

Chaos in the unfolding of Hopf-Bogdanov-Takens singularities

F. Drubi and S. Ibáñez

<ロト <回ト < 注ト < 注ト = 注

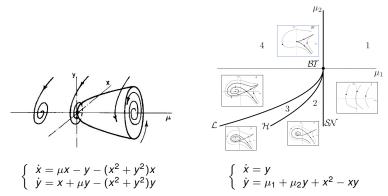
September 10, 2021

Hopf-Bogdanov-Takens (HBT) singularities

Consider $\dot{x} = f_{\mu}(x)$ with $x \in \mathbb{R}^n$, $\mu \in \mathbb{R}^k$ and f_{μ} smooth.

Hopf bifurcation (subcritical) B

Bogdanov-Takens bifurcation



- [1] J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).
- [2] H. W. Broer, F. Dumortier, S. J. van Strien, and F. Takens, Structures in dynamics, Studies in Mathematical Physics, vol. 2 (1991).
- [3] Y. A. Kuznetsov, Applied Mathematical Sciences 112, (1995).

Hopf-Bogdanov-Takens (HBT) singularities

Let X be a \mathcal{C}^{∞} -vector field on a neighborhood of $p \in \mathbb{R}^4$ with X(p) = 0 and

$$DX(p) \sim \left(egin{array}{cccc} 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & -1 \ 0 & 0 & 1 & 0 \end{array}
ight)$$

p (or X) is called a *Hopf-Bogdanov-Takens* singularity.

- [1] F. Takens, Publ. Math. Inst. Hautes udes Sci. 43, (1974).
- [2] F. Dumortier, J. Differential Equations 23, (1977).
- [3] F. Dumortier, S. Ibáñez, J. Differential Equations 127, (1996); Nonlinearity 11, (1998); and Publ. Mat. 43(2), (1999).

- HBT singularities appear naturally in the context of coupled oscillators.
- Primary local bifurcations up to codimension 2 were obtained under additional symmetry properties.
- A HBT bifurcation curve was detected in a model of two Brusselators linearly coupled by diffusion.

$\begin{cases} x' = A - (B+1)x + x^2y \\ y' = Bx - x^2y \end{cases}$

- [1] W. F. Langford, K. Zhan, *Fields Inst. Commun. 24*, (1999).
- [2] F. Drubi, S. Ibáñez, J. A. Rodríguez J. Differential Equations 239, (2007).

- HBT singularities appear naturally in the context of coupled oscillators.
- Primary local bifurcations up to codimension 2 were obtained under additional symmetry properties.
- A HBT bifurcation curve was detected in a model of two Brusselators linearly coupled by diffusion.

 $\begin{cases} x' = A - (B+1)x + x^2y \\ y' = Bx - x^2y \end{cases}$

W. F. Langford, K. Zhan, *Fields Inst. Commun. 24*, (1999).
 F. Drubi, S. Ibáñez, J. A. Rodríguez *J. Differential Equations 239*, (2007)

- HBT singularities appear naturally in the context of coupled oscillators.
- Primary local bifurcations up to codimension 2 were obtained under additional symmetry properties.
- A HBT bifurcation curve was detected in a model of two Brusselators linearly coupled by diffusion.

$$\begin{cases} x' = A - (B+1)x + x^2y \\ y' = Bx - x^2y \end{cases}$$

- [1] W. F. Langford, K. Zhan, Fields Inst. Commun. 24, (1999).
- [2] F. Drubi, S. Ibáñez, J. A. Rodríguez J. Differential Equations 239, (2007).

- HBT singularities appear naturally in the context of coupled oscillators.
- Primary local bifurcations up to codimension 2 were obtained under additional symmetry properties.
- A HBT bifurcation curve was detected in a model of two Brusselators linearly coupled by diffusion.

$$\begin{cases} x_1' = A - (B+1)x_1 + x_1^2y_1 + \lambda_1(x_2 - x_1) \\ y_1' = Bx_1 - x_1^2y_1 + \lambda_2(y_2 - y_1) \\ x_2' = A - (B+1)x_2 + x_2^2y_2 + \lambda_1(x_1 - x_2) \\ y_2' = Bx_2 - x_2^2y_2 + \lambda_2(y_1 - y_2) \end{cases}$$

- [1] W. F. Langford, K. Zhan, *Fields Inst. Commun. 24*, (1999).
- [2] F. Drubi, S. Ibáñez, J. A. Rodríguez J. Differential Equations 239, (2007).

