araba ddays 07/09/2021

Javier Ribón Universidade Federal Fluminante Niterói, Rio de Janeiro, Brasil

Actions of groups of local biholomorphisms on the space of curves

Introduction

Theorem (Shub-Sullivan, 1973)

Let $f: U \to \mathbb{R}^m$ be a C^1 map where U is an open subset of \mathbb{R}^m . Suppose that 0 is an isolated fixed point of f^n for every $n \in \mathbb{N}$. Then the sequence $(I(f^n, 0))_{n \ge 1}$ of fixed point indexes is bounded by above by a constant that does not depend on n.

$$\mathbf{t}(f_{10}) = \deg\left(\begin{array}{c}f(x) - x\\f(x) - x\end{array}\right) : S(\varepsilon) \rightarrow S(\varepsilon) \\ f(x) - x\end{array}\right) : S(\varepsilon) \rightarrow S(\varepsilon) \\ \Delta = \int (x_1 x) : x_{\varepsilon} T R^{m} \\ T(f_{10}) = (\Delta_{1} F(\Delta)) \\ F: ux(\varepsilon) \rightarrow T R^{m} x R^{m} \\ (x_1 y_1 \rightarrow (x_1, y_2)) \\ \end{array}$$

Definition

Let G be a subgroup of $\text{Diff}(\mathbb{C}^n, 0)$. We say that G has the *uniform intersection property* (UI) if for any choice of analytic manifolds V, W of complementary dimension, the set

$$\{(\phi(V),W):\phi\in G\}$$

is finite.

こえい

$$M_{eq}(C^{1}(0)) = \operatorname{grupo} de difermorfismos$$

holomarfos en un
 $V = 2(I)$ catorno de o en Cⁿ

Definition

Let G be a subgroup of $\text{Diff}(\mathbb{C}^n, 0)$. We say that G has the *uniform intersection property* (UI) if for any choice of analytic manifolds V, W of complementary dimension, the set

 $\{(\phi(V),W):\phi\in G\}$

is finite.

G satisfies (UI) implies that G is finitely determined. $\varphi \in Diff(\mathcal{O}_{10}) / \varphi : U \longrightarrow \mathcal{O}_{1} \varphi(0) = 0$ G es finitamente determinado se $\exists K \in \mathbb{N}$ tal que todo $\varphi \in G$ está determinado por $j^{K} \varphi^{3}$

Definition

Let G be a subgroup of $\text{Diff}(\mathbb{C}^n, 0)$. We say that G has the *uniform intersection property* (UI) if for any choice of analytic manifolds V, W of complementary dimension, the set

Definition

Let G be a subgroup of $\text{Diff}(\mathbb{C}^n, 0)$. We say that G has the *uniform intersection property* (UI) if for any choice of analytic manifolds V, W of complementary dimension, the set

 $\{(\phi(V),W):\phi\in G\}$

is finite.

Theorem (Arnold 1991)

Cyclic subgroups of $\text{Diff}(\mathbb{C}^n, 0)$ satisfy (UI).

Definition

Let G be a subgroup of $\text{Diff}(\mathbb{C}^n, 0)$. We say that G has the *uniform intersection property* (UI) if for any choice of analytic manifolds V, W of complementary dimension, the set

 $\{(\phi(V),W):\phi\in G\}$

is finite.

Theorem (Arnold 1991)

Cyclic subgroups of $\text{Diff}(\mathbb{C}^n, 0)$ satisfy (UI).

Theorem (Seigal-Yakovenko 2014)

Finitely generated abelian subgroups of $\text{Diff}(\mathbb{C}^n, 0)$ satisfy (UI).

Definition

Let *G* be a subgroup of $\text{Diff}(\mathbb{C}^n, 0)$. We say that *G* has the *uniform intersection property* (UI) if for any choice of analytic manifolds V, W of complementary dimension, $\{(\phi(V), W) : \phi \in G\}$ is finite.

Theorem (Arnold 1991)

Cyclic subgroups of $\text{Diff}(\mathbb{C}^n, 0)$ satisfy (UI).

Theorem (Seigal-Yakovenko 2014)

Finitely generated abelian subgroups of $\text{Diff}(\mathbb{C}^n, 0)$ satisfy (UI).

