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Oscillations in the brain

• Oscillatory activity in the brain is widely observed at different
organization levels.

• Interactions between neurons lead to macroscopic oscillatory
activity.�

frequency bands → Gamma band (30 ∼ 100 Hz)

• Although oscillations have been associated to specific tasks or
behaviours their functional role is not completely understood.



Communication Through Coherence (P. Fries, 2005,
2015)

E-I networks

• Interaction between excitation and inhibition (E-I) has been
proposed as one of the mechanisms for the generation of
oscillations.

• Different excitability properties along a cycle.



Communication through coherence (P Fries, 2005,
2015)

According to CTC theory two oscillating neuronal groups
communicate much effectively when they are properly phase locked
so the input reaches the receiving population at its maximum
phase of excitability

Adapted from [Tiesinga and Sejnowski, 2010], [P. Fries, 2015]



Microscopic (full) model: Simulation



Microscopic (full) model

Population of N neurons with all-to-all coupling
(Ne excitatory + Ni inhibitory)
Neuron’s voltage V is governed by a QIF model{

τ V̇j = V 2
j + ηj + Ij ,

if Vj ≥ Vth then Vj = Vreset ,
j = 1, . . . ,N
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• Time constant τ

• Constant input ηj : introducing heterogeneity in the network by choosing ηj from

Lorentzian distr.: L(η) =
1

π

∆

(η − η̄)2 + ∆2
with

{
Half-width ∆

Center η̄

• Input current Ij : common external current + synaptic current

− Excitatory pop.: Ie = I ext
e + τeSee − τeSei

− Inhibitory pop.: Ii = I ext
i + τiSie − τiSii

with Sab modelling the synapses b -to -a as: τs Ṡab = −Sab + Jabrb (linear ODE)



Mean-field model for a E-I network (I)

Mean-field exact model ∗

E cells



τe ṙe =
∆e

πτe
+ 2reVe ,

τe V̇e = V 2
e + ηe + Ie − (τeπre)2 ,

τse Ṡee = −See + Jee re ,

τse Ṡei = −Sei + Jei ri ,

I cells



τi ṙi =
∆i

πτi
+ 2riVi ,

τi V̇i = V 2
i + ηi + Ii − (τiπri )

2 ,

τsi Ṡie = −Sie + Jie re ,

τsi Ṡii = −Sii + Jii ri ,

∗Montbrió, Pazó & Roxin, Phys X, 2015

∗Dumont & Gutkin, PLoS Comput Biol, 2019
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Variables

• r: firing rate (spikes per unit of time)

• V: mean membrane potential

• Sab: synaptic connection from b to a

Parameters

• τ : time constants (speed dynamics)

• Jab: b -to -a connection’s strength

• ∆: half-width of Lorentzian distr.

• η̄: center of Lorentzian distr.



Mean-field model for a E-I network (II)

Mean-field exact model ∗

E cells



τe ṙe =
∆e

πτe
+ 2reVe ,

τe V̇e = V 2
e + ηe + Ie − (τeπre)2 ,

τse Ṡee = −See + Jee re ,

τse Ṡei = −Sei + Jei ri ,

I cells



τi ṙi =
∆i

πτi
+ 2riVi ,

τi V̇i = V 2
i + ηi + Ii − (τiπri )

2 ,

τsi Ṡie = −Sie + Jie re ,

τsi Ṡii = −Sii + Jii ri ,

∗Montbrió et al., Phys X, 2015

∗Dumont & Gutkin, PLoS Comput Biol, 2019

Total input currents

• E-input: Ie = I ext
e + τeSee − τeSei

• I-input: Ii = I ext
i + τiSie − τiSii

Oscillations (I ext
e , I ext

i
)



Gamma rhythms: PING mechanism

Parameters: Jee = Jii = 0 , Jei = Jie = 15



Phases of an oscillator

Let Γ be the hyperbolic limit cycle of period T ∗ parametrized by
the phase variable θ = t + θ0 (modT ∗) as

γ :T→ Rn

θ → γ(θ)

∗ Phase function Θ : Γ ⊂ Rn → S1, Θ(x) = θ

�

Basin of attraction Γ: ‖x(t)− y(t)‖ t→∞−→ 0 =⇒ Θ(y0) = Θ(x0)
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Phase response curve and Adjoint method

The Phase response curve (PRC) measures the phase variation due to a given
perturbation ∆~x applied at different phases of the cycle

