Chaos in the unfolding of

Hopf-Bogdanov-Takens singularities

F. Drubi and S. Ibáñez

GRUPO
SISTEMAS
DINÁMICOS
Universidad de Oviedo

Universidad de Oviedo

September 10, 2021

Hopf-Bogdanov-Takens (HBT) singularities

Consider $\dot{x}=f_{\mu}(x)$ with $x \in \mathbb{R}^{n}, \mu \in \mathbb{R}^{k}$ and f_{μ} smooth.

Hopf bifurcation (subcritical)

$\left\{\begin{array}{l}\dot{x}=\mu x-y-\left(x^{2}+y^{2}\right) x \\ \dot{y}=x+\mu y-\left(x^{2}+y^{2}\right) y\end{array}\right.$

Bogdanov-Takens bifurcation

[1] J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).
[2] H. W. Broer, F. Dumortier, S. J. van Strien, and F. Takens, Structures in dynamics, Studies in Mathematical Physics, vol. 2 (1991).
[3] Y. A. Kuznetsov, Applied Mathematical Sciences 112, (1995).

Hopf-Bogdanov-Takens (HBT) singularities

Let X be a \mathcal{C}^{∞}-vector field on a neighborhood of $p \in \mathbb{R}^{4}$ with $X(p)=0$ and

$$
D X(p) \sim\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

p (or X) is called a Hopf-Bogdanov-Takens singularity.
[1] F. Takens, Publ. Math. Inst. Hautes udes Sci. 43, (1974).
[2] F. Dumortier, J. Differential Equations 23, (1977).
[3] F. Dumortier, S. Ibáñez, J. Differential Equations 127, (1996); Nonlinearity 11, (1998); and Publ. Mat. 43(2), (1999).

Motivation to study the HBT singularities

- HBT singularities appear naturally in the context of coupled oscillators.

Primary local bifurcations up to codimension 2 were obtained under additional symmetry properties. A HRT hifurcation curve was detected in a model of two Brusselators linearly coupled by diffusion.

Motivation to study the HBT singularities

- HBT singularities appear naturally in the context of coupled oscillators.
- Primary local bifurcations up to codimension 2 were obtained under additional symmetry properties.
two Brusselators linearly coupled by diffusion.
[1] W. F. Langford, K. Zhan, Fields Inst. Commun. 24, (1999).

Motivation to study the HBT singularities

- HBT singularities appear naturally in the context of coupled oscillators.
- Primary local bifurcations up to codimension 2 were obtained under additional symmetry properties.
- A HBT bifurcation curve was detected in a model of two Brusselators linearly coupled by diffusion.

$$
\left\{\begin{array}{l}
x^{\prime}=A-(B+1) x+x^{2} y \\
y^{\prime}=B x-x^{2} y
\end{array}\right.
$$

[1] W. F. Langford, K. Zhan, Fields Inst. Commun. 24, (1999).
[2] F. Drubi, S. Ibáñez, J. A. Rodríguez J. Differential Equations 239, (2007).

Motivation to study the HBT singularities

- HBT singularities appear naturally in the context of coupled oscillators.
- Primary local bifurcations up to codimension 2 were obtained under additional symmetry properties.
- A HBT bifurcation curve was detected in a model of two Brusselators linearly coupled by diffusion.

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=A-(B+1) x_{1}+x_{1}^{2} y_{1} \\
y_{1}^{\prime}=B x_{1}-x_{1}^{2} y_{1} \\
x_{2}^{\prime}=A-(B+1) x_{2}\left(y_{2}+x_{2}^{2} y_{2}\right. \\
y_{2}^{\prime}=B x_{2}-x_{2}^{2} y_{2}
\end{array}\right.
$$

[1] W. F. Langford, K. Zhan, Fields Inst. Commun. 24, (1999).
[2] F. Drubi, S. Ibáñez, J. A. Rodríguez J. Differential Equations 239, (2007).

Motivation to study the HBT singularities

- HBT singularities appear naturally in the context of coupled oscillators.
- Primary local bifurcations up to codimension 2 were obtained under additional symmetry properties.
- A HBT bifurcation curve was detected in a model of two Brusselators linearly coupled by diffusion.

