_2}$  be a good fold defined in the domain  $\mathcal{K}_0$ . We obtain the set  $\mathcal{K}_{00}$ .
- ▶ We can repeat the process folding by  $\mathcal{F}_{\mathcal{L}_3} \ \ldots \ \mathcal{F}_{\mathcal{L}_n}$   $(n \in \mathbb{N})$

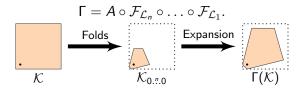
After *n* good folds we obtain a set  $\mathcal{K}_{0,n,0} \subset \mathcal{K}$  with  $P \in \mathcal{K}_{0,n,0}$ .



|               | The family $T_{a,b}$ | EBMs                | The family $\{\Lambda_t\}_t$      |  |
|---------------|----------------------|---------------------|-----------------------------------|--|
| Expanding Bal | ker Maps             |                     |                                   |  |
| Let us cor    | sider a polvgona     | I domain ${\cal K}$ | and a point $P \in \mathcal{K}$ . |  |

- $\circ \ \{\mathcal{F}_{\mathcal{L}_1} \dots \mathcal{F}_{\mathcal{L}_n}\} \text{ is a sequence of good folds of } \mathcal{K}.$
- ∘  $A : \mathbb{R}^2 \to \mathbb{R}^2$  is an expanding linear map centered in P such that  $A(\mathcal{K}_{0.n.0}) \subset \mathcal{K}$ .

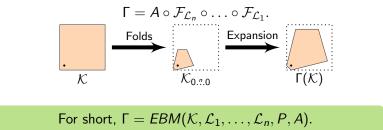
We define the **Expanding Baker Map** associated to  $\mathcal{K}, \mathcal{L}_1, \ldots, \mathcal{L}_n$ , P and A as the map  $\Gamma : \mathcal{K} \to \mathcal{K}$  given by



| Introduction | The family T <sub>a,b</sub> | EBMs                  | The family $\{\Lambda_t\}_t$      |  |
|--------------|-----------------------------|-----------------------|-----------------------------------|--|
| Expanding B  | aker Maps                   |                       |                                   |  |
| Let us co    | onsider a polygona          | I domain ${\cal K}$ . | and a point $P \in \mathcal{K}$ . |  |

- $\circ \ \{\mathcal{F}_{\mathcal{L}_1} \dots \mathcal{F}_{\mathcal{L}_n}\} \text{ is a sequence of good folds of } \mathcal{K}.$
- ∘  $A : \mathbb{R}^2 \to \mathbb{R}^2$  is an expanding linear map centered in P such that  $A(\mathcal{K}_{0.n.0}) \subset \mathcal{K}$ .

We define the **Expanding Baker Map** associated to  $\mathcal{K}, \mathcal{L}_1, \ldots, \mathcal{L}_n$ , P and A as the map  $\Gamma : \mathcal{K} \to \mathcal{K}$  given by

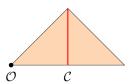


## 3. The family $\{\Lambda_t\}_t$

|          | The family $T_{a,b}$ | EBMs   | The family $\{\Lambda_t\}_t$ |  |
|----------|----------------------|--------|------------------------------|--|
| Notation |                      |        |                              |  |
| From no  | w on, we will cons   | sider: |                              |  |

- $T \equiv$  triangle with vertices (0,0), (1,1) and (2,0).
- $\mathcal{O} \equiv$  origin of the plane.
- $C \equiv \text{straight line } \{(x, y) \in T : x = 1\}.$
- $A_t \equiv$  linear map defined by

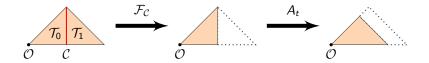
$$A_t = \left( egin{array}{cc} t & t \ t & -t \end{array} 
ight).$$



IntroductionThe family  $T_{a,b}$ EBMsThe family  $\{\Lambda_t\}_t$ Final remarksThe family  $\{\Lambda_t\}_t$ For each  $t \in [0, 1]$ , we define the map  $\Lambda_t = A_t \circ \mathcal{F}_{\mathcal{C}}$ , i.e., $\Lambda_t(x, y) = \begin{cases} (t(x+y), t(x-y)) & , \text{ if } x \leq 1 \end{cases}$ 

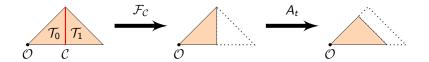
$$f_t(x, y) = \begin{cases} t(2 - x + y), t(2 + x - y) \end{cases}$$
, if  $x > 1$ 