- HBT singularities appear naturally in the context of coupled oscillators.
- Primary local bifurcations up to codimension 2 were obtained under additional symmetry properties.
- A HBT bifurcation curve was detected in a model of two Brusselators linearly coupled by diffusion.

$$\begin{cases} x_1' = A - (B+1)x_1 + x_1^2y_1 + \lambda_1(x_2 - x_1) \\ y_1' = Bx_1 - x_1^2y_1 + \lambda_2(y_2 - y_1) \\ x_2' = A - (B+1)x_2 + x_2^2y_2 + \lambda_1(x_1 - x_2) \\ y_2' = Bx_2 - x_2^2y_2 + \lambda_2(y_1 - y_2) \end{cases}$$

- [1] W. F. Langford, K. Zhan, *Fields Inst. Commun. 24*, (1999).
- [2] F. Drubi, S. Ibáñez, J. A. Rodríguez J. Differential Equations 239, (2007).

- HBT singularities appear naturally in the context of coupled oscillators.
- Primary local bifurcations up to codimension 2 were obtained under additional symmetry properties.
- A HBT bifurcation curve was detected in a model of two Brusselators linearly coupled by diffusion.

$$\begin{cases} x_1' = A - (B+1)x_1 + x_1^2y_1 + \lambda_1(x_2 - x_1) \\ y_1' = Bx_1 - x_1^2y_1 + \lambda_2(y_2 - y_1) \\ x_2' = A - (B+1)x_2 + x_2^2y_2 + \lambda_1(x_1 - x_2) \\ y_2' = Bx_2 - x_2^2y_2 + \lambda_2(y_1 - y_2) \\ TZ \\ HBT \\ OZ \\ \end{cases}$$

[1] W. F. Langford, K. Zhan, Fields Inst. Commun. 24, (1999).

[2] F. Drubi, S. Ibáñez, J. A. Rodríguez J. Differential Equations 239, (2007).

- HBT singularities appear naturally in the context of coupled oscillators.
- Primary local bifurcations up to codimension 2 were obtained under additional symmetry properties.
- A HBT bifurcation curve was detected in a model of two Brusselators linearly coupled by diffusion.
- H and BT interactions for a fluid-conveying tube, but under symmetry conditions.
- HBT singularities are essential to understand the unfolding of the 4-dimensional nilpotent singularities of codimension 4.
- [1] W. F. Langford, K. Zhan, *Fields Inst. Commun. 24*, (1999).
- [2] F. Drubi, S. Ibáñez, J. A. Rodríguez J. Differential Equations 239, (2007).
- [3] A. Steindl, Proc. Eng. 199, (2017).

[4] P. G. Barrientos, S. Ibáñez, J. A. Rodríguez J. Dyn. Diff. Equat. 23(4), (2011).

- HBT singularities appear naturally in the context of coupled oscillators.
- Primary local bifurcations up to codimension 2 were obtained under additional symmetry properties.
- A HBT bifurcation curve was detected in a model of two Brusselators linearly coupled by diffusion.
- H and BT interactions for a fluid-conveying tube, but under symmetry conditions.
- HBT singularities are essential to understand the unfolding of the 4-dimensional nilpotent singularities of codimension 4.
- [1] W. F. Langford, K. Zhan, *Fields Inst. Commun. 24*, (1999).
- [2] F. Drubi, S. Ibáñez, J. A. Rodríguez J. Differential Equations 239, (2007).
- [3] A. Steindl, Proc. Eng. 199, (2017).
- [4] P. G. Barrientos, S. Ibáñez, J. A. Rodríguez J. Dyn. Diff. Equat. 23(4), (2011).

A study of the unfolding of HBT singularities

Part I: A formal classification of HBT singularities

Part II: Chaos in the unfolding of HBT singularities

[1] F. Drubi, S. Ibáñez, D. Rivela, J. Math. Anal. Appl. 480, (2019).

