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Hopf-Bogdanov-Takens (HBT) singularities

Consider ẋ = fµ(x) with x ∈ Rn, µ ∈ Rk and fµ smooth.

Hopf bifurcation (subcritical) Bogdanov-Takens bifurcation

{
ẋ = µx − y − (x2 + y2)x
ẏ = x + µy − (x2 + y2)y

{
ẋ = y
ẏ = µ1 + µ2y + x2 − xy

[1] J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).
[2] H. W. Broer, F. Dumortier, S. J. van Strien, and F. Takens, Structures in
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Hopf-Bogdanov-Takens (HBT) singularities

Let X be a C∞-vector field on a neighborhood of p ∈ R4

with X (p) = 0 and

DX (p) ∼


0 1 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 .

p (or X ) is called a Hopf-Bogdanov-Takens singularity.
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Motivation to study the HBT singularities

HBT singularities appear naturally in the context of
coupled oscillators.
Primary local bifurcations up to codimension 2 were
obtained under additional symmetry properties.
A HBT bifurcation curve was detected in a model of
two Brusselators linearly coupled by diffusion.

{
x ′ = A − (B + 1)x + x2y
y ′ = Bx − x2y
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y ′
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Motivation to study the HBT singularities

HBT singularities appear naturally in the context of
coupled oscillators.
Primary local bifurcations up to codimension 2 were
obtained under additional symmetry properties.
A HBT bifurcation curve was detected in a model of
two Brusselators linearly coupled by diffusion.
H and BT interactions for a fluid-conveying tube, but
under symmetry conditions.
HBT singularities are essential to understand the
unfolding of the 4-dimensional nilpotent singularities
of codimension 4.
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A study of the unfolding of HBT singularities

Part I:
A formal classification of HBT singularities

Part II:
Chaos in the unfolding of HBT singularities

[1] F. Drubi, S. Ibáñez, D. Rivela, J. Math. Anal. Appl. 480, (2019).
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Unfoldings of HBT singularities

Steps for a systematic study of bifurcations of equilibria in
the least possible phase-space dimensions:

Reduction to normal form
Nondegeneracy and transversality conditions to
derive the simplest parameter-dependent form for a
“generic” system
Bifurcation diagrams of the approximate normal form
Influence of higher-order terms

[1] J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).

[2] Y. A. Kuznetsov, Applied Mathematical Sciences 112, (1995).



Unfoldings of HBT singularities

Any C∞ family Xν with ν ∈ R3, such that X0 is a HBT
singularity, can be written in a normal form up to order m:

x ′ = y + F̃1(x , y , u, v , ν)

y ′ =

⌊ m
2 ⌋∑

l=0

m−2l∑
k=0

ak,l (ν)xk (u2 + v2)l + y
⌊ m−1

2 ⌋∑
l=0

m−2l−1∑
k=0

bk,l (ν)xk (u2 + v2)l

+F̃2(x , y , u, v , ν)

u′ =

⌊ m+1
2 ⌋∑

l=1

m−2l+1∑
k=0

(ck,l (ν)u − dk,l (ν)v)xk (u2 + v2)l−1 + F̃3(x , y , u, v , ν)

v ′ =

⌊ m+1
2 ⌋∑

l=1

m−2l+1∑
k=0

(dk,l (ν)u + ck,l (ν)v)xk (u2 + v2)l−1 + F̃4(x , y , u, v , ν)

with Fi(x , y ,u, v , ν) = O(∥(x , y ,u, v , ν)∥m+1), i = 1, . . . ,4.

Remark: The plane u = v = 0 is formally invariant.



Unfoldings of HBT singularities

The normal form of HBT unfolding with m = 2:

x ′ = y + O(3)

y ′ = a0,0(ν) + a1,0(ν)x + b0,0(ν)y
+A2,0(ν)x2 + B1,0(ν)xy + A0,1(ν)(u2 + v2) + O(3)

u′ = c0,1(ν)u − d0,1(ν)v + (C1,1(ν)u − D1,1(ν)v)x + O(3)

v ′ = d0,1(ν)u + c0,1(ν)v + (D1,1(ν)u + C1,1(ν)v)x + O(3)

with a0,0(0) = a1,0(0) = b0,0(0) = c0,1(0) = 0, d0,1(0) = 1.



Unfoldings of HBT singularities
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Generic conditions: A2,0(0), B1,0(0), A0,1(0), C1,1(0) ̸= 0.



Unfoldings of HBT singularities

The normal form of HBT unfolding with m = 2:
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Generic conditions: A2,0(0), B1,0(0), A0,1(0), C1,1(0) ̸= 0.
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Unfoldings of HBT singularities
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Unfoldings of HBT singularities

The normal form of HBT unfolding with m = 2:

x ′ = y + O(3)

y ′ = λ1 + λ2y + x2 + xy + κ(u2 + v2) + O(3)

u′ = µu − d0,1(λ1, λ2, µ)v
+(C1,1(λ1, λ2, µ)u − D1,1(λ1, λ2, µ)v)x + O(3)

v ′ = d0,1(λ1, λ2, µ)u + µv
+(D1,1(λ1, λ2, µ)u + C1,1(λ1, λ2, µ)v)x + O(3)

with d0,1(0,0,0),C1,1(0,0,0) ̸= 0 and κ = ±1.

