Perturbation theory, KAM theory and Celestial Mechanics 3. Conservative and dissipative standard maps

Alessandra Celletti

Department of Mathematics University of Roma "Tor Vergata"

Sevilla, 25-27 January 2016

- 1. Conservative Standard Map
- 2. Dissipative Standard Map
- 3. 4-dimensional standard map
- 4. Non-twist standard map

1. Conservative Standard Map

2. Dissipative Standard Map

3. 4-dimensional standard map

4. Non-twist standard map

It is described by the equations (discrete analogue of the spin-orbit problem)

$$\begin{aligned} y' &= y + \varepsilon f(x) & y \in \mathbb{R}, \ x \in \mathbb{T} \\ x' &= x + y', \end{aligned}$$

with $\varepsilon > 0$ perturbing parameter, f = f(x) analytic function.

• Classical (Chirikov) standard map: $f(x) = \sin x$.

It is described by the equations (discrete analogue of the spin-orbit problem)

$$\begin{aligned} y' &= y + \varepsilon f(x) & y \in \mathbb{R}, \ x \in \mathbb{T} \\ x' &= x + y', \end{aligned}$$

with $\varepsilon > 0$ perturbing parameter, f = f(x) analytic function.

- Classical (Chirikov) standard map: $f(x) = \sin x$.
- Equivalent notation:

$$y_{j+1} = y_j + \varepsilon \sin(x_j)$$

$$x_{j+1} = x_j + y_{j+1} = x_j + y_j + \varepsilon \sin(x_j) \quad \text{for } j \ge 0$$

• **PROPERTIES**:

A) SM is integrable for $\varepsilon = 0$, non-integrable for $\varepsilon \neq 0$:

$$y_{j+1} = y_j = y_0$$

$$x_{j+1} = x_j + y_{j+1} = x_j + y_j = x_0 + jy_0 \quad \text{for } j \ge 0, \quad (1)$$

namely y_i is constant and x_i increases by y_0 .

• **PROPERTIES**:

A) SM is integrable for $\varepsilon = 0$, non-integrable for $\varepsilon \neq 0$:

$$y_{j+1} = y_j = y_0$$

$$x_{j+1} = x_j + y_{j+1} = x_j + y_j = x_0 + jy_0 \quad \text{for } j \ge 0, \quad (1)$$

namely y_j is constant and x_j increases by y_0 .

A1) Case $y_0 = 2\pi \frac{p}{q}$ with p, q integers $(q \neq 0)$. Then, on the line $y = y_0$:

$$x_1 = x_0 + 2\pi \frac{p}{q}, \quad x_2 = x_0 + 4\pi \frac{p}{q}, \dots, x_q = x_0 + 2\pi p = x_0$$
!!!

Therefore, the orbit is PERIODIC with period $2\pi q$ and the interval $[0, 2\pi)$ is spanned *p* times.

A2) Case $y_0 = 2\pi$ -irrational. Then, on the line $y = y_0$, the iterates of x_0 fill densely the line $y = y_0 \rightarrow$ QUASI-PERIODIC MOTIONS (KAM theory): the iterates never come back to the initial condition, but close as you wish after a sufficient number of iterations.

B) The mapping (1) is conservative, since the determinant of the corresponding Jacobian is equal to one; in fact, setting $f_x(x_j) \equiv \frac{\partial f(x_j)}{\partial x}$, the determinant of the Jacobian (1) is equal to

$$\det \begin{pmatrix} 1 & \varepsilon f_x(x_j) \\ 1 & 1 + \varepsilon f_x(x_j) \end{pmatrix} = 1.$$
⁽²⁾

B) The mapping (1) is conservative, since the determinant of the corresponding Jacobian is equal to one; in fact, setting $f_x(x_j) \equiv \frac{\partial f(x_j)}{\partial x}$, the determinant of the Jacobian (1) is equal to

$$\det \begin{pmatrix} 1 & \varepsilon f_x(x_j) \\ 1 & 1 + \varepsilon f_x(x_j) \end{pmatrix} = 1.$$
⁽²⁾

