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Restricted Three Body Problem (RTBP)

RTBP describes the movement of a massless particle subjected to the gravitational fields of
two massive bodies (primaries) that revolve in circular motion around their barycentre.
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I We consider the planar case.

I µ = 0.012150582 for the Earth-Moon system.

I Adimensional units such that gravitational
constant is 1.

I Synodic reference frame.

I Earth is placed at (µ, 0), Moon at (−1 + µ, 0).

HRTBP =
1

2
(p2

x + p2
y ) + ypx − xpy −

1− µ
rPE

− µ

rPM

I Autonomous Hamiltonian.

I Energy is conserved.

I Five equilibrium points: L1, L2 and L3 are unstable, while L4 and L5 are linearly stable.
3 / 30



Bicircular Problem (BCP)

BCP is a restricted 4-body problem, where the fourth body acts as a time-periodic
perturbation of the RTBP.
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I Non-autonomous Hamiltonian!!

I Energy is not conserved.

I Five equilibrium points replaced by
periodic orbits with the period of the
perturbation (T ).

HBCP = HRTBP + ĤBPC
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(y sinϑ− x cosϑ), with ϑ = ωst and ωs =
2π

T
.

4 / 30



Dynamical equivalent for L3 in the BCP

I In the RTBP, L3 equilibrium point of centre × saddle type.

→ Fam. of periodic orbits

I In the BCP, L3 equilibrium point becomes a periodic orbit of period T , which is the
dynamical equivalent of L3 in the BCP:
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Its stability is again centre × saddle; unstable eigenvalue λu ≈ 3.37282, (λs = λ−1
u due to

the Hamiltonian structure).
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Dynamical equivalent for L3 in the BCP

I In the RTBP, L3 equilibrium point of centre × saddle type.→ Fam. of periodic orbits

I In the BCP, L3 equilibrium point becomes a periodic orbit of period T , which is the
dynamical equivalent of L3 in the BCP: → Fam. of 2D quasi-periodic orbits
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Invariant tori and stability

Family of 2D invariant tori around L3 dynamical substitute

I A family of quasi-periodic orbits emerges in the centre direction from L3 periodic orbit.

I Each of the tori composing this family has two frequencies:
I one comes from the family of Lyapunov periodic orbits of L3 in the unperturbed system and

it is different for each torus,
I the other one is the frequency of the Sun, shared by them all.

Linear behaviour around them
I These invariant tori are hyperbolic.

Stable/Unstable invariant manifolds

I Each invariant manifold is three dimensional.
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Stroboscopic map P

A Poincaré map corresponding to the period of the Sun, T , is applied to the flow, reducing one
angular dimension. In this map:

I The dynamical substitute is seen as a fixed point.

I The family of 2D invariant tori is seen as a family of 1D invariant curves.

I Each curve ϕ : T1 7→ Rn with n = 4 is characterized by its rotation number ω and must
satisfy the invariance condition:

P(ϕ(θ)) = ϕ(θ + ω), θ ∈ [0, 2π).

I We look for pairs of eigenvalue and eigenfunction (λ, ψ) that satisfy the generalized
eigenvalue problem (GEV),

A(θ)ψ(θ) = λTωψ(θ),

where A(θ) = Dϕ(P(ϕ(θ))) and Tω : ψ(θ) ∈ C(T1,C4) 7→ ψ(θ + ω) ∈ C(T1,C4).

I The 3D invariant manifolds are seen as two-dimensional.
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A Poincaré map corresponding to the period of the Sun, T , is applied to the flow, reducing one
angular dimension. In this map:

I The dynamical substitute is seen as a fixed point.

I The family of 2D invariant tori is seen as a family of 1D invariant curves.
I Each curve ϕ : T1 7→ Rn with n = 4 is characterized by its rotation number ω and must

satisfy the invariance condition:

P(ϕ(θ)) = ϕ(θ + ω), θ ∈ [0, 2π).

I We look for pairs of eigenvalue and eigenfunction (λ, ψ) that satisfy the generalized
eigenvalue problem (GEV),

A(θ)ψ(θ) = λTωψ(θ),

where A(θ) = Dϕ(P(ϕ(θ))) and Tω : ψ(θ) ∈ C(T1,C4) 7→ ψ(θ + ω) ∈ C(T1,C4).

I The 3D invariant manifolds are seen as two-dimensional.

8 / 30



Family of 1D invariant curves around L3 in the map P
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Linear approximation of invariant manifolds

We take an small displacement in the hyperbolic (stable or unstable) direction:

P(ϕ(θ) + σψs,u(θ)) = P(ϕ(θ)) + σDϕ(P(ϕ(θ)))ψs,u(θ) +O(σ2)

= ϕ(θ + ω) + σλs,uψs,u(θ + ω) +O(σ2).

