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1. Chemical Oscillations

• BZ-Reaction: A chemical oscillatory reaction, fluctuating in

color, discovered by B. P. Belousov (1951) and continued by A. M.

Zhabotinsky (1964).

• Chemical-Reaction: Following BZ-reaction, general chemical

reactions have been studied using

−− rate equations (ODE models assuming high concentration of

species),

−− reaction-diffusion equations (adding diffusion mechanism),

−− chemical master equations (lattice models assuming lower

concentration of species).



• Rate Equations:

−− Law of Mass Action: Rate of any given chemical reaction is

proportional to the product of the concentrations of the reactants.

−− Example:

X + Y
k
−→ Z















ẋ = −kxy,

ẏ = −kxy,

ż = kxy.



2. Two Type of Systems

• Open Systems:

−− Exchange of energy with surrounding environment.

−− Conservative.

−− Wide range of dynamics.

−− e.g. (Irreversible Lotka-Volterra System)

A + X
k1−→ 2X

X + Y
k2−→ 2Y

Y
k3−→ B.







ẋ = k1cAx − k2xy

ẏ = k2xy − k3y



• Closed Systems:

−− No exchange of energy with surrounding environment is

allowed.

−− Dissipative.

−− Solutions converge to an equilibrium (2nd law of

Thermodynamics).

• Almost all existing chemical-reaction models assume constant

sources and sinks and thus are open systems.

But in reality, a chemical reaction takes place in a closed

environment, so can this oscillatory reaction really goes on forever?

The answer is no! In fact, the oscillatory reaction consumes energy.

If the oscillation were possible going forever, it would be a

perpetual motion machine! That is against the first law of

thermodynamics.



3. Biochemical Oscillations

• Kruse and Julicher (2005): “oscillations play an important role in

many dynamic cellular processes. They can emerge as the collective

dynamic behavior of an ensemble of interacting components in the

cell. Examples include oscillations in cytoskletal structures ... All

these oscillations share many general features. Models and

theoretical approaches are essential for an understanding of the

principles underlying these dynamic cellular processes”.

• To understand bio-chemical oscillations, it seems appropriate to

−− use closed system models, due to the lacking of natural source

terms;

−− not to neglect a backward reaction, since energy between a

reactant and a product is directly related to the ratio of the

forward and backward rate constant.



4. Reversible Lotka-Volterra System

(Li-Qian-Y. 08, 10)

A + X
k1

⇋

k
−1

2X

X + Y
k2

⇋

k
−2

2Y

Y
k3

⇋

k
−3

B.

k−i ≪ ki and k1 ≪ k2.



























ẋ = k1cAx − k−1x
2 − k2xy + k−2y

2,

ẏ = k2xy − k−2y
2 − k3y + k−3cB ,

ċA = −k1cAx + k−1x
2,

ċB = k3y − k−3cB.



• Rescaling:

u = k2

k3

x, v = k2

k3

y, w = k1

k3

cA, z = k2

k3

cB, τ = k3t,

ε = k
−1

k1

= k
−2

k2

= k
−3

k3

, σ = k1

k2

, β = εz, δ = εσ

• Dimensionless Form:



























u̇ = u(w − v) − ε(σu
2
− v

2)

v̇ = v(u − 1) − εv
2 + εz

ẇ = −σ(wu − εσu
2),

ż = v − εz.

where 0 < ε ≪ σ ≪ 1.



• Conservation of mass:

u + v +
w

σ
+ z = ξ.

• 3D Version of Reversible LV System:























du

dτ
= u(w − v) − ε(σu2 − v2)

dv

dτ
= v(u − 1) − εv2 + ε

(

ξ − u − v − w
σ

)

dw

dτ
= −σ(wu − εσu2).



• Unperturbed system:























du

dτ
= u(w − v)

dv

dτ
= v(u − 1)

dw

dτ
= 0.

– A family of irreversible LV system.



• Reaction zone:

T =
{

(u, v, w) ∈ R
3+, u + v +

w

σ
≤ ξ

}

is positively invariant.

• Long term dynamics:

−− The system is dissipative;

−− ∃ a unique positive equilibrium P∗ which is a global attractor

in T .

• Important issues:

−− Quasi-steady-state;

−− Transient dynamics;

−− Nature and mechanism of oscillations.



• Oscillating Zone: Away from the equilibrium, ∃ an oscillating

zone T o ⊂ T , {w ≥ σ} ⊂ T o ⊂
{

w ≥ σ2
}

, with the following

properties:

−− (Oscillating Axis) ∃ 1D, asymptotically stable, locally invariant

manifold W o
σ,ε ⊂ T o s. t. each orbit in T o oscillates around W o

σ,ε in

a finite number of times (multi-frequency) with decreasing

diameters;

−− (Nature of Oscillation) Each round of oscillation exhibits both

singular and regular behaviors: It consists of a “horizontal” portion

with nearly unchanged energy and w-value which shadows a

periodic orbit of the unperturbed system on the same energy level,

and a “vertical” portion with exponentially decay energy and

w-values;

−− (Winding Number) The closer an orbit is to the oscillating axis

initially, the less number of oscillation it makes.



−− If ξ ∼
1

σ
, then the oscillation is regular (no jumping).
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Figure 1: Oscillation zone. In the left panel, ξ = 500, σ = 0.01, ε =

σ2 with initial (2, 2, 3). In the right panel, ξ = 10, σ = 0.005, ε = σ2

with initial (0.5, 0.1, 0.045).



• Non-oscillating Zone: Near the equilibrium, ∃ a non-oscillating

zone T n ⊂ T , {w ≤ σε} ⊂ T n ⊂ {w ≤ σ}, with the following

properties:

−− (Non-oscillating) P∗ ∈ T n is an asymptotically stable node;

−− (Strongly Stable Manifold) ∃ a 2D, exponentially stable,

positively invariant manifold Mn
σ,ε ⊂ T n containing P∗;

−− (Stable Manifold) Within Mn
σ,ε, ∃ an 1D, exponentially stable,

positively invariant manifold Mn
σ,ε containing P∗ along with 2D

stable foliations.
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Figure 2: Nonoscillating zone. In both panel, ξ = 100; σ =

0.01, ε = σ3. In the left one, the initials are (u0, 0.02, 0.001) with

u0 = 0.1, 0.333, 1.033, 1.267, 1.5. In the right one, the initials are

(u0, σ, σε) with u0 = 0.1, 0.325, 0.55, 0.775, 1.



5 . Remark

• The dynamics is a mixture of dissipative, conservative, and

monotone ones.

• The system is a dissipative, singular perturbation to conservative

ones.

• The oscillation is neither electrical nor mechanical.

• The long term dynamics are trivial, but the transient ones are

rich.



6. Open Problems

• Higher dimensional models: More complicated transient,

oscillating dynamics are expected.

• Stochastic counterparts: Dynamical connections between a rate

equation and its stochastic counterparts.

– When noise is added, the probability density ρ satisfies a

Fokker-Planck equation

∂ρ

∂t
= ∇ · (εD(x)∇ρ − ρv(x)), x ∈ RN ,

∫

RN

ρdx = 1.

– When the total volume is low, the probability distribution

p(n, t) = Pr(x1(t)V = n1, . . . , xN (t)V = nN ), where V is the total

volume, satisfies a Chemical Master Equation

ṗ(n, t) = ∇ · (A(n)∇p(n, t) − p(n, t)v(n)).
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