C) Fixed points are obtained by solving the equations

$$y_{j+1} = y_j$$

 $x_{j+1} = x_j;$

◊ from the first equation $y_{j+1} = y_j + εf(x_j) \Rightarrow f(x_j) = 0$; ◊ from the second equation $x_{j+1} = x_j + y_{j+1} \Rightarrow y_{j+1} = 0 = y_0$; ◊ if f(x) = sin x, fixed points are $(y_0, x_0) = (0, 0)$ and $(y_0, x_0) = (0, \pi)$. D) Linear stability is investigated by computing the first variation:

$$\begin{pmatrix} \delta y_{j+1} \\ \delta x_{j+1} \end{pmatrix} = \begin{pmatrix} 1 & \varepsilon f_x(x_0) \\ 1 & 1 + \varepsilon f_x(x_0) \end{pmatrix} \begin{pmatrix} \delta y_j \\ \delta x_j \end{pmatrix} .$$

The eigenvalues of the linearized system are determined by solving the characteristic equation ($f = \sin x$):

$$\lambda^2 - (2\pm\varepsilon)\lambda + 1 = 0 ,$$

with + for (0, 0) and - for $(0, \pi)$.

 \diamond One eigenvalue associated to (0,0) is greater than one \Rightarrow the fixed point is unstable.

 \diamond For $\varepsilon < 4$ the eigenvalues associated to $(0, \pi)$ are complex conjugate with real part less than one $\Rightarrow (0, \pi)$ is stable.

E) Twist property:

$$\frac{\partial x'}{\partial y} = 1 > 0$$

F) The standard map is generated by $F(x, x') = \frac{1}{2}(x' - x)^2 + \varepsilon \cos x$, so that

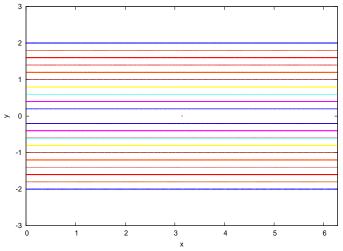
$$y = -\frac{\partial F}{\partial x}$$
, $y' = \frac{\partial F}{\partial x'}$.

G) The standard map can be obtained from a discrete Lagrangian variational principle. For any configuration sequence $\{..., x_{s-1}, x_s, x_{s+1}, ...\}$ define the discrete action as

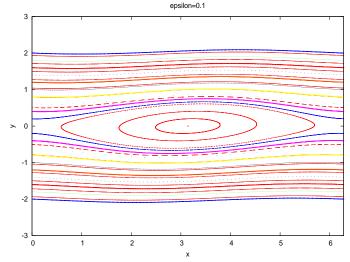
$$\mathcal{A}[..., x_{s-1}, x_s, x_{s+1}, ...] = \sum_s F(x_s, x_{s+1}) .$$

An orbit is a sequence which is a critical point of A, yielding the discrete Euler-Lagrange equation:

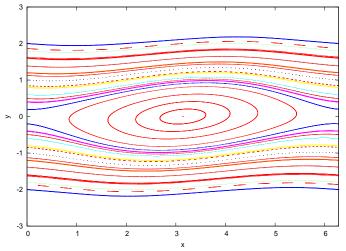
$$x_{s+1}-2x_s+x_{s-1}=\varepsilon\sin x\,.$$



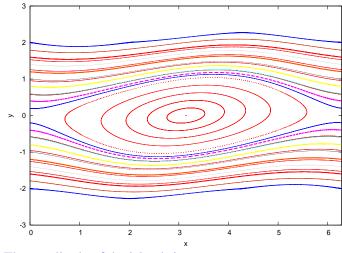
 $\varepsilon = 0$: the system is integrable, only quasi-periodic curves (lines), a stable equilibrium point at $(0, \pi)$ and an unstable at (0, 0).



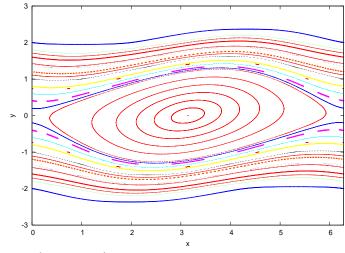
 $\varepsilon = 0.1$: switch on the perturbation, the system is non-integrable, the quasi-periodic (KAM) curves are distorted, the stable point $(0, \pi)$ is surrounded by elliptic islands.