At every step of the in-
tegration we check if the
orbits collide with some
primary or if they leave
the system.

Stable (green) and unstable (red) invariant manifolds
corresponding to two invariant curves, in the xy -plane.
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Transport through L3 in the BCP
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Transport through L3 in the BCP

Fundamental cylinder

Fundamental region (the small “cylinder”) used for globalizing the invariant manifolds, is
defined by two parameters (θ, σ).

For example, the parametrization of the fundamental region of the unstable manifold for an
invariant curve ϕ is perfomed as:

(θ, σ) ∈ [0, 2π]× [σ0, λuσ0] 7→ ϕ(θ) + σψu(θ),

for σ0 > 0 and σ0 < 0.

With these two parameters we define a mesh of initial points of the four invariant manifolds
for an invariant curve and colored them according to their fate.
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Transport through L3 in the BCP
Color (fate): Purple (Earth), red (Moon), yellow (leaving the system), or black (neither).
Invariant torus at 0.03335 from L3.

Unstable manifold,
Left/right, taking
positive/negative
displacement.

Stable manifold,
Left/right, taking
positive/negative
displacement.
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Transport through L3 in the BCP
Color (fate): Purple (Earth), red (Moon), yellow (leaving the system), or black (neither).

Unstable manifolds
of invariant tori
at 0.19607 from L3.

Unstable manifolds
of invariant tori
at 0.30902 from L3.
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Transport through L3 in the BCP
Color (fate): Purple (Earth), red (Moon), yellow (leaving the system), or black (neither).

Unstable manifolds
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Transport through L3 in the BCP
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Entering and leaving orbits
I The trajectories that leave and enter in the Earth-Moon system may give us an insight

about NEOs (Near Earth Objects) behaviour.
I Entering/Leaving orbits have been defined as those orbits that get at some distance far

away from the Earth-Moon barycenter, since they are considered to be captured by solar
gravitatory field.

I Orbital Elements (OE) with respect to the Sun have been computed.

Eccentricity vs semimajor axis (in astronomical units). Left, OE for orbits entering in the
system, right, OE for orbits leaving it.
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Lunar meteorites

I Moon surface suffers several impacts every year.

I If the velocity of the crater ejecta is higher than the lunar escape velocity (≈ 2.38 km/s),
they get free from the Moon gravity and become lunar meteorites.

I Some lunar meteorites are found on the Earth.

Stable invariant manifolds that goes from the Moon to L3 vicinity and connect with
unstable invariant manifolds that leave this surroundings towards the Earth, may explain the
travel that lunar meteorites make to reach our planet.
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Lunar meteorites
Several of these connections have been found for the BCP:

I No preferred point on the Moon (origin) neither on the Earth (destination) was found.

I Also, these connections happen at any time (no preferred ϑ = ωst).

I Range of velocities for leaving the Moon surface is [2.25, 3.38] km/s.

I Range of velocities when they reach the Earth surface (neglecting atmosphere effects) is
[11.00, 11.31] km/s.

18 / 30



Lunar meteorites

Origin of these trajectories: intersection of the stable invariant manifolds of L3

with the Moon’s surface.

I To study the sensitivity of these trajectories we modify some of them:

I Mantain their initial positions x and y , as well as the initial time, solar phase ϑ = ωst.

I Modify their initial velocity modules and angle directions of the velocity vector, such that
a mesh of 106 initial conditions is swept.

I Analyse the destination.

xy -plane (adim units) |v| (km/s), angle dir. (degrees)

Color (fate):

Purple (Earth)
Red (Moon)
Yellow (leaving

the system)
Black (neither)
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Transport in a realistic model

Bicircular Problem dependence on the time allows the conversion to a realistic model keeping
the information of the relative positions of the Earth, Moon and Sun.

Change of coord. and time between models

Time: In the BCP at t = 0 or t = NTT (NT ∈ Z), the positions of the Earth, the Moon and
the Sun correspond to a lunar eclipse, TECLIPSE in Julian days.

→ any t 6= 0 corresponds to some days before or after the eclipse.

Coordinates: The conversion to the ecliptical system with the origin in the Solar System
centre of mass involves the coordinates of Earth, Moon and their barycentre at that real time.

→ we take the coordinates of Earth, Moon and their barycentre from JPL database (Jet
Propulsion Laboratory).
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Lunar meteorites

Objective: to check the results obtained with the Bicircular model for the lunar meteorites in a
more realistic model.

I Apply the change of coordinates and time to each initial condition in our
adimensional system to translate them to the ecliptic system.

I Each initial condition is integrated in a N-body problem (Earth, Moon, Sun and
planets).

I Positions and velocities of the massive bodies are obtained from the JPL ephemeris
DE405 at the right time.