[2] F. Drubi, S. Ibáñez, D. Rivela, Discrete Contin. Dyn. Syst. Series B 25, (2020).

Steps for a systematic study of bifurcations of equilibria in the least possible phase-space dimensions:

- Reduction to normal form
- Nondegeneracy and transversality conditions to derive the simplest parameter-dependent form for a "generic" system
- Bifurcation diagrams of the approximate normal form
- Influence of higher-order terms

- [1] J. Guckenheimer, P. Holmes, *Applied Mathematical Sciences 42*, (1983).
- [2] Y. A. Kuznetsov, Applied Mathematical Sciences 112, (1995).

Any C^{∞} family X_{ν} with $\nu \in \mathbb{R}^3$, such that X_0 is a HBT singularity, can be written in a normal form up to order *m*:

$$\begin{cases} x' = y + \tilde{F}_{1}(x, y, u, v, \nu) \\ y' = \sum_{l=0}^{\lfloor \frac{m}{2} \rfloor} \sum_{k=0}^{m-2l} a_{k,l}(\nu) x^{k} (u^{2} + v^{2})^{l} + y \sum_{l=0}^{\lfloor \frac{m-1}{2} \rfloor} \sum_{k=0}^{m-2l-1} b_{k,l}(\nu) x^{k} (u^{2} + v^{2})^{l} \\ + \tilde{F}_{2}(x, y, u, v, \nu) \\ u' = \sum_{l=1}^{\lfloor \frac{m+1}{2} \rfloor} \sum_{k=0}^{m-2l+1} (c_{k,l}(\nu)u - d_{k,l}(\nu)v) x^{k} (u^{2} + v^{2})^{l-1} + \tilde{F}_{3}(x, y, u, v, \nu) \\ v' = \sum_{l=1}^{\lfloor \frac{m+1}{2} \rfloor} \sum_{k=0}^{m-2l+1} (d_{k,l}(\nu)u + c_{k,l}(\nu)v) x^{k} (u^{2} + v^{2})^{l-1} + \tilde{F}_{4}(x, y, u, v, \nu) \end{cases}$$

with $F_i(x, y, u, v, \nu) = O(||(x, y, u, v, \nu)||^{m+1}), i = 1, ..., 4.$

Remark: The plane u = v = 0 is *formally* invariant.

The normal form of HBT unfolding with m = 2:

$$\begin{cases} x' = y + O(3) \\ y' = a_{0,0}(\nu) + a_{1,0}(\nu)x + b_{0,0}(\nu)y \\ + A_{2,0}(\nu)x^2 + B_{1,0}(\nu)xy + A_{0,1}(\nu)(u^2 + v^2) + O(3) \\ u' = c_{0,1}(\nu)u - d_{0,1}(\nu)v + (C_{1,1}(\nu)u - D_{1,1}(\nu)v)x + O(3) \\ v' = d_{0,1}(\nu)u + c_{0,1}(\nu)v + (D_{1,1}(\nu)u + C_{1,1}(\nu)v)x + O(3) \end{cases}$$

with
$$a_{0,0}(0) = a_{1,0}(0) = b_{0,0}(0) = c_{0,1}(0) = 0$$
, $d_{0,1}(0) = 1$.

The normal form of HBT unfolding with m = 2:

$$\begin{cases} x' = y + O(3) \\ y' = a_{0,0}(\nu) + a_{1,0}(\nu)x + b_{0,0}(\nu)y \\ + A_{2,0}(\nu)x^2 + B_{1,0}(\nu)xy + A_{0,1}(\nu)(u^2 + v^2) + O(3) \\ u' = c_{0,1}(\nu)u - d_{0,1}(\nu)v + (C_{1,1}(\nu)u - D_{1,1}(\nu)v)x + O(3) \\ v' = d_{0,1}(\nu)u + c_{0,1}(\nu)v + (D_{1,1}(\nu)u + C_{1,1}(\nu)v)x + O(3) \end{cases}$$

with $a_{0,0}(0) = a_{1,0}(0) = b_{0,0}(0) = c_{0,1}(0) = 0$, $d_{0,1}(0) = 1$.

