Perturbation theory, KAM theory and Celestial Mechanics 5. An example and resonant perturbation theory

Alessandra Celletti

Department of Mathematics University of Roma "Tor Vergata"

Sevilla, 25-27 January 2016

Outline

1. Example of classical perturbation theory

2. Resonant perturbation theory

3. Example of resonant perturbation theory

Outline

1. Example of classical perturbation theory

2. Resonant perturbation theory

3. Example of resonant perturbation theory

Example of classical perturbation theory

• We apply classical perturbation theory to the two–dimensional Hamiltonian function

$$\mathcal{H}(I_1, I_2, \varphi_1, \varphi_2) = \frac{I_1^2}{2} + \frac{I_2^2}{2} + \varepsilon \Big[\cos(\varphi_1 + \varphi_2) + 2\cos(\varphi_1 - \varphi_2)\Big],$$

which can be shortly written as

$$\mathcal{H}(I_1, I_2, \varphi_1, \varphi_2) = h(I_1, I_2) + \varepsilon f(\varphi_1, \varphi_2), \tag{1}$$

where

$$h(I_1, I_2) = \frac{I_1^2}{2} + \frac{I_2^2}{2}$$

and

$$f(\varphi_1, \varphi_2) = \cos(\varphi_1 + \varphi_2) + 2\cos(\varphi_1 - \varphi_2).$$

- We implement constructively the proof of the Theorem: look for a generating function, expand in Taylor series, solve the normal form equation, expand in Fourier series, determine the solution.
- Look for a change of coordinates with unknown Φ :

$$I_{1} = I'_{1} + \varepsilon \frac{\partial \Phi}{\partial \varphi_{1}} (I'_{1}, I'_{2}, \varphi_{1}, \varphi_{2})$$

$$I_{2} = I'_{2} + \varepsilon \frac{\partial \Phi}{\partial \varphi_{2}} (I'_{1}, I'_{2}, \varphi_{1}, \varphi_{2})$$

$$\varphi'_{1} = \varphi_{1} + \varepsilon \frac{\partial \Phi}{\partial I'_{1}} (I'_{1}, I'_{2}, \varphi_{1}, \varphi_{2})$$

$$\varphi'_{2} = \varphi_{2} + \varepsilon \frac{\partial \Phi}{\partial I'_{2}} (I'_{1}, I'_{2}, \varphi_{1}, \varphi_{2}).$$

• Expanding the Hamiltonian (1) in Taylor series up to the second order:

$$\begin{split} &h(I_1' + \varepsilon \frac{\partial \Phi}{\partial \varphi_1}, I_2' + \varepsilon \frac{\partial \Phi}{\partial \varphi_2}) + \varepsilon f(\varphi_1, \varphi_2) \\ &= h(I_1', I_2') + \varepsilon \frac{\partial h}{\partial I_1} (I_1', I_2') \frac{\partial \Phi}{\partial \varphi_1} + \varepsilon \frac{\partial h}{\partial I_2} (I_1', I_2') \frac{\partial \Phi}{\partial \varphi_2} + \varepsilon f(\varphi_1, \varphi_2) + O(\varepsilon^2) \;, \end{split}$$

where

$$\frac{\partial h}{\partial I_1}(I_1', I_2') = I_1' \equiv \omega_1(I_1') , \qquad \frac{\partial h}{\partial I_2}(I_1', I_2') = I_2' \equiv \omega_2(I_2') ,$$

which means that the frequencies coincide with the actions.

• Note that in our case the average of f is zero and therefore:

$$\widetilde{f}(I_1',I_2',\varphi_1,\varphi_2)=f(\varphi_1,\varphi_2)$$
.