New parameters: (λ1, λ2, µ) = (a0,0(ν),b0,0(ν), c0,1(ν)).



Primary bifurcations in the unfolding of a HBT singularity

Second-order truncation of the normal form:

X 2
(λ1,λ2,µ)

:=


x ′ = y
y ′ = λ1 + λ2y + x2 + xy + κ(u2 + v2)
u′ = µu − d0,1v + (C1,1u − D1,1v)x
v ′ = d0,1u + µv + (D1,1u + C1,1v)x

where d0,1, D1,1 and C1,1 are functions of (λ1, λ2, µ).

Close to the origin and for ∥(λ1, λ2, µ)∥ small enough, the
family has

no equilibrium points if λ1 > 0;
a unique equilibrium point at P0 = (0,0,0,0) if λ1 = 0;
two equilibria P± = (±

√
−λ1,0,0,0) if λ1 < 0.
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Primary bifurcations in the unfolding of a HBT singularity
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Chaos in the generic unfoldings of HBT singularities

Hopf-Zero bifurcations:

Theorem

When λ1 = µ = 0 and λ2 ̸= 0, family X 2
(λ1,λ2,µ)

exhibits a
Hopf-Zero singularity. Four cases can be distinguished:

λ2C1,1 < 0 λ2C1,1 > 0
κ = −1 Case II Case I
κ = 1 Case IV Case III

The emergence of chaotic behavior can be expected in
case III, when higher order terms are considered.

[1] J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).

[2] F. Drubi, S. Ibáñez, D. Rivela, Discrete Contin. Dyn. Syst. Series B 25, (2020).
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Chaos in the generic unfoldings of HBT singularities

Hopf-Zero bifurcations: Case III
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Chaos in the generic unfoldings of HBT singularities

Hopf-Zero bifurcations: Effect of higher-order terms
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Chaos in the generic unfoldings of HBT singularities

Partial bifurcation diagram close to the HZ point: Case III
with C1,1 = −1, κ = 1 and λ2 = −0.1.
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Note that the birth of an invariant torus when parameters
cross the secondary Hopf bifurcation.



Chaos in the generic unfoldings of HBT singularities

Period-doubling and chaotic dynamics close to a HZ
bifurcation (λ2 = −0.1, µ = −0.3 and C1,1 = −1):

λ1 = −0.291 λ1 = −0.313 λ1 = −0.315

λ1 = −0.319 (Lyap. Exp. 0.042) λ1 = −0.321 λ1 = −0.326 (Lyap. Exp. 0.052)



Chaos in the generic unfoldings of HBT singularities

Hopf-Hopf bifurcations:

Theorem

When λ2 =
√
−λ1 and µ− Ĉ1,1

√
−λ1 = 0, family X 2

(λ1,λ2,µ)

exhibits a Hopf-Hopf singularity. Eight cases can be
distinguished:

C1,1 < 0 0 < C1,1 < 1
4

1
4 < C1,1 < 1

2
1
2 < C1,1

κ = −1 Case IVb Case VIIa Case VIIb Case V
κ = 1 Case VIa Case Ib Case Ia Case III

The emergence of chaotic behavior can be expected in
case VIa, when higher order terms are considered.

[1] J. Guckenheimer, P. Holmes, Applied Mathematical Sciences 42, (1983).
[2] F. Drubi, S. Ibáñez, D. Rivela, Discrete Contin. Dyn. Syst. Series B 25, (2020).
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Chaos in the generic unfoldings of HBT singularities

Hopf-Hopf bifurcations: Case VIa
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Chaos in the generic unfoldings of HBT singularities

Hopf-Hopf bifurcations: Case VIa
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Hopf-Hopf bifurcations: Effect of higher-order terms
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Chaos in the generic unfoldings of HBT singularities

Partial bifurcation diagram close to the HH point: Case
VIa with C1,1 = −1, κ = 1 and λ2 = 0.21.
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Note that the birth of an invariant torus when parameters
cross the secondary Hopf bifurcation.



Chaos in the generic unfoldings of HBT singularities

Period-doubling and chaotic dynamics close to a HH
bifurcation (λ2 = 0.21, µ = −0.3 and C1,1 = −1):

λ1 = −0.2129725000 λ1 = −0.2129725798

λ1 = −0.2129792959 (Lyap. Exp. 0.011) λ1 = −0.2129794796 (Lyap. Exp. 0.012)



Conclusions and Future Research

1 A deep understanding of the bifurcation diagram of
HBT singularities: analytical and numerical studies.

2 How do all the bifurcation surfaces arising at the
bifurcation curves of codimension two glue together?

3 We have to check that higher order terms in the
truncated normal form do not affect to our arguments.

4 Additional efforts are needed to prove that the
topological types described here are indeed those
exhibited by these singularities.
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