The normal form of HBT unfolding with m = 2:

$$\begin{cases} x' = y + O(3) \\ y' = a_{0,0}(\nu) + a_{1,0}(\nu)x + b_{0,0}(\nu)y \\ + x^2 + xy + \kappa(u^2 + v^2) + O(3) \\ u' = c_{0,1}(\nu)u - d_{0,1}(\nu)v + (C_{1,1}(\nu)u - D_{1,1}(\nu)v)x + O(3) \\ v' = d_{0,1}(\nu)u + c_{0,1}(\nu)v + (D_{1,1}(\nu)u + C_{1,1}(\nu)v)x + O(3) \end{cases}$$

with $a_{0,0}(0) = a_{1,0}(0) = b_{0,0}(0) = c_{0,1}(0) = 0$, $d_{0,1}(0) \neq 0$, $C_{1,1}(0) \neq 0$ and $\kappa = \text{sign} (A_{2,0}(0)A_{0,1}(0)) = \pm 1$.

The normal form of HBT unfolding with m = 2:

$$\begin{cases} x' = y + O(3) \\ y' = a_{0,0}(\nu) + a_{1,0}(\nu)x + b_{0,0}(\nu)y \\ + x^2 + xy + \kappa(u^2 + v^2) + O(3) \\ u' = c_{0,1}(\nu)u - d_{0,1}(\nu)v + (C_{1,1}(\nu)u - D_{1,1}(\nu)v)x + O(3) \\ v' = d_{0,1}(\nu)u + c_{0,1}(\nu)v + (D_{1,1}(\nu)u + C_{1,1}(\nu)v)x + O(3) \end{cases}$$

with $a_{0,0}(0) = a_{1,0}(0) = b_{0,0}(0) = c_{0,1}(0) = 0$, $d_{0,1}(0) \neq 0$, $C_{1,1}(0) \neq 0$ and $\kappa = \text{sign} (A_{2,0}(0)A_{0,1}(0)) = \pm 1$.

The normal form of HBT unfolding with m = 2:

$$\begin{cases} x' = y + O(3) \\ y' = a_{0,0}(\nu) + b_{0,0}(\nu)y \\ + x^2 + xy + \kappa(u^2 + v^2) + O(3) \\ u' = c_{0,1}(\nu)u - d_{0,1}(\nu)v + (C_{1,1}(\nu)u - D_{1,1}(\nu)v)x + O(3) \\ v' = d_{0,1}(\nu)u + c_{0,1}(\nu)v + (D_{1,1}(\nu)u + C_{1,1}(\nu)v)x + O(3) \end{cases}$$

with $a_{0,0}(0) = b_{0,0}(0) = c_{0,1}(0) = 0$, $d_{0,1}(0)$, $C_{1,1}(0) \neq 0$ and $\kappa = \text{sign} (A_{2,0}(0)A_{0,1}(0)) = \pm 1$.

The normal form of HBT unfolding with m = 2:

$$\begin{cases} x' = y + O(3) \\ y' = a_{0,0}(\nu) + b_{0,0}(\nu)y \\ + x^2 + xy + \kappa(u^2 + v^2) + O(3) \\ u' = c_{0,1}(\nu)u - d_{0,1}(\nu)v + (C_{1,1}(\nu)u - D_{1,1}(\nu)v)x + O(3) \\ v' = d_{0,1}(\nu)u + c_{0,1}(\nu)v + (D_{1,1}(\nu)u + C_{1,1}(\nu)v)x + O(3) \end{cases}$$

with $a_{0,0}(0) = b_{0,0}(0) = c_{0,1}(0) = 0$, $d_{0,1}(0)$, $C_{1,1}(0) \neq 0$ and $\kappa = \text{sign} (A_{2,0}(0)A_{0,1}(0)) = \pm 1$.

Generic conditions: $A_{2,0}(0)$, $B_{1,0}(0)$, $A_{0,1}(0)$, $C_{1,1}(0) \neq 0$. Transversality condition:

 $|DP(0)| \neq 0$, with $P(\nu) = (a_{0,0}(\nu), b_{0,0}(\nu), c_{0,1}(\nu))$.

