Mixing conditions for 2-D SFTs

Ronnie Pavlov
University of Denver
www.math.du.edu/~rpavlov

RTNS 2016
January 28, 2016

Mixing conditions

- In dynamics, topological mixing is a condition about two nonempty open sets U, V intersecting when you apply a large enough transformation to one set: for large $n, U \cap T^{n} V \neq \varnothing$.

Mixing conditions

- In dynamics, topological mixing is a condition about two nonempty open sets U, V intersecting when you apply a large enough transformation to one set: for large $n, U \cap T^{n} V \neq \varnothing$.
- In symbolic setting, U, V correspond to GA words in X, so topological mixing corresponds to GA words coexisting in some point of X when placed far apart.

Mixing conditions

- In dynamics, topological mixing is a condition about two nonempty open sets U, V intersecting when you apply a large enough transformation to one set: for large $n, U \cap T^{n} V \neq \varnothing$.
- In symbolic setting, U, V correspond to GA words in X, so topological mixing corresponds to GA words coexisting in some point of X when placed far apart.
- There's a hierarchy of conditions of such conditions for 2-D SFTs.

Mixing conditions

- In dynamics, topological mixing is a condition about two nonempty open sets U, V intersecting when you apply a large enough transformation to one set: for large $n, U \cap T^{n} V \neq \varnothing$.
- In symbolic setting, U, V correspond to GA words in X, so topological mixing corresponds to GA words coexisting in some point of X when placed far apart.
- There's a hierarchy of conditions of such conditions for 2-D SFTs.
- A \mathbb{Z}^{2} SFT X is topologically mixing if any GA rectangular patterns w, w^{\prime} can coexist in the same element of X in any orientation where they are far enough apart.

Examples

- The domino tiling \mathbb{Z}^{2} SFT D is the set of all ways of tiling the plane with dominoes.

Examples

- The domino tiling \mathbb{Z}^{2} SFT D is the set of all ways of tiling the plane with dominoes.
- Strictly speaking, this is a tiling system, but easily realizable as an SFT.

Examples

- The domino tiling \mathbb{Z}^{2} SFT D is the set of all ways of tiling the plane with dominoes.
- Strictly speaking, this is a tiling system, but easily realizable as an SFT.
- $A=\{T, B, L, R\}$ (Think of as the top, bottom, left, or right halves of a domino)

Examples

- The domino tiling \mathbb{Z}^{2} SFT D is the set of all ways of tiling the plane with dominoes.
- Strictly speaking, this is a tiling system, but easily realizable as an SFT.
- $A=\{T, B, L, R\}$ (Think of as the top, bottom, left, or right halves of a domino)
- Halves of dominoes must appear together.

Examples

- The domino tiling \mathbb{Z}^{2} SFT D is the set of all ways of tiling the plane with dominoes.

Examples

- The domino tiling \mathbb{Z}^{2} SFT D is the set of all ways of tiling the plane with dominoes.
- D is topologically mixing because large GA rectangular patterns can coexist when they are far apart...

Examples

- The domino tiling \mathbb{Z}^{2} SFT D is the set of all ways of tiling the plane with dominoes.
- D is topologically mixing because large GA rectangular patterns can coexist when they are far apart...

Examples

- The domino tiling \mathbb{Z}^{2} SFT D is the set of all ways of tiling the plane with dominoes.
- D is topologically mixing because large GA rectangular patterns can coexist when they are far apart...

Examples

- The domino tiling \mathbb{Z}^{2} SFT D is the set of all ways of tiling the plane with dominoes.
- D is topologically mixing because large GA rectangular patterns can coexist when they are far apart...

Examples

- The domino tiling \mathbb{Z}^{2} SFT D is the set of all ways of tiling the plane with dominoes.
- D is topologically mixing because large GA rectangular patterns can coexist when they are far apart... but large patterns might need large distances.