 \bullet The first order terms in ε must be zero; this yields the generating function as the solution of the equation

$$\omega_1 \frac{\partial \Phi}{\partial \varphi_1} + \omega_2 \frac{\partial \Phi}{\partial \varphi_2} = -f(\varphi_1, \varphi_2) .$$

• Expand Φ in Fourier series:

$$\Phi(I'_1, I'_2, \varphi_1, \varphi_2) = \sum_{m,n} \Phi_{m,n}(I'_1, I'_2) e^{i(m\varphi_1 + n\varphi_2)}.$$

Therefore:

$$\frac{\partial \Phi(I_1',I_2',\varphi_1,\varphi_2)}{\partial \varphi_1} = \sum_{m,n} i \, m \, \Phi_{m,n}(I_1',I_2') e^{i(m\varphi_1 + n\varphi_2)} \,,$$

and

$$\frac{\partial \Phi(I_1',I_2',\varphi_1,\varphi_2)}{\partial \varphi_2} = \sum_{m,n} i \, n \, \Phi_{m,n}(I_1',I_2') e^{i(m\varphi_1 + n\varphi_2)} \, .$$

• Take into account the explicit form of the perturbation:

$$\sum_{m,n} i(\omega_1 m + \omega_2 n) \Phi_{m,n}(I_1', I_2') e^{i(m\varphi_1 + n\varphi_2)} = -\left[\cos(\varphi_1 + \varphi_2) + 2\cos(\varphi_1 - \varphi_2)\right].$$

• Use the relations

$$\cos(\varphi_{1} + \varphi_{2}) = \frac{1}{2} \left(e^{i(\varphi_{1} + \varphi_{2})} + e^{-i(\varphi_{1} + \varphi_{2})} \right)$$
$$\cos(\varphi_{1} - \varphi_{2}) = \frac{1}{2} \left(e^{i(\varphi_{1} - \varphi_{2})} + e^{-i(\varphi_{1} - \varphi_{2})} \right),$$

so that we have:

$$\begin{split} & \sum_{m,n} i(\omega_1 m + \omega_2 n) \Phi_{m,n}(I_1', I_2') e^{i(m\varphi_1 + n\varphi_2)} = \\ & = -\left[\frac{1}{2} (e^{i(\varphi_1 + \varphi_2)} + e^{-i(\varphi_1 + \varphi_2)}) + e^{i(\varphi_1 - \varphi_2)} + e^{-i(\varphi_1 - \varphi_2)}\right]. \end{split}$$

• Again:

$$\begin{split} & \sum_{m,n} i(\omega_1 m + \omega_2 n) \Phi_{m,n}(I_1', I_2') e^{i(m\varphi_1 + n\varphi_2)} = \\ & = & - \left[\frac{1}{2} (e^{i(\varphi_1 + \varphi_2)} + e^{-i(\varphi_1 + \varphi_2)}) + e^{i(\varphi_1 - \varphi_2)} + e^{-i(\varphi_1 - \varphi_2)} \right]. \end{split}$$

• Equating the coefficients with the same Fourier indexes, one gets:

$$\begin{split} \Phi_{1,1} &= -\frac{1}{2i(\omega_1 + \omega_2)} \,, \qquad & \Phi_{-1,-1} = \frac{1}{2i(\omega_1 + \omega_2)} \,, \\ \Phi_{1,-1} &= -\frac{1}{i(\omega_1 - \omega_2)} \,, \qquad & \Phi_{-1,1} = -\frac{1}{i(-\omega_1 + \omega_2)} \,. \end{split}$$

• Casting together the above terms, the generating function is given by

$$\Phi(I'_1, I'_2, \varphi_1, \varphi_2) = -\frac{1}{\omega_1 + \omega_2} \left(\frac{e^{i(\varphi_1 + \varphi_2)} - e^{-i(\varphi_1 + \varphi_2)}}{2i} \right) \\
- \frac{2}{\omega_1 - \omega_2} \left(\frac{e^{i(\varphi_1 - \varphi_2)} - e^{-i(\varphi_1 - \varphi_2)}}{2i} \right),$$

namely

$$\Phi(I_1', I_2', \varphi_1, \varphi_2) = -\frac{1}{\omega_1 + \omega_2} \sin(\varphi_1 + \varphi_2) - \frac{2}{\omega_1 - \omega_2} \sin(\varphi_1 - \varphi_2).$$

• The generating function is not defined when there appear these zero divisors:

$$\omega_1 \pm \omega_2 = 0$$
, namely $I'_1 = \pm I'_2$.

• The new unperturbed Hamiltonian coincides with the old one (in the new set of variables), since the average of the perturbing function is zero:

$$h'(I_1', I_2') = \frac{I_1'^2}{2} + \frac{I_2'^2}{2}$$
.