#### **Dynamics**



IntroductionThe family  $T_{a,b}$ EBMsThe family  $\{\Lambda_t\}_t$ Final remarksThe family  $\{\Lambda_t\}_t$ For each  $t \in [0, 1]$ , we define the map  $\Lambda_t = A_t \circ \mathcal{F}_C$ , i.e., $\Lambda_t(x, y) = \begin{cases} (t(x+y), t(x-y)) &, \text{ if } x \leq 1 \\ (t(2-x+y), t(2+x-y)) &, \text{ if } x > 1 \end{cases}$ 

#### **Dynamics**

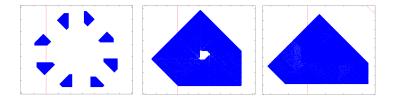


#### Proposition

For every 
$$\frac{1}{\sqrt{2}} < t \leq 1, \ \Lambda_t = \textit{EBM}(\mathcal{T}, \mathcal{C}, \mathcal{O}, A_t).$$

Introduction The family  $T_{a,b}$  EBMs The family  $\{\Lambda_t\}_t$  Final remarks Dynamics of  $\Lambda_t$ 

 $\Lambda_t = EBM(\mathcal{T}, \mathcal{C}, \mathcal{O}, A_t)$  displays three kinds of non-trivial attractors: non-connected, connected but non simply-connected and convex attractors.

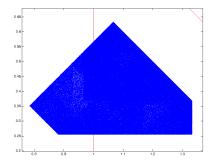


#### Reference

**A.** Pumariño, J. A. Rodríguez, J.C. Tatjer and E. Vigil, *Expanding* Baker Maps as models for the dynamics emerging from 3D-homoclinic bifurcations. Contin. Dyn. Syst. Ser. B, 19, 2 (2014).

IntroductionThe family  $T_{a,b}$ EBMsThe family  $\{\Lambda_t\}_t$ Final remarksConvex attractors

In the case  $\frac{1}{\sqrt[3]{2}} \le t \le 1$  the attracting set is formed by a unique piece without holes.



|                 | The failing Ta,b |                                                      |         |
|-----------------|------------------|------------------------------------------------------|---------|
| Convex attracto | ors              |                                                      |         |
|                 |                  | ng $t_0 pprox 0.882,$ then:<br>with two positive Lya | ipounov |
| expone          | ents.            |                                                      |         |

- (2)  $\Lambda_t$  is strongly topologically mixing on  $\mathcal{R}_t$ .
- (3)  $\mathcal{R}_t$  supports a **unique ergodic ACIM**  $\mu_t$ .
- (4) The family  $\{\Lambda_t\}_t$  is statistically stable.

References

- A. Pumariño, J. A. Rodríguez, J.C. Tatjer and E. Vigil, Chaotic dynamics for 2-D tent maps, Nonlinearity, 28, 407–434 (2015).
- J.F. Alves, A. Pumariño and E. Vigil, Statistical stability for multidimensional piecewise expanding maps. To appear in Proceedings of the AMS (2016).

| C | onvex attract | ors                   |                          |                                |         |
|---|---------------|-----------------------|--------------------------|--------------------------------|---------|
|   | We have p     | roved that if $t \in$ | ∃ ( <i>t</i> 0, 1], beir | ng $t_0 \approx 0.882$ , then: |         |
|   | •             |                       |                          | with two positive Lya          | ipounov |
|   | expon         | ents.                 |                          |                                |         |

The family {A+}+

- (2)  $\Lambda_t$  is strongly topologically mixing on  $\mathcal{R}_t$ .
- (3)  $\mathcal{R}_t$  supports a **unique ergodic ACIM**  $\mu_t$ .
- (4) The family  $\{\Lambda_t\}_t$  is statistically stable.

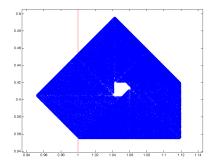
References

- A. Pumariño, J. A. Rodríguez, J.C. Tatjer and E. Vigil, Chaotic dynamics for 2-D tent maps, Nonlinearity, 28, 407–434 (2015).
- J.F. Alves, A. Pumariño and E. Vigil, Statistical stability for multidimensional piecewise expanding maps. To appear in Proceedings of the AMS (2016).

In fact, these results hold for  $t \in \left[\frac{1}{\sqrt[3]{2}}, 1\right]$ . 16 / 26 E. Vigil - *EBMs*. A first tool to study homoclinic bifurcations of 3-D diffeomorphisms Introduction

#### Connected but non simply-connected attractors

In the case  $\frac{1}{\sqrt[5]{4}} \le t < \frac{1}{\sqrt[3]{2}}$ , the attracting set is formed by a single piece with a hole.