Examples

- The domino tiling \mathbb{Z}^{2} SFT D is the set of all ways of tiling the plane with dominoes.
- D is topologically mixing because large GA rectangular patterns can coexist when they are far apart... but large patterns might need large distances.

Examples

- The domino tiling \mathbb{Z}^{2} SFT D is the set of all ways of tiling the plane with dominoes.
- D is topologically mixing because large GA rectangular patterns can coexist when they are far apart... but large patterns might need large distances.

Mixing conditions

- Topological mixing splits into a hierarchy of conditions in two dimensions.
- $A \mathbb{Z}^{2}$ SFT X is topologically mixing if any GA rectangular patterns w, w^{\prime} can coexist in the same element of X in any orientation where they are far enough apart.

Mixing conditions

- Topological mixing splits into a hierarchy of conditions in two dimensions.
- $\mathrm{A} \mathbb{Z}^{2}$ SFT X is topologically mixing if any GA rectangular patterns w, w^{\prime} can coexist in the same element of X in any orientation where they are far enough apart.
- If there is one uniform distance sufficient for coexistence for all GA rectangular w, w^{\prime}, then X is block gluing.

Examples

- The southeast shift S is the \mathbb{Z}^{2} SFT with $A=\{0,1\}$ and $\mathcal{F}=\left\{\begin{array}{l}00 \\ 01\end{array}\right\}$.

Examples

- The southeast shift S is the \mathbb{Z}^{2} SFT with $A=\{0,1\}$ and $\mathcal{F}=\left\{\begin{array}{l}00 \\ 01\end{array}\right\}$.
- S is block gluing because any two GA rectangular patterns with distance at least 2 can coexist...

Examples

- The southeast shift S is the \mathbb{Z}^{2} SFT with $A=\{0,1\}$ and $\mathcal{F}=\left\{\begin{array}{l}00 \\ 01\end{array}\right\}$.
- S is block gluing because any two GA rectangular patterns with distance at least 2 can coexist...

$$
\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array} \quad\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\hline
\end{array}\right.
$$

Examples

- The southeast shift S is the \mathbb{Z}^{2} SFT with $A=\{0,1\}$ and $\mathcal{F}=\left\{\begin{array}{c}00 \\ 01\end{array}\right\}$.
- S is block gluing because any two GA rectangular patterns with distance at least 2 can coexist...

1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	0	1	0	1		
1	1	1	0	1	1	1	1	1	1	0	0	1
1	1	1	0	0	1	1	1	0	1	0	0	1
1	1	1	1	0	1	1	1	1	1	1		
1	1	1	0	1	0	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1		
1	1	1	1	1	1	1	1	1	1	1	1	1

Examples

- The southeast shift S is the \mathbb{Z}^{2} SFT with $A=\{0,1\}$ and $\mathcal{F}=\left\{\begin{array}{c}00 \\ 01\end{array}\right\}$.
- S is block gluing because any two GA rectangular patterns with distance at least 2 can coexist...

1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	0	1	0	1	1	
1	1	1	0	1	1	1	1	1	1	0	0	1
1	1	1	0	0	1	1	1	0	1	0	1	1
1	1	1	1	0	1	1	1	1	1	1	1	
1	1	1	0	1	0	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1		
1	1	1	1	1	1	1	1	1	1	1	1	1

Examples

- The southeast shift S is the \mathbb{Z}^{2} SFT with $A=\{0,1\}$ and $\mathcal{F}=\left\{\begin{array}{c}00 \\ 01\end{array}\right\}$.
- S is block gluing because any two GA rectangular patterns with distance at least 2 can coexist...

1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	0	1	0	0	1
1	1	1	0	1	1	1	1	1	1	0	0	1
1	1	1	0	1	1	1	1	0	1	0	0	1
1	1	1	1	1	1	1	1	1	1	1		
1	1	1	0	1	0	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1	1	1	1	1	1	1

Examples

- The southeast shift S is the \mathbb{Z}^{2} SFT with $A=\{0,1\}$ and $\mathcal{F}=\left\{\begin{array}{l}00 \\ 01\end{array}\right\}$.
- S is block gluing because any two GA rectangular patterns with distance at least 2 can coexist... but the same is not true of non-rectangular patterns.