Outline

1. Example of classical perturbation theory

2. Resonant perturbation theory

3. Example of resonant perturbation theory

Resonant perturbation theory

• Consider the following Hamiltonian system with *n* degrees of freedom

$$\mathcal{H}(\underline{I},\underline{\varphi}) = h(\underline{I}) + \varepsilon f(\underline{I},\underline{\varphi}) , \qquad \underline{I} \in \mathbb{R}^n , \ \underline{\varphi} \in \mathbb{T}^n$$

and let $\underline{\omega}(\underline{I}) = \frac{\partial h(\underline{I})}{\partial \underline{I}}$ be the frequency vector of the motion.

• We assume that the frequency vector satisfies ℓ resonance relations, with $\ell < n$, of the form

$$\underline{\omega} \cdot \underline{m}_k = 0$$
 for $k = 1, ..., \ell$,

for some vectors $\underline{m}_1, ..., \underline{m}_{\ell} \in \mathbb{Z}^n$.

Resonant perturbation theory

• Consider the following Hamiltonian system with *n* degrees of freedom

$$\mathcal{H}(\underline{I},\underline{\varphi}) = h(\underline{I}) + \varepsilon f(\underline{I},\underline{\varphi}) , \qquad \underline{I} \in \mathbb{R}^n , \ \underline{\varphi} \in \mathbb{T}^n$$

and let $\underline{\omega}(\underline{I}) = \frac{\partial h(\underline{I})}{\partial \underline{I}}$ be the frequency vector of the motion.

• We assume that the frequency vector satisfies ℓ resonance relations, with $\ell < n$, of the form

$$\underline{\omega} \cdot \underline{m}_k = 0$$
 for $k = 1, ..., \ell$,

for some vectors $\underline{m}_1, ..., \underline{m}_{\ell} \in \mathbb{Z}^n$.

• Example: $\underline{\omega} = (1, 2, 3)$, then we have:

$$\underline{\omega} \cdot (11, -4, -1) = 11 - 8 - 3 = 0$$

 $\underline{\omega} \cdot (3, 0, -1) = 3 - 3 = 0$
 $\underline{\omega} \cdot (16, -5, -2) = 16 - 10 - 6 = 0$.

- A resonant perturbation theory can be implemented to eliminate the non–resonant terms.
- The aim is to construct a change of variables $\mathcal{C}: (\underline{I}, \underline{\varphi}) \to (\underline{I}', \underline{\varphi}')$, such that the new Hamiltonian takes the form

$$\mathcal{H}'(\underline{I}',\underline{\varphi}') = h'(\underline{I}',\underline{m}_1 \cdot \underline{\varphi}',...,\underline{m}_{\ell} \cdot \underline{\varphi}') + \varepsilon^2 f'(\underline{I}',\underline{\varphi}'), \qquad (2)$$

where h' depends on $\underline{\varphi}'$ only through the combinations $\underline{m}_k \cdot \underline{\varphi}'$ with $k = 1, ..., \ell$.

• Notice that the combinations $\underline{m}_k \cdot \varphi$ are slow:

$$\frac{d}{dt}(\underline{m}_k \cdot \underline{\varphi}) = \underline{m}_k \cdot \underline{\omega} = 0$$

and the rate of variation of $\underline{m}_k \cdot \varphi'$ will be small.

• Let us first define the angles

$$\begin{array}{rcl} \vartheta_{j} & = & \underline{m}_{j} \cdot \underline{\varphi} \;, & j = 1, ..., \ell \\ \vartheta_{j'} & = & \underline{m}_{j'} \cdot \underline{\varphi} \;, & j' = \ell + 1, ..., n \;, \end{array}$$

where the first ℓ angle variables are the resonant angles, while the latter $n-\ell$ angles are defined as arbitrary linear combinations with integer coefficients $\underline{m}_{j'}$.

• The corresponding actions are defined as

$$I_j = \underline{m}_j \cdot \underline{J}, \qquad j = 1, ..., \ell$$

 $I_{j'} = \underline{m}_{j'} \cdot \underline{J}, \qquad j' = \ell + 1, ..., n.$

• Next we construct a canonical transformation which removes (to higher orders) the dependence on the short–period angles $(\vartheta_{\ell+1},...,\vartheta_n)$, while the lowest order Hamiltonian will necessarily depend upon the resonant angles.

