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Oscillations in the brain

e Oscillatory activity in the brain is widely observed at different
organization levels.
e Interactions between neurons lead to macroscopic oscillatory
activity.
L frequency bands — Gamma band (30 ~ 100 Hz)
e Although oscillations have been associated to specific tasks or
behaviours their functional role is not completely understood.
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Communication Through Coherence (P. Fries, 2005,
2015)

E-1 networks

e Interaction between excitation and inhibition (E-1) has been
proposed as one of the mechanisms for the generation of
oscillations.

e Different excitability properties along a cycle.
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Communication through coherence (P Fries, 2005,
2015)

According to CTC theory two oscillating neuronal groups
communicate much effectively when they are properly phase locked
so the input reaches the receiving population at its maximum
phase of excitability
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Adapted from [Tiesinga and Sejnowski, 2010], [P. Fries, 2015]



Microscopic (full) model: Simulation
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Microscopic (full) model

Population of N neurons with all-to-all coupling Jee
(Ne excitatory + /. inhibitory)
Neuron's voltage V is governed by a QIF model

T\7j=\/j2+77j+’J',
if VJ > Vin then VJ = Vieset

ext ext
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e Time constant 7

e Constant input 7;: introducing heterogeneity in the network by choosing 7; from

o 1 A [ Half-width A
Lorentzian distr.: L(n)=—————— Wi _
m(n—1)2+ A2 Center 7

e Input current /;: common external current + synaptic current
— Excitatory pop.: le = I&% + TeSee — TeSei
— Inhibitory pop.: lj = I + 7;5je — 7;5j

with S, modelling the synapses b-to-a as: 755, = —S.p + Japrp (linear ODE)




Mean-field model for a E-l network (1)

Mean-field exact model *
A,

TTe

[Ecel] 0 Ve Yol
Jext Jext
e i

Tsesee = —See + Jeere,

+2reVe,

Tefe =

Tso Sei = —Sei + Jeiti Variables

. A e r: firing rate (spikes per unit of time)
Tifi = — +2nV; .
T} e V: mean membrane potential

Vi = V247 + b = (rymn)?

. Parameters
7's,-Sie = _Sie + Jiere ;

e S_,: synaptic connection from b to a

e T: time constants (speed dynamics)

75 Sii = —=Sii + Jiiri ,

Jap: b-to-a connection’s strength
A: half-width of Lorentzian distr.

e 7). center of Lorentzian distr.

* Montbrid, Pazé & Roxin, Phys X, 2015
* Dumont & Gutkin, PLoS Comput Biol, 2019



Mean-field model for a E-l network (I1)

Mean-field exact model *

Ae
Tele = +2reVe,
TTe

[ | Ve Ve AT e ()

Tsesee = —See + Jeere s

TseSei = —Sei + Jeiti

AN
Tifi = — +2rV;

Vi = V2 1 + b — (riwn)?,

Ts;Sie = —Sic + Jiete »

75 Sii = —Sii + Jiiri ,

* Montbrié et al., Phys X, 2015
s« Dumont & Gutkin, PLoS Comput Biol, 2019

Total input currents

° E—input: le = l:xt + Tesee - 7'esei
o l-input: fj = I + 7;Sjc — 7;Sj;

Oscillations (1$Xt, 1)
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Gamma rhythms: PING mechanism
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Phases of an oscillator

Let I be the hyperbolic limit cycle of period T* parametrized by
the phase variable = t 4+ 6y (modT*) as
v:T—R"
0 — ~(0)
* Phase function © : T C R" — S!, ©(x) = 0

t—oo

L Basin of attraction I': ||x(t) — y(t)|| =% 0 = ©(x) = O(x0)
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Phase response curve and Adjoint method

The Phase response curve (PRC) measures the phase variation due to a given
perturbation AX applied at different phases of the cycle

PRC(0) = bhew — 0, 0€][0,T)
x Sign: PRC > 0 — phase advance whereas PRC < 0 — phase delay

iPRC (infinitesimal perturbation) PRC(0) = Onew — 0 = VO(v(0)) - AX = Z(0) - AX
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Phase response curve and Adjoint method

The Phase response curve (PRC) measures the phase variation due to a given
perturbation AX applied at different phases of the cycle

PRC(0) = Opew — 0, 0 €[0,T%)
* Sign: PRC > 0 — phase advance whereas PRC < 0 — phase delay
iPRC (infinitesimal perturbation) PRC(8) = Onew — 6 ~ VO(v(0)) - AX = Z(0) - AX
Adjoint Method: The iPRC (linear response of an oscillator), Z(t) € R”, is a periodic

solution of )
Z=—-DyFT(y(t))Z, subjectto Z(t)-F((t)) =1
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Phase Reduction

Consider x = F(x) + Ap(t)V, with T-periodic perturbation p(t) in the direction v:

& = VO(x(1) - %X =1+ Ap(t) [VO(x(1) - ] = 1+ Ap(1) [2(0) - 7

Weak coupling hypothesis: if ||Ap(t)|| << 1 = VO(x(t)) =~ Z(0)
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Stroboscopic map: Since p(t) is T-periodic

9n+1 = P(Gn) = ¢T(6n) mod T*.