Examples

- The southeast shift S is the \mathbb{Z}^{2} SFT with $A=\{0,1\}$ and $\mathcal{F}=\left\{\begin{array}{l}00 \\ 01\end{array}\right\}$.
- S is block gluing because any two GA rectangular patterns with distance at least 2 can coexist... but the same is not true of non-rectangular patterns.

Examples

- The southeast shift S is the \mathbb{Z}^{2} SFT with $A=\{0,1\}$ and $\mathcal{F}=\left\{\begin{array}{l}00 \\ 01\end{array}\right\}$.
- S is block gluing because any two GA rectangular patterns with distance at least 2 can coexist... but the same is not true of non-rectangular patterns.

Examples

- The southeast shift S is the \mathbb{Z}^{2} SFT with $A=\{0,1\}$ and $\mathcal{F}=\left\{\begin{array}{l}00 \\ 01\end{array}\right\}$.
- S is block gluing because any two GA rectangular patterns with distance at least 2 can coexist... but the same is not true of non-rectangular patterns.

Mixing conditions

- Topological mixing splits into a hierarchy of conditions in two dimensions.
- $A \mathbb{Z}^{2}$ SFT X is topologically mixing if any GA rectangular patterns w, w^{\prime} can coexist in the same element of X in any orientation where they are far enough apart.
- If there is one uniform distance sufficient for coexistence for all GA rectangular w, w^{\prime}, then X is block gluing.

Mixing conditions

- Topological mixing splits into a hierarchy of conditions in two dimensions.
- $A \mathbb{Z}^{2}$ SFT X is topologically mixing if any GA rectangular patterns w, w^{\prime} can coexist in the same element of X in any orientation where they are far enough apart.
- If there is one uniform distance sufficient for coexistence for all GA rectangular w, w^{\prime}, then X is block gluing.
- If there is one uniform distance sufficient for coexistence for all GA w, w^{\prime} with any shapes (not just rectangles), then X is strongly irreducible.

Examples

- The \mathbb{Z}^{2} "golden mean shift" $G^{(2)}$ is the \mathbb{Z}^{2} SFT with $A=\{0,1\}$ and $\mathcal{F}=\left\{11, \frac{1}{1}\right\}$.

Examples

- The \mathbb{Z}^{2} "golden mean shift" $G^{(2)}$ is the \mathbb{Z}^{2} SFT with $A=\{0,1\}$ and $\mathcal{F}=\left\{11, \frac{1}{1}\right\}$.
- $G^{(2)}$ is strongly irreducible because any GA patterns with distance at least 1 can coexist.

Examples

- The \mathbb{Z}^{2} "golden mean shift" $G^{(2)}$ is the \mathbb{Z}^{2} SFT with $A=\{0,1\}$ and $\mathcal{F}=\left\{11, \frac{1}{1}\right\}$.
- $G^{(2)}$ is strongly irreducible because any GA patterns with distance at least 1 can coexist.

Examples

- The \mathbb{Z}^{2} "golden mean shift" $G^{(2)}$ is the \mathbb{Z}^{2} SFT with $A=\{0,1\}$ and $\mathcal{F}=\left\{11, \frac{1}{1}\right\}$.
- $G^{(2)}$ is strongly irreducible because any GA patterns with distance at least 1 can coexist.

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |

Mixing conditions

- Assuming strong enough mixing conditions allows one to prove meaningful statements about 2-D SFTs, and forces them to exhibit behavior closer to their 1-D counterparts.

Mixing conditions

- Assuming strong enough mixing conditions allows one to prove meaningful statements about 2-D SFTs, and forces them to exhibit behavior closer to their 1-D counterparts.
- Can force existence of dense periodic points, decidability, computability of entropy