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=A-(B+1) x_{1}+x_{1}^{2} y_{1}+\lambda_{1}\left(x_{2}-x_{1}\right) \\
y_{1}^{\prime}=B x_{1}-x_{1}^{2} y_{1}+\lambda_{2}\left(y_{2}-y_{1}\right) \\
x_{2}^{\prime}=A-(B+1) x_{2}+x_{2}^{2} y_{2}+\lambda_{1}\left(x_{1}-x_{2}\right) \\
y_{2}^{\prime}=B x_{2}-x_{2}^{2} y_{2}+\lambda_{2}\left(y_{1}-y_{2}\right)
\end{array}\right.
$$

[1] W. F. Langford, K. Zhan, Fields Inst. Commun. 24, (1999).
[2] F. Drubi, S. Ibáñez, J. A. Rodríguez J. Differential Equations 239, (2007).

Motivation to study the HBT singularities

- HBT singularities appear naturally in the context of coupled oscillators.
- Primary local bifurcations up to codimension 2 were obtained under additional symmetry properties.
- A HBT bifurcation curve was detected in a model of two Brusselators linearly coupled by diffusion.

$$
\begin{cases}x_{1}^{\prime}=A-(B+1) x_{1}+x_{1}^{2} y_{1}+\lambda_{1}\left(x_{2}-x_{1}\right) \\ y_{1}^{\prime}=B x_{1}-x_{1}^{2} y_{1}+\lambda_{2}\left(y_{2}-y_{1}\right) & \mathcal{B T} \\ x_{2}^{\prime}=A-(B+1) x_{2}+x_{2}^{2} y_{2}+\lambda_{1}\left(x_{1}-x_{2}\right) \\ y_{2}^{\prime}=B x_{2}-x_{2}^{2} y_{2}+\lambda_{2}\left(y_{1}-y_{2}\right) & \mathcal{T Z} \mathcal{H N} \\ \mathcal{H Z} \mathcal{Z}\end{cases}
$$

[1] W. F. Langford, K. Zhan, Fields Inst. Commun. 24, (1999).
[2] F. Drubi, S. Ibáñez, J. A. Rodríguez J. Differential Equations 239, (2007).

Motivation to study the HBT singularities

- HBT singularities appear naturally in the context of coupled oscillators.
- Primary local bifurcations up to codimension 2 were obtained under additional symmetry properties.
- A HBT bifurcation curve was detected in a model of two Brusselators linearly coupled by diffusion.
- H and BT interactions for a fluid-conveying tube, but under symmetry conditions.
[1] W. F. Langford, K. Zhan, Fields Inst. Commun. 24, (1999).
[2] F. Drubi, S. Ibáñez, J. A. Rodríguez J. Differential Equations 239, (2007).
[3] A. Steindl, Proc. Eng. 199, (2017).

Motivation to study the HBT singularities

- HBT singularities appear naturally in the context of coupled oscillators.
- Primary local bifurcations up to codimension 2 were obtained under additional symmetry properties.
- A HBT bifurcation curve was detected in a model of two Brusselators linearly coupled by diffusion.
- H and BT interactions for a fluid-conveying tube, but under symmetry conditions.
- HBT singularities are essential to understand the unfolding of the 4-dimensional nilpotent singularities of codimension 4.
[1] W. F. Langford, K. Zhan, Fields Inst. Commun. 24, (1999).
[2] F. Drubi, S. Ibáñez, J. A. Rodríguez J. Differential Equations 239, (2007).
[3] A. Steindl, Proc. Eng. 199, (2017).
[4] P. G. Barrientos, S. Ibáñez, J. A. Rodríguez J. Dyn. Diff. Equat. 23(4), (2011).

A study of the unfolding of HBT singularities

Part I:
 A formal classification of HBT singularities

Part II:

Chaos in the unfolding of HBT singularities
[1] F. Drubi, S. Ibáñez, D. Rivela, J. Math. Anal. Appl. 480, (2019).
[2] F. Drubi, S. Ibáñez, D. Rivela, Discrete Contin. Dyn. Syst. Series B 25, (2020).