Phase Reduction
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rotates p times as oscillator 2 (the forcing) rotates q.

p : q phase-locking <— fixed/periodic points of P: 6 4+ pT* = P9(6) ‘




Phase Reduction

Consider x = F(x) + Ap(t)V, with T-periodic perturbation p(t) in the direction v:

& = VO(x(1) - %X =1+ Ap(t) [VO(x(1) - ] = 1+ Ap(1) [2(0) - 7

Weak coupling hypothesis: if ||Ap(t)|| << 1 = VO(x(t)) =~ Z(0)

Stroboscopic map: Since p(t) is T-periodic
9n+1 = P(Gn) = ¢T(6n) mod T*.

p : q phase-locking: Two oscillators are p : g phase-locked if oscillator 1 (forced)
rotates p times as oscillator 2 (the forcing) rotates q.

p : q phase-locking <— fixed/periodic points of P: 6 4+ pT* = P9(6) ‘

Rotation number: Defined as (with P the lift of P)

.E’”(X) — X

lim
n—oo n

p(P) =

Lifp= g — p : q phase-locking.



External drive - Von Mises distribution

Assume that external inputs arrive more or less clustered
around some phases of the cycle.




Exter

nal drive - Von Mises distribution

Assume that external inputs arrive more or less clustered
around some phases of the cycle.

Periodic perturbation: Von Mises density function

K>

*
*
*
*

»c,cos(”'(tf‘”)

p(t)= " —~ 27”0(;) , XG[*%,%]

0: concentration of the distribution about the location p

p € R: the location where the distribution clusters around

x > 0: a measure of concentration of the distribution about the location p
T: period of the distribution

lp: modified Bessel function (of first kind) of order 0
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Arnold tongues and entrainment properties

Rotation number
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Increasing the coherence k of the periodic input enlarges the
input frequency range that entrains the network

[Reyner-Parra, H., BioRXiv, 2021]




Implications for CTC

CTC proposal

Communication between brain regions is much effective if oscillators are properly phase-lockefl.
+ If external input precedes inhibition = increase excitatory activity (more respon-
sive to that stimulus)

* If external input follows inhibition = input may be ignored (less responsive to that
stimulus)

Factors

e . tinh — tp AT < 0.5 = inhibition follows
e Timing inhibition-perturbation: A7 = ———

T AT > 0.5 = inhibition precedes
RA
Aa = Reo , Ref‘ : maximum exc. activity for a given A
e
e Impact perturbation onto re: RA
e

Ad

= 1 /T
—, Rl':=— t)dt
RO € T./o re(t)

time-average exc. activity for a given A



Implications for CTC

Measures of effective communication inside 1:1 phase-locking
region. Colors correspond to different amplitude values.
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Higher input frequencies produce more effective communica-
tion
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Two competing inputs - Selective communication
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Two competing inputs - Selective communication

To study how the phase-locked states are affected by the presence of a distracting stimulus.

* Does the distractor prevent the oscillator from following the primary stimulus?
* Which stimulus is effective and which one is ignored?

e Vary frequency of the first input but ensuring 1:1 phase-locking.
e Vary distractor coherence and distractor frequency.

—r =20
- - -ky =0.25




Effects of a distractor

Compute the synchronization index or vector strength as a
function of the distractor coherence k» and period T5.

3 [T o {38

y; = sinb;

i i
% @;: phase for the i-th iterate of the stroboscopic map (Pr,).

x N: total number of iterations

If r =1 = perfect phase-locking. If r =0 = totally desynchronized‘




Effects of a distractor

Compute the synchronization index or vector strength as a
function of the distractor coherence k» and period T5.

= (A (i {Xf = cosf

: y; = sinb;

% @;: phase for the i-th iterate of the stroboscopic map (Pr,).

x N: total number of iterations

’If r =1 = perfect phase-locking. If r = 0 = totally desynchronized‘
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Effects of a distractor

Network entrainment by higher frequency inputs is more ro-
bust to distractors.
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The role of inhibition

e p= Ty1/T* (high input frequencies / close to left boundary of
the Arnold tongue)

L Inhibition is present near distractor volleys, therefore
suppressing its activity
e p= Ty/T* (closer to right boundary of the Arnold tongue)

L Inhibiton is less present around distractor volleys, giving
the competitor the opportunity to weaken synchrony



Switch between inputs

Oscillator perturbed by two-equally strong stimuli

coupled system.
Brief stimulus could

L Change in the effective input

Study the effects of brief/short stimulus (pulse) to the resulting

* lengthen or shorten the cycle period (i.e. phase shifting)

* force the oscillator to phase-lock to the other input
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Switch between inputs
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Beyond the weak coupling hypothesis

Wilson-Cowan equations for an E-I network

TeE = —E+Se(C1E— cl + P)

P

<

Tl =—I+ 5,'(C2E —cal + Q) G

G

where S (x) = 1/(1 4 e~2x&x=0k)), G

Ca



Beyond the weak coupling hypothesis

Wilson-Cowan equations for an E-I network

TeE = —E+S.(aE — sl + P) .
il =—14Si(0E — cal + Q) c G
E
where S (x) = 1/(1 4 e~2x&x=0k)), C

T
P Excitatory External Stimulus

Activity




Beyond the weak coupling hypothesis

Wilson-Cowan equations for an E-l network

TeE = —E 4 Se(a1E — 31 + P+ Ap(t)) " a
il = =14+ Si(cE — cal + Q) o l G l

where Si(x) =1/(1+ e_ak(X_ek)). c,

Add periodic forcing modelling oscillatory input from the emitting
population to the E receiving population

p(t) = 1 + cos (T)



Bifurcation diagram
Bifurcations of fixed points of the stroboscopic map (time-T map
of the system).
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1:1 phase locking (yellow), 1:2 phase-locking (pink)

[Pérez-Cervera;;Seara, H., CNSNS, 2020]



Bistability areas
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Bistability
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Conclusions

e Simplified mathematical setting for CTC.

e The phase relationship that naturally emerges has an impact
on the robustness of the entrainment.

e Both input frequency and coherence play a relevant role in
establishing effective communication

e Phase reduction must be assumed cautiously. What happens
for large amplitudes?
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