I Analyse destination.
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Lunar meteorites
BCP JPL

Horizontal axis: |v| (km/s). Vertical axis: angle dir. (degrees).

Color (fate): Purple (Earth), Red (Moon), Yellow (leaving the system), Black (neither).
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Capture of an asteroid

Idea is to trap the asteroid in the vicinity of L3 through the stable invariant
manifolds of the invariant curves

Advantages of using L3:

{
Very cheap station keeping
Gateway towards other regions

Strategy:

I Translate the coordinates of a real asteroid to the BCP reference frame at the right time.
→ change of coordinates.

I Globalize backward in time the trajectories on the stable invariant manifolds of L3 to
compare them with the positions of the asteroid.→ it must be done at the same time.

I Colour the FC according to the distance to the asteroid to identify the one that lies on the
position of the asteroid. → high order approximation of the manifolds is needed.

I The difference in velocities gives the cost of the maneuver. → ∆v (m/s).
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position of the asteroid. → high order approximation of the manifolds is needed.

I The difference in velocities gives the cost of the maneuver. → ∆v (m/s).
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High order parametrization of hyperbolic invariant manifolds

Invariant curve ϕ in a Poincaré temporal map P , P(ϕ(θ)) = ϕ(θ + ω)

The h.o. parametrization of the manifolds associated to ϕ depends on two parameters,
θ ∈ T1 and σ ∈ R, and can be written as a Taylor-Fourier expansion:

W (θ, σ) = a0(θ) + a1(θ)σ +
∑
k≥2

ak(θ)σk ,

that must satisfy invariance condition: P(W (θ, σ)) = W (θ + ω, λσ),

I We solve this equation order by order, for which we need the derivatives of the map.

• The Jet transport (JT) technique allows to compute high order derivatives of the flow of an
ODE with respect to initial data and/or parameters, based on using automatic differentiation
on a numerical integration of ODEs. → In 1, authors develop an integrator based on JT for
Poincaré maps.

1J. Gimeno, À. Jorba, M. Jorba-Cuscó, N. Miguel, and M. Zou. Preprint, 2021
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Parametrization of the stable FC

z(θ, τ) =
K∑

k=0

ask(θ)((1 + τ(1/λs − 1))σ)k ,

where z(θ, τ) ∈ Rn and τ ∈ [0, 1]. When τ = 0, z(θ, τ) parametrizes the lower curve,
W s

K (θ, σ0), and when τ = 1 it parametrizes the upper curve, W s
K (θ, λ−1

s σ0).

I K is the maximum order so that the error is of order σK+1.

I We considered is K = 16.

I Compute the trajectory such that F (θ, τ) = {x(θ, τ), y(θ, τ)}tf − {xasteroid , yasteroid} ≡ 0.
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Results for 2006 RH120

2006 RH120 is a Near Earth Asteroid (NEA) that comes close to the Earth from time to time.

→ We analyse the capture in its approach of 2006,
studying different epochs from April 2006 to May 2007.

Here we only present one of them.
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Results for 2006 RH120. For 2006-Jun-25 (t=mod(T/2) in BCP)

FCs of tori at distances from L3 between 0.02159 and 0.03947. First row, FCs coloured
according to the distance to the asteroid in km at position x = −2.38595, y = −3.06967. Second
row, the same FCs coloured according to the instantaneous ∆v in km/s.
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Results for 2006 RH120. For 2006-Jun-25 (t=mod(T/2) in BCP)

Min 1

dist to L3 θ τ ∆v (m/s)

0.02159 2.856 0.626 19.398

0.02738 2.693 0.615 19.386

0.03947 2.555 0.597 19.338

Min 2

dist to L3 θ τ ∆v (m/s)

0.02159 4.224 0.678 19.338

0.02738 4.373 0.693 19.293

0.03947 4.472 0.725 19.176
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Left, values of the initial conditions in the FCs that after NT BCP periods lay on the position
of the asteroid at June 25, 2006 and the ∆v required for each of them. Right, simulation of
the capture of the asteroid by the trajectories in the two bigger minimum distance areas on
the third FC when applying the obtained ∆v .
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Conclusions

I The role of L3 equilibrium point in the planar Earth-Moon system under the perturbation
of the Sun has been studied.

I We have numerically computed and analysed:
I The family of invariant tori that emanates from L3 and their linear behaviour.
I The linear and high order approximation of the hyperbolic invariant manifolds.
I Connections between stable and unstable manifolds of L3 tori.

I Special attention was paid to two astrodynamical applications:

I The behaviour of lunar meteorites found on the Earth surface.
I Results checked in a realistic model.

I The possibilities of capture of an asteroid in the BCP.

Thank you for your attention!
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