Unfoldings of HBT singularities

Steps for a systematic study of bifurcations of equilibria in the least possible phase-space dimensions:

- Reduction to normal form
- Nondegeneracy and transversality conditions to derive the simplest parameter-dependent form for a "generic" system
- Bifurcation diagrams of the approximate normal form
- Influence of higher-order terms
[1] J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).
[2] Y. A. Kuznetsov, Applied Mathematical Sciences 112, (1995).

Unfoldings of HBT singularities

Any \mathcal{C}^{∞} family X_{ν} with $\nu \in \mathbb{R}^{3}$, such that X_{0} is a HBT singularity, can be written in a normal form up to order m :

$$
\left\{\begin{aligned}
& x^{\prime}= y+\widetilde{F}_{1}(x, y, u, v, \nu) \\
& y^{\prime}= \sum_{l=0}^{\left\lfloor\frac{m}{2}\right\rfloor} \sum_{k=0}^{m-2 l} a_{k, l}(\nu) x^{k}\left(u^{2}+v^{2}\right)^{\prime}+y \sum_{l=0}^{\left\lfloor\frac{m-1}{2}\right\rfloor} \sum_{k=0}^{m-2 l-1} b_{k, l}(\nu) x^{k}\left(u^{2}+v^{2}\right)^{\prime} \\
&+\widetilde{F}_{2}(x, y, u, v, \nu) \\
& u^{\prime}= \sum_{l=1}^{\left\lfloor\frac{m+1}{2}\right\rfloor} \sum_{k=0}^{m-2 l+1}\left(c_{k, l}(\nu) u-d_{k, l}(\nu) v\right) x^{k}\left(u^{2}+v^{2}\right)^{I-1}+\widetilde{F}_{3}(x, y, u, v, \nu) \\
& v^{\prime}= \sum_{l=1}^{\left\lfloor\frac{m+1}{2}\right\rfloor} \sum_{k=0}^{m-2 l+1}\left(d_{k, l}(\nu) u+c_{k, l}(\nu) v\right) x^{k}\left(u^{2}+v^{2}\right)^{l-1}+\widetilde{F}_{4}(x, y, u, v, \nu)
\end{aligned}\right.
$$

with $F_{i}(x, y, u, v, \nu)=O\left(\|(x, y, u, v, \nu)\|^{m+1}\right), i=1, \ldots, 4$.
Remark: The plane $u=v=0$ is formally invariant.

Unfoldings of HBT singularities

The normal form of HBT unfolding with $m=2$:

$$
\begin{aligned}
& \left\{\begin{aligned}
& \begin{array}{l}
x^{\prime}=y+O(3)
\end{array} \\
& \begin{array}{rl}
y^{\prime}= & a_{0,0}(\nu)+a_{1,0}(\nu) x+b_{0,0}(\nu) y \\
& \quad+A_{2,0}(\nu) x^{2}+B_{1,0}(\nu) x y+A_{0,1}(\nu)\left(u^{2}+v^{2}\right)+O(3)
\end{array} \\
& u^{\prime}=c_{0,1}(\nu) u-d_{0,1}(\nu) v+\left(C_{1,1}(\nu) u-D_{1,1}(\nu) v\right) x+O(3) \\
& v^{\prime}= d_{0,1}(\nu) u+c_{0,1}(\nu) v+\left(D_{1,1}(\nu) u+C_{1,1}(\nu) v\right) x+O(3)
\end{aligned}\right. \\
& \text { with } a_{0,0}(0)=a_{1,0}(0)=b_{0,0}(0)=c_{0,1}(0)=0, d_{0,1}(0)=1 .
\end{aligned}
$$

Unfoldings of HBT singularities

The normal form of HBT unfolding with $m=2$:

$$
\begin{aligned}
& \left(x^{\prime}=y+O(3)\right. \\
& y^{\prime}=a_{0,0}(\nu)+a_{1,0}(\nu) x+b_{0,0}(\nu) y \\
& +A_{2,0}(\nu) x^{2}+B_{1,0}(\nu) x y+A_{0,1}(\nu)\left(u^{2}+v^{2}\right)+O(3) \\
& u^{\prime}=c_{0,1}(\nu) u-d_{0,1}(\nu) v+\left(C_{1,1}(\nu) u-D_{1,1}(\nu) v\right) x+O(3) \\
& v^{\prime}=d_{0,1}(\nu) u+c_{0,1}(\nu) v+\left(D_{1,1}(\nu) u+C_{1,1}(\nu) v\right) x+O(3) \\
& \text { with } a_{0,0}(0)=a_{1,0}(0)=b_{0,0}(0)=c_{0,1}(0)=0, d_{0,1}(0)=1 \text {. }
\end{aligned}
$$

Generic conditions: $A_{2,0}(0), B_{1,0}(0), A_{0,1}(0), C_{1,1}(0) \neq 0$.