PRC(θ) = θnew − θ , θ ∈ [0,T∗)

∗ Sign: PRC > 0 → phase advance whereas PRC < 0 → phase delay

something here
iPRC (infinitesimal perturbation) PRC(θ) = θnew − θ ≈ ∇Θ(γ(θ)) ·∆~x = Z(θ) ·∆~x
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Phase response curve and Adjoint method
The Phase response curve (PRC) measures the phase variation due to a given
perturbation ∆~x applied at different phases of the cycle

PRC(θ) = θnew − θ , θ ∈ [0,T∗)

∗ Sign: PRC > 0 → phase advance whereas PRC < 0 → phase delay

something here
iPRC (infinitesimal perturbation) PRC(θ) = θnew − θ ≈ ∇Θ(γ(θ)) ·∆~x = Z(θ) ·∆~x

Adjoint Method: The iPRC (linear response of an oscillator), Z(t) ∈ Rn, is a periodic
solution of

Ż = −DxF
T
(
γ(t)

)
Z , subject to Z(t) · F (γ(t)) = 1
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Phase Reduction
Consider ẋ = F (x) + Ap(t)~v , with T -periodic perturbation p(t) in the direction ~v :

dθ

dt
= ∇Θ(x(t)) ·

dx

dt
= 1 + Ap(t) [∇Θ(x(t)) · ~v ] ≈

<
1 + Ap(t) [Z(θ) · ~v ]

< Weak coupling hypothesis: if ‖Ap(t)‖ << 1 =⇒ ∇Θ(x(t)) ≈ Z(θ)

Stroboscopic map: Since p(t) is T -periodic

θn+1 = P(θn) = ΦT (θn) modT∗.

p : q phase-locking: Two oscillators are p : q phase-locked if oscillator 1 (forced)
rotates p times as oscillator 2 (the forcing) rotates q.

p : q phase-locking ←→ fixed/periodic points of P: θ + pT∗ = Pq(θ)

Rotation number: Defined as (with P̄ the lift of P)

ρ(P) := lim
n→∞

P̄n(x)− x

n

�

if ρ = p
q
→ p : q phase-locking.



Phase Reduction
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External drive - Von Mises distribution

Assume that external inputs arrive more or less clustered
around some phases of the cycle.

Periodic perturbation: Von Mises density function

p(t) =
eκ cos

(
2π(t−µ)

T

)
2π I0(κ)

, x ∈
[
−

T

2
,
T

2

]
κ > 0: concentration of the distribution about the location µ

∗ µ ∈ R: the location where the distribution clusters around
∗ κ > 0: a measure of concentration of the distribution about the location µ
∗ T : period of the distribution
∗ I0: modified Bessel function (of first kind) of order 0
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Arnold tongues and entrainment properties

Rotation number Arnold tongues
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Increasing the coherence κ of the periodic input enlarges the
input frequency range that entrains the network

[Reyner-Parra, H., BioRXiv, 2021]



Implications for CTC

CTC proposal

Communication between brain regions is much effective if oscillators are properly phase-locked.

∗ If external input precedes inhibition =⇒ increase excitatory activity (more respon-
sive to that stimulus)

∗ If external input follows inhibition =⇒ input may be ignored (less responsive to that
stimulus)

Factors

• Timing inhibition-perturbation: ∆τ =
tinh − tp

T

{
∆τ < 0.5 =⇒ inhibition follows

∆τ > 0.5 =⇒ inhibition precedes

• Impact perturbation onto re :



∆α =
RA
e

R0
e

, RA
e : maximum exc. activity for a given A

∆ᾱ =
R̄A
e

R̄0
e

, R̄A
e :=

1

T

∫ T

0
re(t)dt

time-average exc. activity for a given A



Implications for CTC

Measures of effective communication inside 1:1 phase-locking
region. Colors correspond to different amplitude values.
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Implications for CTC

0 0.05 0.1 0.15 0.2 0.25 0.3

Firing Rate, r
e

-6

-4

-2

0

2

4

M
e

a
n

 V
o

lt
a

g
e

, 
V

e

0 0.2 0.4 0.6 0.8 1

t/T

0

0.5

1

1.5

2

F
ir

in
g

 A
c

ti
v

it
y

0

0.2

0.4

0.6

0.8

1
A

 p
(t

)

0 0.2 0.4 0.6 0.8 1

t/T

0

0.5

1

1.5

2

F
ir

in
g

 A
c

ti
v

it
y

0

0.2

0.4

0.6

0.8

1

A
 p

(t
)

0 0.2 0.4 0.6 0.8 1

t/T

0

0.5

1

1.5

2

F
ir

in
g

 A
c

ti
v

it
y

0

0.2

0.4

0.6

0.8

1

A
 p

(t
)

Timing inhibition-perturbation ∆τ and impact onto activity
of E-cells (re) depends on input frequency.