Theorem (Binyamini 2015)

Lie subgroups of $\text{Diff}(\mathbb{C}^n, 0)$ satisfy (UI).

Definition

Let *G* be a subgroup of $\text{Diff}(\mathbb{C}^n, 0)$. We say that *G* has the *uniform intersection property* (UI) if for any choice of analytic manifolds *V*, *W* of complementary dimension, $\{(\phi(V), W) : \phi \in G\}$ is finite.

Theorem (R. 2018)

Finite dimensional subgroups of $\text{Diff}(\mathbb{C}^n, 0)$ satisfy (UI).

Podemos definir el cierre de dariski 6 de 6 cano un límite inverso.
dim (6) < 00 = D 6 v grupo alfebraico lucal
6 cíclico, abeliano f.g., Lie = D dim(6) < 00
6 es un dojeto intrínseco

Definition

Let G be a subgroup of $\text{Diff}(\mathbb{C}^n, 0)$. We say that G has the *uniform intersection property* (UI) if for any choice of analytic manifolds V, W of complementary dimension, $\{(\phi(V), W) : \phi \in G\}$ is finite.

Theorem (R. 2018)

Finite dimensional subgroups of $Diff(\mathbb{C}^n, 0)$ satisfy (UI).

Definition

Let G be a subgroup of $\text{Diff}(\mathbb{C}^n, 0)$. We say that G has the *uniform intersection property* (UI) if for any choice of analytic manifolds V, W of complementary dimension, $\{(\phi(V), W) : \phi \in G\}$ is finite.

Theorem (R. 2018)

Finite dimensional subgroups of $\text{Diff}(\mathbb{C}^n, 0)$ satisfy (UI).

$$f(q_{10}), w \ge K$$
 define un ideal en
los coeficientes de q

Definition

Let G be a subgroup of $\text{Diff}(\mathbb{C}^n, 0)$. We say that G has the *uniform intersection property* (UI) if for any choice of analytic manifolds V, W of complementary dimension, $\{(\phi(V), W) : \phi \in G\}$ is finite.

Theorem (R. 2018)

Finite dimensional subgroups of $\text{Diff}(\mathbb{C}^n, 0)$ satisfy (UI).

Corollary (R. 2018)

Finite generated nilpotent subgroups of $\text{Diff}(\mathbb{C}^n, 0)$ satisfy (UI).

Every finite dimensional group is (UI) Every (UI) group is finitely determined

Theorem (R. 2020)

Let G be a subgroup of $\text{Diff}(\mathbb{C}^2, 0)$. Then G satisfies the uniform intersection property, if and only if, G is finitely determined.

Rough idea of proof

Theorem (R. 2020)

Let G be a subgroup of $\text{Diff}(\mathbb{C}^2, 0)$. Then G satisfies the uniform intersection property, if and only if, G is finitely determined.

Carticepenplo G no (UI), finitamente determinado, dim(6)=00 $X = x - e e = X = \frac{2}{3 \pi}$ $\phi = \exp\left(a(x) \cdot \frac{\partial}{\partial \varphi}\right) = (x, y + a(x)), V_0(a) < \kappa$

Rough idea of proof

Theorem (R. 2020)

Let G be a subgroup of $\text{Diff}(\mathbb{C}^2, 0)$. Then G satisfies the uniform intersection property, if and only if, G is finitely determined.

$$\varphi(x,g) = (x, y+acx)$$

$$\varphi(y=0), g=0) = V(a)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(x,a(x)) \quad (x,0)$$

Uniform intersection and curves

 $\mathcal{V}(C_1)$

The ultrametric

$$d(C_1, C_2) = \frac{i}{m(C_1)m(C_2)}$$

defines a topology in the space of curves.

Uniform intersection and curves

The ultrametric

$$d(C_1, C_2) = \frac{m(C_1)m(C_2)}{(C_1, C_2)}$$

defines a topology in the space of curves.

