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Hopf-Bogdanov-Takens (HBT) singularities

Consider x = f,(x) with x € R", u € R* and f, smooth.

Hopf bifurcation (subcritical) Bogdanov-Takens bifurcation
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Hopf-Bogdanov-Takens (HBT) singularities

Let X be a C*>-vector field on a neighborhood of p € R*
with X(p) = 0 and
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p (or X) is called a Hopf-Bogdanov-Takens singularity.

[1]1 F Takens, Publ. Math. Inst. Hautes udes Sci. 43, (1974).
[2] F. Dumortier, J. Differential Equations 23, (1977).

[31 F. Dumortier, S. Ibafiez, J. Differential Equations 127, (1996); Nonlinearity 11,
(1998); and Publ. Mat. 43(2), (1999).
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Motivation to study the HBT singularities

@ HBT singularities appear naturally in the context of
coupled oscillators.

@ Primary local bifurcations up to codimension 2 were
obtained under additional symmetry properties.

@ A HBT bifurcation curve was detected in a model of
two Brusselators linearly coupled by diffusion.

@ H and BT interactions for a fluid-conveying tube, but
under symmetry conditions.

@ HBT singularities are essential to understand the
unfolding of the 4-dimensional nilpotent singularities
of codimension 4.
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A study of the unfolding of HBT singularities

Part I:
A formal classification of HBT singularities

Part Il:
Chaos in the unfolding of HBT singularities

[11 F Drubi, S. Ibafez, D. Rivela, J. Math. Anal. Appl. 480, (2019).
[2] F. Drubi, S. Ibafez, D. Rivela, Discrete Contin. Dyn. Syst. Series B 25, (2020).



Unfoldings of HBT singularities

Steps for a systematic study of bifurcations of equilibria in
the least possible phase-space dimensions:

@ Reduction to normal form

@ Nondegeneracy and transversality conditions to
derive the simplest parameter-dependent form for a
“generic” system

@ Bifurcation diagrams of the approximate normal form

@ Influence of higher-order terms

[1] J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).
[2] Y. A. Kuznetsov, Applied Mathematical Sciences 112, (1995).



Unfoldings of HBT singularities

Any C> family X, with v € R3, such that X, is a HBT
singularity, can be written in a normal form up to order m:
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with Fi(x,y, u,v,v) = O(||(x, y, u, v,v)|[|™"), i=1,..., 4.

Remark: The plane u = v = 0 is formally invariant.



Unfoldings of HBT singularities

The normal form of HBT unfolding with m = 2:
(X' =y+ O(3)
y' = aoo(v) + aio(v)x + boo(v)y
+Az0(v)X% + By o(v)xy + Ao1(v)(U? + v?) + O(3)
Co1(v)U — do1(v)V + (Cia(v)u — Dy1(v)v)x + O(3)
=do1(v)U+ co1(v)v + (D1 1(v)u+ Cy1(v)v)x + O(3)

with 3070(0) = a4 0( ) bo 0(0) ( ) =0, do71 (0) =1.
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Unfoldings of HBT singularities

The normal form of HBT unfolding with m = 2:

(X' =y + O(3)
Y' = aoo(v) + aio(v)x + bo O(V)y
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Unfoldings of HBT singularities

The normal form of HBT unfolding with m = 2:

(

x' =y+ 0O(3)
y'=aoo(v) + boo(v)y
+x% + xy + x(U? + v3) + O(3)
Co1(v)u—do1(v)v + (Cia(v)u — Dy 1(v)v)x + O(3)
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)
)
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and k = Sigl‘l (AZ,O(O)AOJ (0)) = +1.

Generic conditions: A, 4(0), Bi(0), A¢1(0), Cy.1(0) # 0.
Transversality condition:
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Unfoldings of HBT singularities

The normal form of HBT unfolding with m = 2:

(x'=y+0(3)
Y =X+ Xy + x% + xy + x(U? + v?) + O(3)
U' = pu — do,1 (A1, A2, )V
—|—(C171 ()\1,)\2,M)U — D1,1()\17>\27ﬂ)v)x+ 0(3)

V' = do1 (A1, Ae, p)U + v
\ +(D1,1 (A1, A2, U + Gy 1(M, A2, ) V)x + O(3)

with d071(0, 0,0), C171(0,0, 0) 7& 0 and k = +1.

New parameters: (A1, A, 1) = (&0(v), boo(v), Co.1(v)).



Primary bifurcations in the unfolding of a HBT singularity

Second-order truncation of the normal form:

X' =y
X2 ) Y =My + X2+ xy + (U + vR)
(AMA2,m) u = nu — d071 vV + (C171 u— D171 V)X
V= d071U—|— uv + (D1,1U+ C171 V)X

where dy 1, Dy 1 and Cy 1 are functions of (A1, A2, i).