The normal form of HBT unfolding with m = 2:

$$\begin{cases} x' = y + O(3) \\ y' = \lambda_1 + \lambda_2 y + x^2 + xy + \kappa (u^2 + v^2) + O(3) \\ u' = \mu u - d_{0,1}(\lambda_1, \lambda_2, \mu)v \\ + (C_{1,1}(\lambda_1, \lambda_2, \mu)u - D_{1,1}(\lambda_1, \lambda_2, \mu)v)x + O(3) \\ v' = d_{0,1}(\lambda_1, \lambda_2, \mu)u + \mu v \\ + (D_{1,1}(\lambda_1, \lambda_2, \mu)u + C_{1,1}(\lambda_1, \lambda_2, \mu)v)x + O(3) \end{cases}$$

with $d_{0,1}(0,0,0), C_{1,1}(0,0,0) \neq 0$ and $\kappa = \pm 1$.

New parameters: $(\lambda_1, \lambda_2, \mu) = (a_{0,0}(\nu), b_{0,0}(\nu), c_{0,1}(\nu)).$

Primary bifurcations in the unfolding of a HBT singularity

Second-order truncation of the normal form:

$$X_{(\lambda_1,\lambda_2,\mu)}^2 := \begin{cases} x' = y \\ y' = \lambda_1 + \lambda_2 y + x^2 + xy + \kappa (u^2 + v^2) \\ u' = \mu u - d_{0,1}v + (C_{1,1}u - D_{1,1}v)x \\ v' = d_{0,1}u + \mu v + (D_{1,1}u + C_{1,1}v)x \end{cases}$$

where $d_{0,1}$, $D_{1,1}$ and $C_{1,1}$ are functions of $(\lambda_1, \lambda_2, \mu)$.

Close to the origin and for $\|(\lambda_1, \lambda_2, \mu)\|$ small enough, the family has

- no equilibrium points if $\lambda_1 > 0$;
- a unique equilibrium point at $P^0 = (0, 0, 0, 0)$ if $\lambda_1 = 0$;
- two equilibria $P^{\pm} = (\pm \sqrt{-\lambda_1}, 0, 0, 0)$ if $\lambda_1 < 0$.

Primary bifurcations in the unfolding of a HBT singularity

Second-order truncation of the normal form:

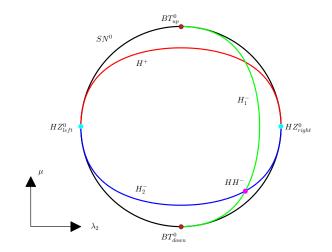
$$X_{(\lambda_1,\lambda_2,\mu)}^2 := \begin{cases} x' = y \\ y' = \lambda_1 + \lambda_2 y + x^2 + xy + \kappa (u^2 + v^2) \\ u' = \mu u - d_{0,1}v + (C_{1,1}u - D_{1,1}v)x \\ v' = d_{0,1}u + \mu v + (D_{1,1}u + C_{1,1}v)x \end{cases}$$

where $d_{0,1}$, $D_{1,1}$ and $C_{1,1}$ are functions of $(\lambda_1, \lambda_2, \mu)$.

Close to the origin and for $\|(\lambda_1,\lambda_2,\mu)\|$ small enough, the family has

- no equilibrium points if $\lambda_1 > 0$;
- a unique equilibrium point at $P^0 = (0, 0, 0, 0)$ if $\lambda_1 = 0$;
- two equilibria $P^{\pm} = (\pm \sqrt{-\lambda_1}, 0, 0, 0)$ if $\lambda_1 < 0$.

Primary bifurcations in the unfolding of a HBT singularity



A sphere $\lambda_1^2 + \lambda_2^2 + \mu^2 = \delta$ is fixed and the front view corresponds to $\lambda_1 < 0$. We also assume $C_{1,1} < 0$.

Hopf-Zero bifurcations:

Theorem

When $\lambda_1 = \mu = 0$ and $\lambda_2 \neq 0$, family $X^2_{(\lambda_1, \lambda_2, \mu)}$ exhibits a Hopf-Zero singularity. Four cases can be distinguished:

	$\lambda_2 C_{1,1} < 0$	$\lambda_2 C_{1,1} > 0$
$\kappa = -1$	Case II	Case I
$\kappa = 1$	Case IV	Case III

The emergence of chaotic behavior can be expected in case III, when higher order terms are considered.