 $G < \mathrm{Diff}(\mathbb{C}^2,0)$ has the uniform intersection property

 \uparrow

any G-orbit of a curve is discrete and closed

$$(\phi_n(\sigma), \gamma') \rightarrow \infty \iff \phi_n(\sigma) \longrightarrow \gamma'$$

Uniform intersection and curves

$G < \text{Diff}(\mathbb{C}^2, 0)$ has the uniform intersection property

 \uparrow

any G-orbit of a curve is discrete and closed

 \uparrow

any G-orbit of a curve is discrete

 $\phi_{n}(\sigma) \rightarrow \sigma'$; $\phi_{n}(\sigma) \sim \phi_{n+1}(\sigma)$ $\sigma \sim \phi_{n}^{-1} \circ \phi_{n+1}(\sigma)$

10

Actions on the space of curves

Theorem (R. 2020)

Let G be a subgroup of $\text{Diff}(\mathbb{C}^2, 0)$. Then G acts on the space of curves by discrete orbits, if and only if, G is finitely determined.

We denote

$$\phi_j(x_1, x_2, x_3) = (x_1, x_2 + d_j x_1^2 + x_3^{j+2}, x_3) \in \text{Diff}(\mathbb{C}^3, 0)$$

for any $j \in \mathbb{N}$ where $\{d_1, d_2, \dots\}$ is linearly independent over \mathbb{Q} . We define the group $G = \langle \phi_1, \phi_2, \dots \rangle$. It is abelian and finitely determined but non-(UI).

We denote

$$\phi_j(x_1, x_2, x_3) = (x_1, x_2 + d_j x_1^2 + x_3^{j+2}, x_3) \in \text{Diff}(\mathbb{C}^3, 0)$$

for any $j \in \mathbb{N}$ where $\{d_1, d_2, \dots\}$ is linearly independent over \mathbb{Q} . We define the group $G = \langle \phi_1, \phi_2, \dots \rangle$. It is abelian and finitely determined but non-(UI).

Denote $\alpha = \{x_1 = x_2 = 0\}$ and $\beta = \{x_2 = 0\}$. We have

$$(\phi_j^{-1}(\alpha), \beta) = \dim_{\mathbb{C}} \frac{\mathcal{O}_3}{(x_1, x_2 + d_j x_1^2 + x_3^{j+2}, x_2)}$$
$$= \dim_{\mathbb{C}} \frac{\mathcal{O}_3}{(x_1, x_2, x_3^{j+2})} = j + 2$$

We denote

$$\phi_j(x_1, x_2, x_3) = (x_1, x_2 + d_j x_1^2 + x_3^{j+2}, x_3) \in \text{Diff}(\mathbb{C}^3, 0)$$

for any $j \in \mathbb{N}$ where $\{d_1, d_2, \dots\}$ is linearly independent over \mathbb{Q} . We define the group $G = \langle \phi_1, \phi_2, \dots \rangle$. It is abelian and finitely determined but non-(UI).

$$\phi_j(\mathbf{O},\mathbf{O},\mathbf{X}_3) = (0, x_3^{j+2}, x_3)$$

The orbit of the x_3 -axis is non-discrete.

We denote

$$\phi_j(x_1, x_2, x_3) = (x_1, x_2 + d_j x_1^2 + x_3^{j+2}, x_3) \in \text{Diff}(\mathbb{C}^3, 0)$$

for any $j \in \mathbb{N}$ where $\{d_1, d_2, \dots\}$ is linearly independent over \mathbb{Q} . We define the group $G = \langle \phi_1, \phi_2, \dots \rangle$. It is abelian and finitely determined but non-(UI).

$$\phi_j(x_1, x_2, x_3) = (0, x_3^{j+2}, x_3)$$

The orbit of the x_3 -axis is non-discrete.

$$(\phi_j)_{|x_1=0}(x_2, x_3) = (x_2 + x_3^{j+2}, x_3)$$

We study the actions of finitely determined subgroups of $\text{Diff}(\mathbb{C}^n, 0)$ (with $n \ge 3$) on the space of curves.

Given a curve γ , we want to describe the possible obstructions to discreteness of $\mathcal{O}_G(\gamma)$.

We study the actions of finitely determined subgroups of $\text{Diff}(\mathbb{C}^n, 0)$ (with $n \ge 3$) on the space of curves.