Unfoldings of HBT singularities

The normal form of HBT unfolding with $m=2$:

$$
\left\{\begin{array}{l}
x^{\prime}=y+O(3) \\
y^{\prime}=a_{0,0}(\nu)+a_{1,0}(\nu) x+b_{0,0}(\nu) y \\
\quad \quad \quad x^{2}+x y+\kappa\left(u^{2}+v^{2}\right)+O(3) \\
\quad u^{\prime}=c_{0,1}(\nu) u-d_{0,1}(\nu) v+\left(C_{1,1}(\nu) u-D_{1,1}(\nu) v\right) x+O(3) \\
v^{\prime}=d_{0,1}(\nu) u+c_{0,1}(\nu) v+\left(D_{1,1}(\nu) u+C_{1,1}(\nu) v\right) x+O(3)
\end{array}\right.
$$

with $a_{0,0}(0)=a_{1,0}(0)=b_{0,0}(0)=c_{0,1}(0)=0, d_{0,1}(0) \neq 0$,
$C_{1,1}(0) \neq 0$ and $\kappa=\operatorname{sign}\left(A_{2,0}(0) A_{0,1}(0)\right)= \pm 1$.
Generic conditions: $A_{2,0}(0), B_{1,0}(0), A_{0,1}(0), C_{1,1}(0) \neq 0$.

Unfoldings of HBT singularities

The normal form of HBT unfolding with $m=2$:

$$
\left\{\begin{array}{l}
x^{\prime}=y+O(3) \\
y^{\prime}=a_{0,0}(\nu)+a_{1,0}(\nu) x+b_{0,0}(\nu) y \\
\quad \quad \quad x^{2}+x y+\kappa\left(u^{2}+v^{2}\right)+O(3) \\
\quad u^{\prime}=c_{0,1}(\nu) u-d_{0,1}(\nu) v+\left(C_{1,1}(\nu) u-D_{1,1}(\nu) v\right) x+O(3) \\
v^{\prime}=d_{0,1}(\nu) u+c_{0,1}(\nu) v+\left(D_{1,1}(\nu) u+C_{1,1}(\nu) v\right) x+O(3)
\end{array}\right.
$$

with $a_{0,0}(0)=a_{1,0}(0)=b_{0,0}(0)=c_{0,1}(0)=0, d_{0,1}(0) \neq 0$,
$C_{1,1}(0) \neq 0$ and $\kappa=\operatorname{sign}\left(A_{2,0}(0) A_{0,1}(0)\right)= \pm 1$.
Generic conditions: $A_{2,0}(0), B_{1,0}(0), A_{0,1}(0), C_{1,1}(0) \neq 0$.

Unfoldings of HBT singularities

The normal form of HBT unfolding with $m=2$:

$$
\left\{\begin{array}{l}
x^{\prime}=y+O(3) \\
y^{\prime}=a_{0,0}(\nu)+b_{0,0}(\nu) y \\
\quad \quad \quad x^{2}+x y+\kappa\left(u^{2}+v^{2}\right)+O(3) \\
\quad u^{\prime}=c_{0,1}(\nu) u-d_{0,1}(\nu) v+\left(C_{1,1}(\nu) u-D_{1,1}(\nu) v\right) x+O(3) \\
v^{\prime}=d_{0,1}(\nu) u+c_{0,1}(\nu) v+\left(D_{1,1}(\nu) u+C_{1,1}(\nu) v\right) x+O(3)
\end{array}\right.
$$

with $a_{0,0}(0)=b_{0,0}(0)=c_{0,1}(0)=0, d_{0,1}(0), C_{1,1}(0) \neq 0$ and $\kappa=\operatorname{sign}\left(A_{2,0}(0) A_{0,1}(0)\right)= \pm 1$.