[1] J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).

[2] F. Drubi, S. Ibáñez, D. Rivela, Discrete Contin. Dyn. Syst. Series B 25, (2020).

Hopf-Zero bifurcations:

Theorem

When $\lambda_1 = \mu = 0$ and $\lambda_2 \neq 0$, family $X^2_{(\lambda_1, \lambda_2, \mu)}$ exhibits a Hopf-Zero singularity. Four cases can be distinguished:

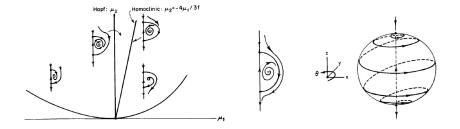
	$\lambda_2 C_{1,1} < 0$	$\lambda_2 C_{1,1} > 0$
$\kappa = -1$	Case II	Case I
$\kappa = 1$	Case IV	Case III

The emergence of chaotic behavior can be expected in case III, when higher order terms are considered.

[1] J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).

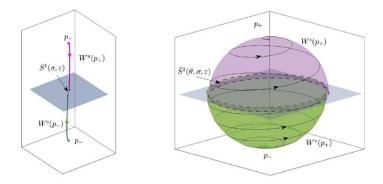
[2] F. Drubi, S. Ibáñez, D. Rivela, Discrete Contin. Dyn. Syst. Series B 25, (2020).

Hopf-Zero bifurcations: Case III



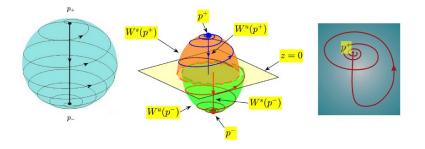
[1] J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).

Hopf-Zero bifurcations: Effect of higher-order terms



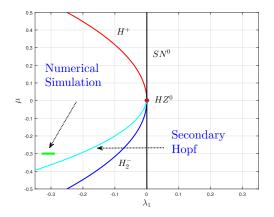
- [1] Y. A. Kuznetsov, Applied Mathematical Sciences 112, (1995).
- [2] F. Dumortier, S. Ibáñez, H. Kokubu, C. Simo Discrete Continuous Dynamical Systems, 33, (2013).
- [3] I. Baldomá, S. Ibáñez, T. M. Seara Commun. Nonlinear Sci. Numer. Simulat. 84, (2020).

Hopf-Zero bifurcations: Effect of higher-order terms



- [1] Y. A. Kuznetsov, Applied Mathematical Sciences 112, (1995).
- [2] F. Dumortier, S. Ibáñez, H. Kokubu, C. Simo Discrete Continuous Dynamical Systems, 33, (2013).
- [3] I. Baldomá, S. Ibáñez, T. M. Seara Commun. Nonlinear Sci. Numer. Simulat. 84, (2020).

Partial bifurcation diagram close to the HZ point: Case III with $C_{1,1} = -1$, $\kappa = 1$ and $\lambda_2 = -0.1$.



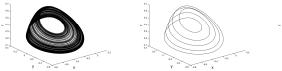
Note that the birth of an invariant torus when parameters cross the secondary Hopf bifurcation.

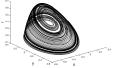
Period-doubling and chaotic dynamics close to a HZ bifurcation ($\lambda_2 = -0.1$, $\mu = -0.3$ and $C_{1,1} = -1$):

 $\lambda_1 = -0.291$

 $\lambda_1 = -0.313$

 $\lambda_1 = -0.315$





 $\lambda_1 = -0.319$ (Lyap. Exp. 0.042)

 $\lambda_1 = -0.321$

 $\lambda_1 = -0.326$ (Lyap. Exp. 0.052)

Hopf-Hopf bifurcations:

Theorem

When $\lambda_2 = \sqrt{-\lambda_1}$ and $\mu - \hat{C}_{1,1}\sqrt{-\lambda_1} = 0$, family $X^2_{(\lambda_1,\lambda_2,\mu)}$ exhibits a Hopf-Hopf singularity. Eight cases can be distinguished:

	<i>C</i> _{1,1} < 0	$0 < C_{1,1} < \frac{1}{4}$	$\frac{1}{4} < C_{1,1} < \frac{1}{2}$	$\frac{1}{2} < C_{1,1}$
$\kappa = -1$	Case IVb	Case VIIa	Case VIIb	Case V
$\kappa = 1$	Case Vla	Case lb	Case la	Case III

The emergence of chaotic behavior can be expected in case VIa, when higher order terms are considered.