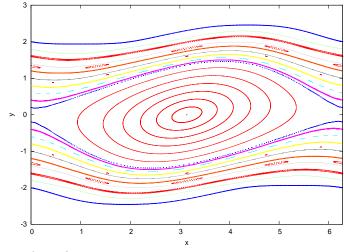
 $\varepsilon = 0.2$: increasing the perturbation, the amplitude of the islands increases.



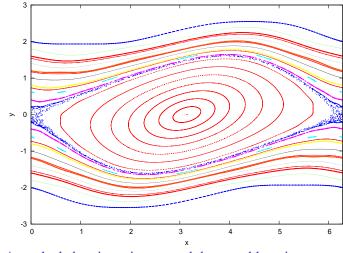
 $\varepsilon = 0.3$: The amplitude of the islands increases more.



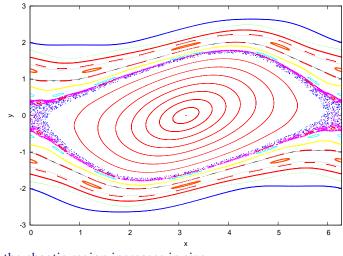
 $\varepsilon = 0.4$: ... and more... minor resonances appear.



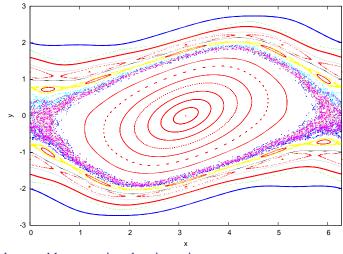
 $\varepsilon = 0.5$: ... other minor resonances.



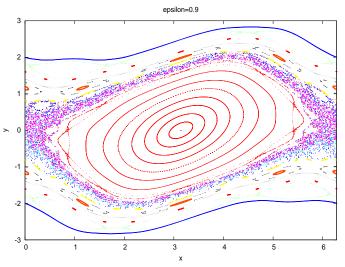
 $\varepsilon = 0.6$: A marked chaotic region around the unstable point.



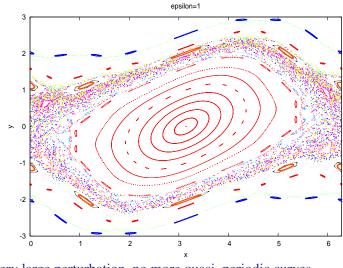
 $\varepsilon = 0.7$: the chaotic region increases in size...



 $\varepsilon = 0.8$: less and less rotational tori survive.



 $\varepsilon = 0.9$: for a large perturbation, a lot of chaos, a few quasi-periodic curves, islands around higher-order periodic orbits.



 $\varepsilon = 1$: very large perturbation, no more quasi-periodic curves.

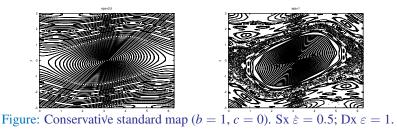
Figure: Conservative Chirikov standard map as ε varies.

Summary

 \diamond For $\varepsilon = 0$ one gets an *integrable* mapping, since the dynamics can be exactly solved: all motions are periodic or quasi-periodic. A *non-integrable* system occurs when $\varepsilon \neq 0$.

 \diamond For $\varepsilon \neq 0$ but sufficiently small, the quasi-periodic invariant curves are slightly displaced and deformed w.r.t. the integrable case. Periodic orbits are surrounded by *librational curves*.

 \diamond As ε increases the rotational curves are more and more deformed and distorted, while the librational curves increase their amplitude; chaotic motions start to appear and they fill an increasing region as ε grows. Close to criticality invariant tori leave place to *cantori*, which are still invariant sets, but they are graphs of a Cantor set.



1. Conservative Standard Map

2. Dissipative Standard Map

3. 4-dimensional standard map

4. Non-twist standard map

It is described by the equations (discrete analogue of the spin-orbit problem with tidal torque)

$$\begin{array}{ll} y' &=& \lambda y + \mu + \varepsilon \ g(x) & \qquad y \in \mathbb{R} \ , \ x \in \mathbb{T} \\ x' &=& x + y' \ , & \qquad \lambda, \mu, \varepsilon \in \mathbb{R} \ , \quad \varepsilon \geq 0 \ , \end{array}$$

 $0 < \lambda < 1$ dissipative parameter, $\mu = drift$ parameter.