Generic conditions: $A_{2,0}(0), B_{1,0}(0), A_{0,1}(0), C_{1,1}(0) \neq 0$.

Unfoldings of HBT singularities

The normal form of HBT unfolding with $m=2$:

$$
\begin{aligned}
& \left(x^{\prime}=y+O(3)\right. \\
& y^{\prime}=a_{0,0}(\nu)+b_{0,0}(\nu) y \\
& +x^{2}+x y+\kappa\left(u^{2}+v^{2}\right)+O(3) \\
& u^{\prime}=c_{0,1}(\nu) u-d_{0,1}(\nu) v+\left(C_{1,1}(\nu) u-D_{1,1}(\nu) v\right) x+O(3) \\
& v^{\prime}=d_{0,1}(\nu) u+c_{0,1}(\nu) v+\left(D_{1,1}(\nu) u+C_{1,1}(\nu) v\right) x+O(3)
\end{aligned}
$$

with $a_{0,0}(0)=b_{0,0}(0)=c_{0,1}(0)=0, d_{0,1}(0), C_{1,1}(0) \neq 0$ and $\kappa=\operatorname{sign}\left(A_{2,0}(0) A_{0,1}(0)\right)= \pm 1$.

Generic conditions: $A_{2,0}(0), B_{1,0}(0), A_{0,1}(0), C_{1,1}(0) \neq 0$. Transversality condition:

$$
|D P(0)| \neq 0, \quad \text { with } P(\nu)=\left(a_{0,0}(\nu), b_{0,0}(\nu), c_{0,1}(\nu)\right) .
$$

Unfoldings of HBT singularities

The normal form of HBT unfolding with $m=2$:

$$
\left\{\begin{array}{l}
\begin{array}{l}
x^{\prime}=y+O(3) \\
y^{\prime}= \\
=\lambda_{1}+\lambda_{2} y+x^{2}+x y+\kappa\left(u^{2}+v^{2}\right)+O(3) \\
u^{\prime}=
\end{array} \quad \mu u-d_{0,1}\left(\lambda_{1}, \lambda_{2}, \mu\right) v \\
\quad \quad+\left(C_{1,1}\left(\lambda_{1}, \lambda_{2}, \mu\right) u-D_{1,1}\left(\lambda_{1}, \lambda_{2}, \mu\right) v\right) x+O(3) \\
v^{\prime}=d_{0,1}\left(\lambda_{1}, \lambda_{2}, \mu\right) u+\mu v \\
\quad \quad+\left(D_{1,1}\left(\lambda_{1}, \lambda_{2}, \mu\right) u+C_{1,1}\left(\lambda_{1}, \lambda_{2}, \mu\right) v\right) x+O(3)
\end{array}\right.
$$

with $d_{0,1}(0,0,0), C_{1,1}(0,0,0) \neq 0$ and $\kappa= \pm 1$.
New parameters: $\left(\lambda_{1}, \lambda_{2}, \mu\right)=\left(a_{0,0}(\nu), b_{0,0}(\nu), c_{0,1}(\nu)\right)$.

Primary bifurcations in the unfolding of a HBT singularity
Second-order truncation of the normal form:

$$
X_{\left(\lambda_{1}, \lambda_{2}, \mu\right)}^{2}:=\left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}=\lambda_{1}+\lambda_{2} y+x^{2}+x y+\kappa\left(u^{2}+v^{2}\right) \\
u^{\prime}=\mu u-d_{0,1} v+\left(C_{1,1} u-D_{1,1} v\right) x \\
v^{\prime}=d_{0,1} u+\mu v+\left(D_{1,1} u+C_{1,1} v\right) x
\end{array}\right.
$$

where $d_{0,1}, D_{1,1}$ and $C_{1,1}$ are functions of $\left(\lambda_{1}, \lambda_{2}, \mu\right)$.