[1] J. Guckenheimer, P. Holmes, *Applied Mathematical Sciences 42*, (1983).

[2] F. Drubi, S. Ibáñez, D. Rivela, Discrete Contin. Dyn. Syst. Series B 25, (2020).

Hopf-Hopf bifurcations:

Theorem

When $\lambda_2 = \sqrt{-\lambda_1}$ and $\mu - \hat{C}_{1,1}\sqrt{-\lambda_1} = 0$, family $X^2_{(\lambda_1,\lambda_2,\mu)}$ exhibits a Hopf-Hopf singularity. Eight cases can be distinguished:

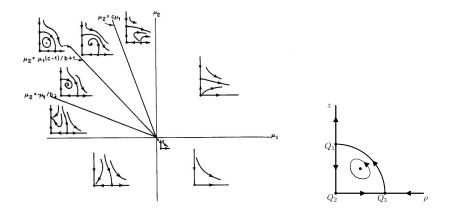
	<i>C</i> _{1,1} < 0	$0 < C_{1,1} < \frac{1}{4}$	$\frac{1}{4} < C_{1,1} < \frac{1}{2}$	$\frac{1}{2} < C_{1,1}$
$\kappa = -1$	Case IVb	Case VIIa	Case VIIb	Case V
$\kappa = 1$	Case Vla	Case lb	Case la	Case III

The emergence of chaotic behavior can be expected in case VIa, when higher order terms are considered.

[1] J. Guckenheimer, P. Holmes, *Applied Mathematical Sciences 42*, (1983).

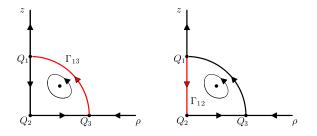
[2] F. Drubi, S. Ibáñez, D. Rivela, Discrete Contin. Dyn. Syst. Series B 25, (2020).

Hopf-Hopf bifurcations: Case VIa



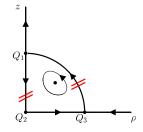
[1] J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).

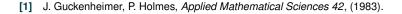
Hopf-Hopf bifurcations: Case VIa



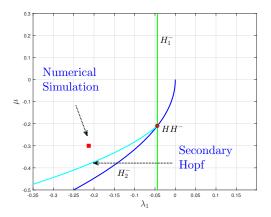
[1] J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).

Hopf-Hopf bifurcations: Effect of higher-order terms



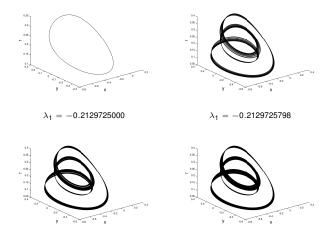


Partial bifurcation diagram close to the HH point: Case VIa with $C_{1,1} = -1$, $\kappa = 1$ and $\lambda_2 = 0.21$.



Note that the birth of an invariant torus when parameters cross the secondary Hopf bifurcation.

Period-doubling and chaotic dynamics close to a HH bifurcation ($\lambda_2 = 0.21$, $\mu = -0.3$ and $C_{1,1} = -1$):



 $\lambda_1 = -0.2129792959$ (Lyap. Exp. 0.011) $\lambda_1 = -0.2129794796$ (Lyap. Exp. 0.012)

Conclusions and Future Research

- A deep understanding of the bifurcation diagram of HBT singularities: analytical and numerical studies.
- Output the bifurcation surfaces arising at the bifurcation curves of codimension two glue together?
- We have to check that higher order terms in the truncated normal form do not affect to our arguments.
- Additional efforts are needed to prove that the topological types described here are indeed those exhibited by these singularities.

Acknowledgements

Universidad de Oviedo

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

National research funds

MICINN-18-MTM2017-87697-P MINECO-15-MTM2014-56953-P

Thank you for your attention!