 \bullet To this end, let us first decompose the perturbation, expressed in terms of the variables $(\underline{J},\underline{\vartheta})$, as

$$f(\underline{J},\underline{\vartheta}) = \overline{f}(\underline{J}) + f_r(\underline{J},\vartheta_1,...,\vartheta_\ell) + f_n(\underline{J},\underline{\vartheta}), \qquad (3)$$

 $\overline{f}(\underline{J})$ is the average of the perturbation over the angles, $f_r(\underline{J},\vartheta_1,...,\vartheta_\ell)$ is the part depending on the resonant angles, $f_n(\underline{J},\underline{\vartheta})$ is the non–resonant part.

• Example: assume that

$$f(\underline{J},\underline{\vartheta}) = J_1^2 + J_2^3 + J_1 \cos(\vartheta_1 - \vartheta_2) + J_1 J_2^2 \cos(2\vartheta_1 + 3\vartheta_2) .$$

Assume that the resonance relation is:

$$\omega_1 - \omega_2 = 0$$
.

Then, we have:

$$\bar{f}(\underline{J}) = J_1^2 + J_2^3
f_r(J_1, J_2, \vartheta_1 \vartheta_2) = J_1 \cos(\vartheta_1 - \vartheta_2)
f_n(J_1, J_2, \vartheta_1 \vartheta_2) = J_1 J_2^2 \cos(2\vartheta_1 + 3\vartheta_2).$$

• In analogy to classical perturbation theory, we implement a canonical transformation of the form

$$\underline{J} = \underline{J}' + \varepsilon \frac{\partial \Phi(\underline{J}', \underline{\vartheta})}{\partial \underline{\vartheta}}
\underline{\vartheta}' = \underline{\vartheta} + \varepsilon \frac{\partial \Phi(\underline{J}', \underline{\vartheta})}{\partial \underline{J}'},$$
(4)

such that the new Hamiltonian is

$$\mathcal{H}'(\underline{J}',\underline{\vartheta}') = h'(\underline{J}',\underline{m}_1 \cdot \underline{\vartheta}',...,\underline{m}_{\ell} \cdot \underline{\vartheta}') + \varepsilon^2 f'(\underline{J}',\underline{\vartheta}').$$

• Using the decomposition of f and expanding up to 2^{nd} order in ε , one obtains:

$$h(\underline{J}' + \varepsilon \frac{\partial \Phi}{\partial \underline{\vartheta}}) + \varepsilon f(\underline{J}', \underline{\vartheta}) + O(\varepsilon^{2})$$

$$= h(\underline{J}') + \varepsilon \sum_{k=1}^{n} \frac{\partial h}{\partial J_{k}} \frac{\partial \Phi}{\partial \vartheta_{k}} + \varepsilon \overline{f}(\underline{J}') + \varepsilon f_{r}(\underline{J}', \vartheta_{1}, ..., \vartheta_{\ell}) + \varepsilon f_{n}(\underline{J}', \underline{\vartheta}) + O(\varepsilon^{2}).$$

• We obtain the desired results

$$h'(\underline{J}', \vartheta_1, ..., \vartheta_\ell) = h(\underline{J}') + \varepsilon \overline{f}(\underline{J}') + \varepsilon f_r(\underline{J}', \vartheta_1, ..., \vartheta_\ell) , \qquad (5)$$

provided

$$\sum_{k=1}^{n} \Omega_k \frac{\partial \Phi}{\partial \vartheta_k} = -f_n(\underline{J}', \underline{\vartheta}) , \qquad (6)$$

where $\Omega_k = \Omega_k(\underline{J}') \equiv \frac{\partial h(\underline{J}')}{\partial J_k}$.

- The solution of (6) gives the generating function allowing to reduce the Hamiltonian to the required form; moreover, the conjugated action variables, say $J'_{\ell+1}$, ..., J'_n , are constants of the motion up to 2^{nd} order in ε , since (5) does not depend on $\vartheta_{\ell+1}$, ..., ϑ_n .
- Notice that using the new frequencies Ω_k , the resonant relations take the form $\Omega_k = 0$ for $k = 1, ..., \ell$.

