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Introduction

Theorem (Shub-Sullivan, 1973)

Let f : U ! Rm be a C
1 map where U is an open subset of Rm.

Suppose that 0 is an isolated fixed point of fn for every n 2 N.
Then the sequence (I(fn

, 0))n�1 of fixed point indexes is bounded
by above by a constant that does not depend on n.
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Uniform Intersection Property

Definition

Let G be a subgroup of Di↵(Cn
, 0). We say that G has the uniform

intersection property (UI) if for any choice of analytic manifolds
V,W of complementary dimension, the set

{(�(V ),W ) : � 2 G}

is finite.

G satisfies (UI) implies that G is finitely determined.
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Uniform Intersection Property

Definition

Let G be a subgroup of Di↵(Cn
, 0). We say that G has the uniform

intersection property (UI) if for any choice of analytic manifolds
V,W of complementary dimension, the set

{(�(V ),W ) : � 2 G}

is finite.

Theorem (Arnold 1991)
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Uniform Intersection Property

Definition

Let G be a subgroup of Di↵(Cn
, 0). We say that G has the uniform

intersection property (UI) if for any choice of analytic manifolds
V,W of complementary dimension, {(�(V ),W ) : � 2 G} is finite.

Theorem (Arnold 1991)

Cyclic subgroups of Di↵(Cn
, 0) satisfy (UI).

Theorem (Seigal-Yakovenko 2014)

Finitely generated abelian subgroups of Di↵(Cn
, 0) satisfy (UI).

Theorem (Binyamini 2015)

Lie subgroups of Di↵(Cn
, 0) satisfy (UI).
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Uniform Intersection Property

Definition

Let G be a subgroup of Di↵(Cn
, 0). We say that G has the uniform

intersection property (UI) if for any choice of analytic manifolds
V,W of complementary dimension, {(�(V ),W ) : � 2 G} is finite.

Theorem (R. 2018)

Finite dimensional subgroups of Di↵(Cn
, 0) satisfy (UI).

Corollary (R. 2018)

Finite generated nilpotent subgroups of Di↵(Cn
, 0) satisfy (UI).
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Uniform Intersection Property

Every finite dimensional group is (UI)

Every (UI) group is finitely determined

Theorem (R. 2020)

Let G be a subgroup of Di↵(C2
, 0). Then G satisfies the uniform

intersection property, if and only if, G is finitely determined.
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Rough idea of proof

Theorem (R. 2020)

Let G be a subgroup of Di↵(C2
, 0). Then G satisfies the uniform

intersection property, if and only if, G is finitely determined.
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Rough idea of proof

Theorem (R. 2020)

Let G be a subgroup of Di↵(C2
, 0). Then G satisfies the uniform

intersection property, if and only if, G is finitely determined.
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Uniform intersection and curves

The ultrametric
d(C1, C2) =

m(C1)m(C2)

(C1, C2)

defines a topology in the space of curves.

G < Di↵(C2
, 0) has the uniform intersection property

m

any G-orbit of a curve is discrete and closed
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The ultrametric
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Uniform intersection and curves

G < Di↵(C2
, 0) has the uniform intersection property

m

any G-orbit of a curve is discrete and closed

m

any G-orbit of a curve is discrete
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Actions on the space of curves

Theorem (R. 2020)

Let G be a subgroup of Di↵(C2
, 0). Then G acts on the space of

curves by discrete orbits, if and only if, G is finitely determined.
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Example

We denote

�j(x1, x2, x3) = (x1, x2 + djx
2
1 + x

j+2
3 , x3) 2 Diff (C3

, 0)

for any j 2 N where {d1, d2, · · · } is linearly independent over Q. We
define the group G = h�1,�2, · · · i. It is abelian and finitely
determined but non-(UI).

Denote ↵ = {x1 = x2 = 0} and � = {x2 = 0}. We have

(��1
j

(↵),�) = dimC
O3

(x1, x2 + djx
2
1 + x

j+2
3 , x2)

= dimC
O3

(x1, x2, x
j+2
3 )

= j + 2
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Example

We denote

�j(x1, x2, x3) = (x1, x2 + djx
2
1 + x

j+2
3 , x3) 2 Diff (C3

, 0)

for any j 2 N where {d1, d2, · · · } is linearly independent over Q. We
define the group G = h�1,�2, · · · i. It is abelian and finitely
determined but non-(UI).

�j(x1, x2, x3) = (0, xj+2
3 , x3)

The orbit of the x3-axis is non-discrete.

(�j)|x1=0(x2, x3) = (x2 + x
j+2
3 , x3)
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Actions on the space of curve

We study the actions of finitely determined subgroups of Di↵(Cn
, 0)

(with n � 3) on the space of curves.

Given a curve �, we want to describe the possible obstructions to
discreteness of OG(�).
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Actions on the space of curve

Given a curve �, we want to describe the possible obstructions to
discreteness of OG(�).

G�,p = {� 2 G such that � and �(�) have p common tangents }

OG(�) is discrete , OG�,p(�) is discrete

Definition

We say that � is G-weakly trascendent if OG(�) is not contained in
a proper analytic set.

We say that � is G-trascendent if is G�,p–trascendent for any p � 1
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The trichotomy

Theorem (R.)

Let G < Di↵(Cn
, 0) be a finitely determined subgroup and � a

curve. Suppose that OG(�) is non-discrete. Then at least one of the
following properties holds:

• � is non-trascendent

• There exists an abelian normal subgroup H of some G�,p such
that OH(�) is non-discrete

• There exists G�,p such that G�,p \Di↵1(Cn
, 0) = {Id} and is

non-virtually solvable.
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The abelian case

Theorem (R.)

Let G < Di↵(Cn
, 0) be a finitely determined abelian subgroup and

� a curve. Suppose that OG(�) is non-discrete. Then � is
non-weakly transcendent.
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Thank you
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