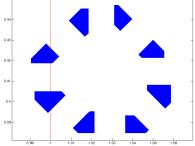
Introduction The family  $T_{a,b}$  EBMs The family  $\{\Lambda_t\}_t$  Final remarks

#### Connected but non simply-connected attractors

- ► The hole appears when the symmetric point of P<sub>t</sub> with respect to C leaves the attractor, so there are no preimages of P<sub>t</sub> in the attractor.
- ► The hole is determined by the first images of the critical line.
- The attractor becomes an octagon when  $t < t_1 \approx 0.771$



IntroductionThe family  $T_{a,b}$ EBMsThe family  $\{\Lambda_t\}_t$ Final remarksNon-connected attractorsIn the case  $\frac{1}{\sqrt{2}} < t < \frac{1}{\sqrt[5]{4}}$ , the attracting set is formed by several pieces.



|               | The family $T_{a,b}$ | EBMs | The family $\{\Lambda_t\}_t$ |  |
|---------------|----------------------|------|------------------------------|--|
| Non-connected | attractors           |      |                              |  |
|               |                      |      |                              |  |

#### How many pieces are obtained? Is there only one attractor?

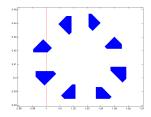
- (a) If  $0.723 \approx t_2 \leq t < \frac{1}{\sqrt[5]{4}}$  we obtain a unique 8-pieces attractor.
- (b) If  $0.717 \approx t_3 \leq t < t_2$  we obtain a unique 32-pieces attractor.
- (c) If  $0.711 \approx t_4 \leq t < t_3$  we obtain **TWO** attractors formed by 32-pieces.
- (d) ...

|               | The family <i>T<sub>a,b</sub></i> | EBMs         | The family $\{\Lambda_t\}_t$ |    |
|---------------|-----------------------------------|--------------|------------------------------|----|
| Non-connected | attractors                        |              |                              |    |
| How many      | y pieces are obtai                | ned? Is ther | e only one attracto          | r? |

# (a) If $0.723 \approx t_2 \leq t < \frac{1}{\sqrt[5]{4}}$ we obtain a unique 8-pieces attractor.

(b) If 0.717 ≈ t<sub>3</sub> ≤ t < t<sub>2</sub> we obtain a unique 32-pieces attractor.
(c) If 0.711 ≈ t<sub>4</sub> ≤ t < t<sub>3</sub> we obtain **TWO** attractors formed by 32-pieces.

(d) ...

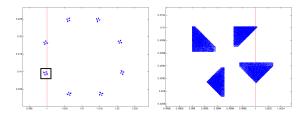


E. Vigil - EBMs. A first tool to study homoclinic bifurcations of 3-D diffeomorphisms

| Introduction | The family T <sub>a,b</sub>                   | EBMs                           | The family $\{\Lambda_t\}_t$ |           |
|--------------|-----------------------------------------------|--------------------------------|------------------------------|-----------|
| Non-connecte | ed attractors                                 |                                |                              |           |
| How ma       | ny pieces are ob                              | tained? Is t                   | here only one attrac         | ctor?     |
|              | $723 \approx t_2 \leq t < \frac{1}{\sqrt{3}}$ | $\frac{1}{\sqrt{4}}$ we obtain | n a unique 8-pieces          |           |
| (b) If 0.    | $717 \approx t_3 \leq t < t_2$                | 2 we obtain a                  | a unique 32—pieces a         | ttractor. |
| (c) lf 0.    | $711 \approx t_4 \leq t < t_5$                | <sub>3</sub> we obtain         | <b>TWO</b> attractors forn   | ned by    |

32-piece

(d) ...



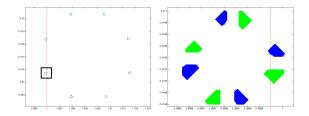
| Introduction            | The family T <sub>a,b</sub>                       |                         | The family $\{\Lambda_t\}_t$ | Final remarks |
|-------------------------|---------------------------------------------------|-------------------------|------------------------------|---------------|
| Non-connec <sup>-</sup> | ted attractors                                    |                         |                              |               |
| How m                   | any pieces are obt                                | ained? Is tl            | here only one attrac         | ctor?         |
| (a) If (                | $0.723 \approx t_2 \leq t < rac{1}{\sqrt[5]{2}}$ | $\frac{1}{4}$ we obtain | a unique 8-pieces            |               |

attractor.

(b) If  $0.717 \approx t_3 \leq t < t_2$  we obtain a unique 32-pieces attractor.

(c) If 0.711  $\approx t_4 \leq t < t_3$  we obtain **TWO** attractors formed by 32-pieces.

(d) ...



| Introduction  | The family T <sub>a,b</sub> |              | The family $\{\Lambda_t\}_t$ | Final remarks |
|---------------|-----------------------------|--------------|------------------------------|---------------|
| Non-connected | attractors                  |              |                              |               |
| How many      | pieces are                  | obtained? Is | s there only one att         | cractor?      |
|               | <b>.</b> .                  | 1.           |                              |               |

- (a) If  $0.723 \approx t_2 \leq t < \frac{1}{\sqrt[5]{4}}$  we obtain a unique 8-pieces attractor.
- (b) If  $0.717 \approx t_3 \leq t < t_2$  we obtain a unique 32-pieces attractor.
- (c) If 0.711  $\approx t_4 \leq t < t_3$  we obtain **TWO** attractors formed by 32-pieces.
- (d) ...