It is described by the equations (discrete analogue of the spin-orbit problem with tidal torque)

$$\begin{array}{ll} y' &=& \lambda y + \mu + \varepsilon \; g(x) & \qquad y \in \mathbb{R} \; , \; x \in \mathbb{T} \\ x' &=& x + y' \; , & \qquad \lambda, \mu, \varepsilon \in \mathbb{R} \; , \quad \varepsilon \geq 0 \; , \end{array}$$

 $0 < \lambda < 1$ dissipative parameter, $\mu = drift$ parameter.

• PROPERTIES:

- $\lambda = 1, \mu = 0$ one recovers the conservative SM.
- $\lambda = 0$ one obtains the one-dimensional mapping $x' = x + \mu + \varepsilon g(x)$.
- $\lambda = 0$ and $\varepsilon = 0$ one obtains the circle map $x' = x + \mu$.
- $\lambda \neq 1$, dissipative, since the determinant of the Jacobian amounts to λ .

• The drift μ plays a very important role. In fact, consider $\varepsilon = 0$ and look for an invariant solution, such that

$$y' = y \quad \Rightarrow \quad \lambda y + \mu = y \quad \Rightarrow \quad y = \frac{\mu}{1 - \lambda}$$

If $\mu = 0$, then y = 0!

• This shows that for $\varepsilon = 0$ the trajectory $\{y = \frac{\mu}{1-\lambda}\} \times \mathbb{T}$ is invariant.

• The dynamics associated to the DSM admits attracting periodic orbits, invariant curve attractors as well as strange attractors, which have an intricate geometrical structure; introducing a suitable definition of dimension, the strange attractors are shown to have a non-integer dimension (namely a *fractal* dimension).

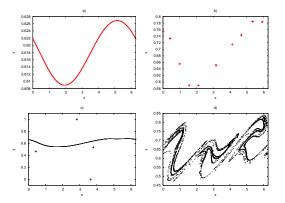


Figure: SMD attractors. *a*) Invariant attractor; *b*) periodic of period 10; *c*) invariant attractor coexisting with 0/1, 1/2, 1/1 periodic orbits; *d*) strange attractor.

• Basins of attraction for the coexisting case (500×500 random initial conditions with preliminary iterations).

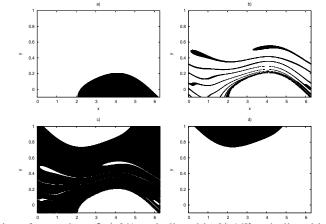


Figure: Basins of attraction of *a*) 0/1 periodic orbit; *b*) 1/2 periodic orbit; *c*) quasi-periodic attractor; *d*) 1/1 periodic orbit.

Figure: Dissipative standard map as ε varies for $\lambda = 0.8$.

- 1. Conservative Standard Map
- 2. Dissipative Standard Map
- 3. 4-dimensional standard map
- 4. Non-twist standard map

• An extension of the standard map to study higher dimensional systems is the 4-dimensional standard map:

$$\begin{aligned} y'_1 &= y_1 + \varepsilon \, \left(g_1(x_1) + \eta \, r_1(x_1, x_2) \right) \\ x'_1 &= x_1 + y'_1 \\ y'_2 &= y_2 + \varepsilon \, \left(g_2(x_1) + \eta \, r_2(x_1, x_2) \right) \\ x'_2 &= x_2 + y'_2 \,. \end{aligned}$$

When the coupling parameter η = 0, we have 2 uncoupled standard maps.
When η ≠ 0, we have coupled equations.

- 1. Conservative Standard Map
- 2. Dissipative Standard Map
- 3. 4-dimensional standard map
- 4. Non-twist standard map

• An extension of the standard map to non-twist maps was introduced by del-Castillo-Negrete and Morrison

$$y' = y + \varepsilon \sin(x)$$

$$x' = x + a(1 - y'^2)$$

for $a \in \mathbb{R}$. The map is area-preserving, but violates the twist condition:

$$\frac{\partial x'}{\partial y} = -2a(y + \varepsilon \sin x) = 0$$

along the curve $y = -\varepsilon \sin x$.