Primary bifurcations in the unfolding of a HBT singularity
Second-order truncation of the normal form:

$$
X_{\left(\lambda_{1}, \lambda_{2}, \mu\right)}^{2}:=\left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}=\lambda_{1}+\lambda_{2} y+x^{2}+x y+\kappa\left(u^{2}+v^{2}\right) \\
u^{\prime}=\mu u-d_{0,1} v+\left(C_{1,1} u-D_{1,1} v\right) x \\
v^{\prime}=d_{0,1} u+\mu v+\left(D_{1,1} u+C_{1,1} v\right) x
\end{array}\right.
$$

where $d_{0,1}, D_{1,1}$ and $C_{1,1}$ are functions of $\left(\lambda_{1}, \lambda_{2}, \mu\right)$.
Close to the origin and for $\left\|\left(\lambda_{1}, \lambda_{2}, \mu\right)\right\|$ small enough, the family has

- no equilibrium points if $\lambda_{1}>0$;
- a unique equilibrium point at $P^{0}=(0,0,0,0)$ if $\lambda_{1}=0$;
- two equilibria $P^{ \pm}=\left(\pm \sqrt{-\lambda_{1}}, 0,0,0\right)$ if $\lambda_{1}<0$.

Primary bifurcations in the unfolding of a HBT singularity

A sphere $\lambda_{1}^{2}+\lambda_{2}^{2}+\mu^{2}=\delta$ is fixed and the front view corresponds to $\lambda_{1}<0$. We also assume $C_{1,1}<0$.

Chaos in the generic unfoldings of HBT singularities

Hopf-Zero bifurcations:
Theorem
When $\lambda_{1}=\mu=0$ and $\lambda_{2} \neq 0$, family $X_{\left(\lambda_{1}, \lambda_{2}, \mu\right)}^{2}$ exhibits a Hopf-Zero singularity. Four cases can be distinguished:

	$\lambda_{2} C_{1,1}<0$	$\lambda_{2} C_{1,1}>0$
$\kappa=-1$	Case II	Case I
$\kappa=1$	Case IV	Case III

[1] J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).
[2] F. Drubi, S. Ibáñez, D. Rivela, Discrete Contin. Dyn. Syst. Series B 25, (2020).

Chaos in the generic unfoldings of HBT singularities

Hopf-Zero bifurcations:
Theorem
When $\lambda_{1}=\mu=0$ and $\lambda_{2} \neq 0$, family $X_{\left(\lambda_{1}, \lambda_{2}, \mu\right)}^{2}$ exhibits a Hopf-Zero singularity. Four cases can be distinguished:

	$\lambda_{2} C_{1,1}<0$	$\lambda_{2} C_{1,1}>0$
$\kappa=-1$	Case II	Case I
$\kappa=1$	Case IV	Case III

The emergence of chaotic behavior can be expected in case III, when higher order terms are considered.
[1] J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).
[2] F. Drubi, S. Ibáñez, D. Rivela, Discrete Contin. Dyn. Syst. Series B 25, (2020).

Chaos in the generic unfoldings of HBT singularities

Hopf-Zero bifurcations: Case III

[1] J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).

Chaos in the generic unfoldings of HBT singularities

Hopf-Zero bifurcations: Effect of higher-order terms

[1] Y. A. Kuznetsov, Applied Mathematical Sciences 112, (1995).
[2] F. Dumortier, S. Ibáñez, H. Kokubu, C. Simo Discrete Continuous Dynamical Systems, 33 , (2013).
[3] I. Baldomá, S. Ibáñez, T. M. Seara Commun. Nonlinear Sci. Numer. Simulat. 84, (2020).

Chaos in the generic unfoldings of HBT singularities

Hopf-Zero bifurcations: Effect of higher-order terms

[1] Y. A. Kuznetsov, Applied Mathematical Sciences 112, (1995).
[2] F. Dumortier, S. Ibáñez, H. Kokubu, C. Simo Discrete Continuous Dynamical Systems, 33 , (2013).
[3] I. Baldomá, S. Ibáñez, T. M. Seara Commun. Nonlinear Sci. Numer. Simulat. 84, (2020).

Chaos in the generic unfoldings of HBT singularities

Partial bifurcation diagram close to the HZ point: Case III with $C_{1,1}=-1, \kappa=1$ and $\lambda_{2}=-0.1$.

Note that the birth of an invariant torus when parameters cross the secondary Hopf bifurcation.