IntroductionThe family  $T_{a,b}$ EBMsThe family  $\{\Lambda_t\}_t$ Final remarksNon-connected attractorsSuppose that an attractor has k pieces and let  $\mathcal{P}$  be one of them.

• The other pieces can be obtained as  $\Lambda_t^n(\mathcal{P}), n = 1 \dots k - 1$ 

• 
$$\Lambda_t^k(\mathcal{P}) = \mathcal{P}.$$

IntroductionThe family  $T_{a,b}$ EBMsThe family  $\{\Lambda_t\}_t$ Final remarksNon-connected attractorsSuppose that an attractor has k pieces and let  $\mathcal{P}$  be one of them.

• The other pieces can be obtained as  $\Lambda_t^n(\mathcal{P}), n = 1 \dots k - 1$ 

• 
$$\Lambda_t^k(\mathcal{P}) = \mathcal{P}.$$

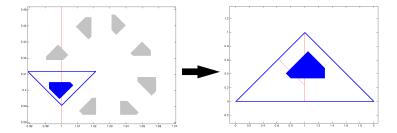
This is the main reason behind the idea of using a **renormalization** scheme.

#### Definition

An *EBM*  $\Gamma$  is said to be **renormalizable** if there exists a domain  $\mathcal{D}$  and a natural number k such that  $\Gamma_{|\mathcal{D}}^{k}$  is, up to an affine change in coordinates, an *EBM* defined on  $\mathcal{K}$ . If  $\Gamma_{|\mathcal{D}}^{k}$  is *renormalizable*, we call  $\Gamma$  **twice renormalizable**. In general, we can speak about **n times renormalizable EBMs** or even **infinitely renormalizable EBMs**. Introduction The family  $T_{a,b}$  EBMs The family  $\{\Lambda_t\}_t$ Renormalization scheme: The First Renormalization

There exists an interval of parameters  $\mathcal{I}_1$  and a domain  $\mathcal{T}_1$  such that  $\Lambda_t^8$  is, up to an affine change in coordinates, the *EBM* 

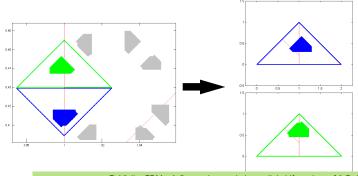
 $\Gamma_{1,t} = EBM(\mathcal{T}, \mathcal{C}, \mathcal{L}_{1,t}, \mathcal{O}, B_{1,t}).$ 



#### Renormalization scheme: The Second Renormalization

Moreover, there exists an interval of parameters  $\mathcal{I}_2 \subset \mathcal{I}_1$  and two domains  $\mathcal{T}_{2,1}$ ,  $\mathcal{T}_{2,2}$  such that  $\Gamma^4_{1,t}$  (and therefore  $\Lambda^{32}_t$  restricted to each domain is, up to an affine change in coordinates, an *EBM* defined on  $\mathcal{T}$ . In other words,

- $\Lambda_t$  is a twice renormalizable EBM.
- Two strange attractors are coexisting.



|             |  | The family $\{\Lambda_t\}_t$ |  |
|-------------|--|------------------------------|--|
| Conjectures |  |                              |  |
|             |  |                              |  |

#### Conjecture 1

For every natural number *n* there exists an interval of parameters  $I_n$  such that  $\Lambda_t$  is a *n* times renormalizable EBM displaying, at least, *n* different strange attractors for every  $t \in I_n$ .

#### Conjecture 2

There is no value of t for which  $\Lambda_t$  is infinitely many renormalizable.

#### Reference

**A.** Pumariño, J. A. Rodríguez and E. Vigil, *Renormalizable Expanding Baker Maps: Coexistence of Strange Attractors.* To appear in Discrete and Continuous Dynamical System - A (2016).

### Final remarks

|                                            | The family $T_{a,b}$ | EBMs | The family $\{\Lambda_t\}_t$ | Final remarks |  |  |
|--------------------------------------------|----------------------|------|------------------------------|---------------|--|--|
| Outstanding                                | ; work               |      |                              |               |  |  |
|                                            |                      |      |                              |               |  |  |
| 1. To complete the renormalization scheme. |                      |      |                              |               |  |  |

- 2. To study the "hole case".
- 3. To study new kinds of attractors.
- (For the afterlife) By using the possible results obtained, prove the existence of two-dimensional strange attractors for the return maps associated to a neighbourhood of a generalized homoclinic tangency.

# Bread is ready ... Thank you so much!