Given a curve γ , we want to describe the possible obstructions to discreteness of $\mathcal{O}_G(\gamma)$.

 $G_{\gamma,p} = \{ \phi \in G \text{ such that } \gamma \text{ and } \phi(\gamma) \text{ have } p \text{ common tangents } \}$

We study the actions of finitely determined subgroups of $\text{Diff}(\mathbb{C}^n, 0)$ (with $n \ge 3$) on the space of curves.

Given a curve γ , we want to describe the possible obstructions to discreteness of $\mathcal{O}_G(\gamma)$.

 $G_{\gamma,p} = \{ \phi \in G \text{ such that } \gamma \text{ and } \phi(\gamma) \text{ have } p \text{ common tangents } \}$

Given a curve γ , we want to describe the possible obstructions to discreteness of $\mathcal{O}_G(\gamma)$.

 $G_{\gamma,p} = \{ \phi \in G \text{ such that } \gamma \text{ and } \phi(\gamma) \text{ have } p \text{ common tangents } \}$

 $\mathcal{O}_G(\gamma)$ is discrete $\Leftrightarrow \mathcal{O}_{G_{\gamma,p}}(\gamma)$ is discrete

Definition

We say that γ is *G*-weakly trascendent if $\mathcal{O}_G(\gamma)$ is not contained in a proper analytic set.

Given a curve γ , we want to describe the possible obstructions to discreteness of $\mathcal{O}_G(\gamma)$.

 $G_{\gamma,p} = \{ \phi \in G \text{ such that } \gamma \text{ and } \phi(\gamma) \text{ have } p \text{ common tangents } \}$

 $\mathcal{O}_G(\gamma)$ is discrete $\Leftrightarrow \mathcal{O}_{G_{\gamma,p}}(\gamma)$ is discrete

Definition

We say that γ is *G*-weakly trascendent if $\mathcal{O}_G(\gamma)$ is not contained in a proper analytic set.

We say that γ is *G*-trascendent if is $G_{\gamma,p}$ -trascendent for any $p \ge 1$

Theorem (R.)

Let $G < \text{Diff}(C^n, 0)$ be a finitely determined subgroup and γ a curve. Suppose that $\mathcal{O}_G(\gamma)$ is non-discrete. Then at least one of the following properties holds:

Theorem (R.)

Let $G < \text{Diff}(C^n, 0)$ be a finitely determined subgroup and γ a curve. Suppose that $\mathcal{O}_G(\gamma)$ is non-discrete. Then at least one of the following properties holds:

• γ is non-trascendent

Theorem (R.)

Let $G < \text{Diff}(C^n, 0)$ be a finitely determined subgroup and γ a curve. Suppose that $\mathcal{O}_G(\gamma)$ is non-discrete. Then at least one of the following properties holds:

- γ is non-trascendent
- There exists an abelian normal subgroup H of some G_{γ,p} such that O_H(γ) is non-discrete

Theorem (R.)

Let $G < \text{Diff}(C^n, 0)$ be a finitely determined subgroup and γ a curve. Suppose that $\mathcal{O}_G(\gamma)$ is non-discrete. Then at least one of the following properties holds:

- γ is non-trascendent
- There exists an abelian normal subgroup H of some G_{γ,p} such that O_H(γ) is non-discrete
- There exists G_{γ,p} such that G_{γ,p} ∩ Diff₁(Cⁿ, 0) = {Id} and is non-virtually solvable.

The abelian case

Theorem (R.)

Let $G < \text{Diff}(C^n, 0)$ be a finitely determined abelian subgroup and γ a curve. Suppose that $\mathcal{O}_G(\gamma)$ is non-discrete. Then γ is non-weakly transcendent.

Diffict 10) $\phi(z) = z + z^2 = \exp\left(\left(\frac{2}{z} + \cdots\right) \frac{\partial}{\partial z}\right)$ $\Psi(z) = 2 + 2^{2} = \exp\left(\left(2^{2} + \dots\right) \xrightarrow{\partial} 2^{2}\right)$ $\langle \psi_{1} \psi_{2} = \exp\left(\left(2^{4} + \dots\right) \xrightarrow{\partial} 2^{2}\right)$ NO - resoluble

Thank you