Outline

1. Example of classical perturbation theory

2. Resonant perturbation theory

3. Example of resonant perturbation theory

Example of resonant perturbation theory

• As an application of resonant perturbation theory we consider the three–body problem Hamiltonian

$$\mathcal{H}(L,G,\ell,g) = -\frac{\mu^2}{2L^2} + \varepsilon R(L,G,\ell,g) , \qquad (7)$$

with the perturbing function expanded as

$$R = R_{00}(L,G) + R_{10}(L,G)\cos\ell + R_{11}(L,G)\cos(\ell+g) + R_{12}(L,G)\cos(\ell+2g) + R_{22}(L,G)\cos(2\ell+2g) + R_{32}(L,G)\cos(3\ell+2g) + R_{33}(L,G)\cos(3\ell+3g) + R_{44}(L,G)\cos(4\ell+4g) + R_{55}(L,G)\cos(5\ell+5g) + \dots,$$
(8)

for some coefficients R_{ij} .

• Let $\underline{\omega} \equiv (\omega_{\ell}, \omega_g)$ be the frequency of motion; we assume that the following resonance relation is satisfied:

$$\omega_{\ell} + 2\omega_{g} = 0.$$

• We perform the canonical change of variables

$$\vartheta_1 = \ell + 2g,$$
 $J_1 = \frac{1}{2}G,$
 $\vartheta_2 = 2\ell,$
 $J_2 = \frac{1}{2}L - \frac{1}{4}G.$

• In the new coordinates the unperturbed Hamiltonian takes the form

$$h(\underline{J}) \equiv -\frac{\mu^2}{2(J_1 + 2J_2)^2} - 2J_1 .$$

• The perturbing function is given by

$$\begin{split} R(J_1,J_2,\vartheta_1,\vartheta_2) & \equiv R_{00}(\underline{J}) + R_{10}(\underline{J})\cos(\frac{1}{2}\vartheta_2) + R_{11}(\underline{J})\cos(\frac{1}{2}\vartheta_1 + \frac{1}{4}\vartheta_2) \\ & + R_{12}(\underline{J})\cos(\vartheta_1) + R_{22}(\underline{J})\cos(\vartheta_1 + \frac{1}{2}\vartheta_2) \\ & + R_{32}(\underline{J})\cos(\vartheta_1 + \vartheta_2) + R_{33}(\underline{J})\cos(\frac{3}{2}\vartheta_1 + \frac{3}{4}\vartheta_2) \\ & + R_{44}(\underline{J})\cos(2\vartheta_1 + \vartheta_2) + R_{55}(\underline{J})\cos(\frac{5}{2}\vartheta_1 + \frac{5}{4}\vartheta_2) + \dots \end{split}$$

Let us split the perturbation as

$$R = \overline{R}(\underline{J}) + R_r(\underline{J}, \vartheta_1) + R_n(\underline{J}, \underline{\vartheta}) ,$$

where

 $\overline{R}(\underline{J})$ is the average over the angles,

 $R_r(\underline{J}, \vartheta_1) = R_{12}(\underline{J})\cos(\vartheta_1)$ is the resonant part,

 R_n contains all the remaining non–resonant terms.

• We look for a change of coordinates close to the identity with generating function $\Phi = \Phi(\underline{J}', \underline{\vartheta})$ such that

$$\underline{\Omega}(\underline{J}') \cdot \frac{\partial \Phi(\underline{J}', \underline{\vartheta})}{\partial \vartheta} = -R_n(\underline{J}', \underline{\vartheta}) ,$$

being $\underline{\Omega}(\underline{J}') \equiv \frac{\partial h(\underline{J}')}{\partial \underline{J}}$.

• The above expression is well defined since $\underline{\Omega}$ is non–resonant for the Fourier components appearing in R_n . Finally, the new unperturbed Hamiltonian is given by

$$h'(\underline{J}',\vartheta_1) \equiv h(\underline{J}') + \varepsilon R_{00}(\underline{J}') + \varepsilon R_{12}(\underline{J}')\cos(\vartheta_1).$$