Primary bifurcations in the unfolding of a HBT singularity

Second-order truncation of the normal form:

X =y
X2 _ ) Y =M ey X+ xy + R(UP 4 VP)
(A, A2,1) - u = pu— do 1V + (C1,1 u— Ds V)X

Vi=do1u+ pv+ (Dy1u+ Crav)x
where dy 1, Dy 1 and Cy 1 are functions of (A1, A2, i).

Close to the origin and for ||(A1, A2, 1£)|| small enough, the
family has

@ no equilibrium points if Ay > 0;
@ a unique equilibrium point at P° = (0,0, 0,0) if \; = 0;
@ two equilibria P* = (£/—)1,0,0,0) if \; < 0.



Primary bifurcations in the unfolding of a HBT singularity

BT,

SNO

H

A sphere )2 + )3 + u? = § is fixed and the front view
corresponds to Ay < 0. We also assume C; ¢ < 0.



Chaos in the generic unfoldings of HBT singularities

Hopf-Zero bifurcations:

Theorem

When Ay = 1 = 0 and ), # O, family X3, ,, ,, exhibits a

Hopf-Zero singularity. Four cases can be distinguished:

/\201,1 <0 /\20171 >0
k= —1 Case ll Case |
k=1 Case IV Case lll
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Chaos in the generic unfoldings of HBT singularities

Hopf-Zero bifurcations: Case IlI

Hopf: p,  Homoclinic: pup=-4p/ 31
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Chaos in the generic unfoldings of HBT singularities

Hopf-Zero bifurcations: Effect of higher-order terms

[11 Y. A. Kuznetsov, Applied Mathematical Sciences 112, (1995).

[2] F. Dumortier, S. Ibafiez, H. Kokubu, C. Simo Discrete Continuous Dynamical
Systems, 33, (2013).

[3] I. Baldoma4, S. Ibafnez, T. M. Seara Commun. Nonlinear Sci. Numer. Simulat.
84, (2020).
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Chaos in the generic unfoldings of HBT singularities

Partial bifurcation diagram close to the HZ point: Case llI
with C171 = —1, x =1 and Ao = —-0.1.
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Note that the birth of an invariant torus when parameters
cross the secondary Hopf bifurcation.



Chaos in the generic unfoldings of HBT singularities

Period-doubling and chaotic dynamics close to a HZ
bifurcation (A, = —0.1, p = -0.3 and Cy 1 = —1):

Ay = —0.319 (Lyap. Exp. 0.042) A = —0.321 Ay = —0.326 (Lyap. Exp. 0.052)



Chaos in the generic unfoldings of HBT singularities

Hopf-Hopf bifurcations:
Theorem
When o = v/—\1 and i — 51,1\/—)\1 =0, family X?

()‘1 7)‘27“)

exhibits a Hopf-Hopf singularity. Eight cases can be
distinguished:

C171<0 0<C1’1<‘1—1 ‘1—1<C171<% %<C1,1

k=—1| Case lVb| Case Vlla Case VIIb Case V

k=1 | Case Vla Case Ib Case la Case lll

[1] J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).
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Chaos in the generic unfoldings of HBT singularities

Hopf-Hopf bifurcations: Case Vla

Q1

Q2 Q3

[11 J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).



Chaos in the generic unfoldings of HBT singularities

Hopf-Hopf bifurcations: Case Vla
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Chaos in the generic unfoldings of HBT singularities

Hopf-Hopf bifurcations: Effect of higher-order terms
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Chaos in the generic unfoldings of HBT singularities

Partial bifurcation diagram close to the HH point: Case
Vla with Cy1 = -1,k =1 and A\, = 0.21.
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Chaos in the generic unfoldings of HBT singularities

Period-doubling and chaotic dynamics close to a HH
bifurcation (A, = 0.21, y = —-0.3 and Cy 1 = —1):

A1 = —0.2129725000 Ay = —0.2129725798

Ay = —0.2129792959 (Lyap. Exp. 0.011)  Aq = —0.2129794796 (Lyap. Exp. 0.012)



Conclusions and Future Research

@ A deep understanding of the bifurcation diagram of
HBT singularities: analytical and numerical studies.

@ How do all the bifurcation surfaces arising at the
bifurcation curves of codimension two glue together?

© We have to check that higher order terms in the
truncated normal form do not affect to our arguments.

© Additional efforts are needed to prove that the
topological types described here are indeed those
exhibited by these singularities.
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