Two competing inputs - Selective communication



Two competing inputs - Selective communication

Goal

To study how the phase-locked states are affected by the presence of a distracting stimulus.

∗ Does the distractor prevent the oscillator from following the primary stimulus?

∗ Which stimulus is effective and which one is ignored?

• Vary frequency of the first input but ensuring 1:1 phase-locking.

• Vary distractor coherence and distractor frequency.
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Effects of a distractor

Compute the synchronization index or vector strength as a
function of the distractor coherence κ2 and period T2.

r =
1

N

√(∑
i

xi
)2

+
(∑

i

yi
)2
, with

{
xi = cos θi

yi = sin θi

∗ θi : phase for the i-th iterate of the stroboscopic map (PT1).

∗ N: total number of iterations

If r = 1 ⇒ perfect phase-locking. If r = 0 ⇒ totally desynchronized
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Effects of a distractor

Network entrainment by higher frequency inputs is more ro-
bust to distractors.

0 20 40 60 80 100

x

0

0.5

1

1.5

2

0 20 40 60 80 100

x

0

0.5

1

1.5

2

p = T1/T∗ = 0.71 p = T1/T∗ = 0.85 p = T1/T∗ = 1

0 5 10 15 20

2

0.85

0.9

0.95

1

S
y
n

c
h

ro
n

iz
a
ti

o
n

 i
n

d
e
x

0 5 10 15 20

2

0

0.2

0.4

0.6

0.8

1

S
y
n

c
h

ro
n

iz
a
ti

o
n

 i
n

d
e
x

0 5 10 15 20

2

0

0.2

0.4

0.6

S
y
n

c
h

ro
n

iz
a
ti

o
n

 i
n

d
e
x

T2/T1

0.5 0.625 0.75 0.875 1
1.5 1.4 1.3 1.2 1.1



The role of inhibition

• p = T1/T
∗ (high input frequencies / close to left boundary of

the Arnold tongue)

�

Inhibition is present near distractor volleys, therefore
suppressing its activity

• p = T1/T
∗ (closer to right boundary of the Arnold tongue)

�

Inhibiton is less present around distractor volleys, giving
the competitor the opportunity to weaken synchrony



Switch between inputs

Oscillator perturbed by two-equally strong stimuli

Goal

Study the effects of brief/short stimulus (pulse) to the resulting
coupled system.

Brief stimulus could

∗ lengthen or shorten the cycle period (i.e. phase shifting)

∗ force the oscillator to phase-lock to the other input

�

Change in the effective input
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Switch between inputs

No Switch Switch



Beyond the weak coupling hypothesis

Wilson-Cowan equations for an E-I network

τe Ė = −E + Se(c1E − c3I + P)

τi İ = −I + Si (c2E − c4I + Q)

where Sk(x) = 1/(1 + e−ak (x−θk )).
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Beyond the weak coupling hypothesis

Wilson-Cowan equations for an E-I network

τe Ė = −E + Se(c1E − c3I + P + Ap(t))

τi İ = −I + Si (c2E − c4I + Q)

where Sk(x) = 1/(1 + e−ak (x−θk )).

Add periodic forcing modelling oscillatory input from the emitting
population to the E receiving population

p(t) = 1 + cos

(
2πt

T

)



Bifurcation diagram
Bifurcations of fixed points of the stroboscopic map (time-T map
of the system).

1:1 phase locking (yellow), 1:2 phase-locking (pink)

[Pérez-Cervera, Seara, H., CNSNS, 2020]



Bistability areas



Bistability

Bistability between two synchronous solutions (left column) and
between synchronous and asynchronous solutions (right column).



Bistability

Bistability between two synchronous solutions 1:1 and 1:2 PL (left
column) and between synchronous and asynchronous solutions
(right column).



Conclusions

• Simplified mathematical setting for CTC.

• The phase relationship that naturally emerges has an impact
on the robustness of the entrainment.

• Both input frequency and coherence play a relevant role in
establishing effective communication

• Phase reduction must be assumed cautiously. What happens
for large amplitudes?
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