Chaos in the generic unfoldings of HBT singularities

Period-doubling and chaotic dynamics close to a HZ bifurcation ($\lambda_{2}=-0.1, \mu=-0.3$ and $C_{1,1}=-1$):

$\lambda_{1}=-0.319$ (Lyap. Exp. 0.042)

$\lambda_{1}=-0.313$

$\lambda_{1}=-0.321$

$\lambda_{1}=-0.315$

$\lambda_{1}=-0.326$ (Lyap. Exp. 0.052)

Chaos in the generic unfoldings of HBT singularities

Hopf-Hopf bifurcations:
Theorem
When $\lambda_{2}=\sqrt{-\lambda_{1}}$ and $\mu-\widehat{C}_{1,1} \sqrt{-\lambda_{1}}=0$, family $X_{\left(\lambda_{1}, \lambda_{2}, \mu\right)}^{2}$ exhibits a Hopf-Hopf singularity. Eight cases can be distinguished:

	$C_{1,1}<0$	$0<C_{1,1}<\frac{1}{4}$	$\frac{1}{4}<C_{1,1}<\frac{1}{2}$	$\frac{1}{2}<C_{1,1}$
$\kappa=-1$	Case IVb	Case VIIa	Case VIIb	Case V
$\kappa=1$	Case Vla	Case Ib	Case la	Case III

[1] J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).
[2] F. Drubi, S. Ibáñez, D. Rivela, Discrete Contin. Dyn. Syst. Series B 25, (2020).

Chaos in the generic unfoldings of HBT singularities

Hopf-Hopf bifurcations:
Theorem
When $\lambda_{2}=\sqrt{-\lambda_{1}}$ and $\mu-\widehat{C}_{1,1} \sqrt{-\lambda_{1}}=0$, family $X_{\left(\lambda_{1}, \lambda_{2}, \mu\right)}^{2}$ exhibits a Hopf-Hopf singularity. Eight cases can be distinguished:

	$C_{1,1}<0$	$0<C_{1,1}<\frac{1}{4}$	$\frac{1}{4}<C_{1,1}<\frac{1}{2}$	$\frac{1}{2}<C_{1,1}$
$\kappa=-1$	Case IVb	Case VIIa	Case VIIb	Case V
$\kappa=1$	Case Vla	Case Ib	Case la	Case III

The emergence of chaotic behavior can be expected in case Vla, when higher order terms are considered.
[1] J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).
[2] F. Drubi, S. Ibáñez, D. Rivela, Discrete Contin. Dyn. Syst. Series B 25, (2020).

Chaos in the generic unfoldings of HBT singularities

Hopf-Hopf bifurcations: Case VIa

[1] J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).

Chaos in the generic unfoldings of HBT singularities

Hopf-Hopf bifurcations: Case Vla

[1] J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).

Chaos in the generic unfoldings of HBT singularities

Hopf-Hopf bifurcations: Effect of higher-order terms

[1] J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).

Chaos in the generic unfoldings of HBT singularities

Partial bifurcation diagram close to the HH point: Case Vla with $C_{1,1}=-1, \kappa=1$ and $\lambda_{2}=0.21$.

Note that the birth of an invariant torus when parameters cross the secondary Hopf bifurcation.

Chaos in the generic unfoldings of HBT singularities

Period-doubling and chaotic dynamics close to a HH bifurcation ($\lambda_{2}=0.21, \mu=-0.3$ and $C_{1,1}=-1$):

$$
\lambda_{1}=-0.2129725000
$$

$$
\lambda_{1}=-0.2129792959 \text { (Lyap. Exp. 0.011) } \quad \lambda_{1}=-0.2129794796 \text { (Lyap. Exp. } 0.012 \text {) }
$$

Conclusions and Future Research

(1) A deep understanding of the bifurcation diagram of HBT singularities: analytical and numerical studies.
(2) How do all the bifurcation surfaces arising at the bifurcation curves of codimension two glue together?
(3) We have to check that higher order terms in the truncated normal form do not affect to our arguments.
(4) Additional efforts are needed to prove that the topological types described here are indeed those exhibited by these singularities.

Acknowledgements

Universidad de Oviedo

National research funds

> MICINN-18-MTM2017-87697-P MINECO-15-MTM2014-56953-P

Thank you for your attention!

