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1. Example of classical perturbation theory
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Example of classical perturbation theory

e We apply classical perturbation theory to the two—dimensional Hamiltonian
function

2

P
H(I1, I, 01,02) = 51 + 52 + e cos(p) + 2) +2cos(e1 — 2)|

which can be shortly written as

H(, L, o1,92) = h(l, L) +<f (01, 92), (1)
where 5 5
1 I
hl,b)=2++2
(I, 1) > + 5
and

f(@1,02) = cos(p1 + ¢2) + 2cos(p1 — ¢2).
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e We implement constructively the proof of the Theorem: look for a
generating function, expand in Taylor series, solve the normal form equation,
expand in Fourier series, determine the solution.

e Look for a change of coordinates with unknown ®:

0P

L = I+ 11,15, 01,

I €a¢( 35 %1, 92)
0o

L = I+ 0, o1,

2 2 Eagp(l 2 @1, 92)
0P

oy = w1+€al,(i,1£,<p1,<pz)

0P
Y2 = p2+¢€ /(1171£7Q017§02)'
oI,
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e Expanding the Hamiltonian (1) in Taylor series up to the second order:

0P
op1’

= h(1/712)+€

&i) + &f (01, ¥2)

oh oo Oh 0o
10— 4+ e——(11,15) —
81 ( )890] +5812<17 2)8@2

h(Il +e— Iz+

+ef(pr1p2) + 0(),

where

Oh Oh

al, — (I}, 5) =1 = wi () , oL —(I}, 1) =1 = w (D) ,

which means that the frequencies coincide with the actions.

e Note that in our case the average of f is zero and therefore:

LB, o1, 92) = Flet1,92) -
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e The first order terms in € must be zero; this yields the generating function as
the solution of the equation

oo N o £ )
8901 8@2 P e
e Expand ® in Fourier series:
DI, 01, 02) = D B I, 1)1 747

m,n

Therefore:
od(I;, 1, 2)
(1 62 P, P E:lm Oyl 1)e z(m<p1+n<pz)
and oD (1!, I )
1512, ¥P1,¥2 o . 1 g i(me+ngs)
— o I 1 p1Tne; .
Dn § n M,n( 1 1h)e

m,n

A. Celletti (Univ. Roma Tor Vergata) Perturbation theory, KAM theory and Celestial Sevilla, 25-27 January 2016



e Take into account the explicit form of the perturbation:

Zi(wlm—l—wzn)(I)m,n(I{,Ié)ei(m¢1+”“"2) =— [cos(gpl—i—«pz)—l—z cos(gol—gpz)] :

m,n

e Use the relations

cos(p1 +¢2) = (ei(‘p1+‘/’2) + e_i(<P1+<P2))

cos(p1 —@2) =

N = N =

(ei(sm—soz) + e—i(tpl—sﬂz)) ’

so that we have:

D il + wan) (1, 1))

m,n

_ [l(ei(wwz) Ferilorten) 4 giaima) 4 gmitae)]
2
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e Again:

S il + wan) B (1, B 1) =

m,n

. [l(ei(wm) Femilorten) 4 giloi—e) 4 e—i(wn—soz)] .
2

e Equating the coefficients with the same Fourier indexes, one gets:

1 1
(0] = —-—— 4, 41 =—
L1 2i(w) + wy) ' 1= 2i(w) + wy) '
1 1
(I)l -1 = — > @,11 =~
i(w; — w) '
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e Casting together the above terms, the generating function is given by

- 1 eileriter) _ p—ile1te2)
2 elle1=p2) _ p—ile1—¢2)
W —w ( 2i ) ’
namely
Bl 1y o1, p2) = ————sinlipr +p2) — ———sin(ipy — ).
w1 + wr W) — w2

e The generating function is not defined when there appear these zero divisors:
wi twy =0, namely I} = +I}.

e The new unperturbed Hamiltonian coincides with the old one (in the new set
of variables), since the average of the perturbing function is zero:

1/2 II2
W) =L 42
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2. Resonant perturbation theory
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Resonant perturbation theory

e Consider the following Hamiltonian system with n degrees of freedom

H(L, ) = h(I) +¢f (L, p) , IeR", peT"
and let w(l) = 8’5—(11) be the frequency vector of the motion.

e We assume that the frequency vector satisfies £ resonance relations, with
{ < n, of the form
w-my, =0 fork=1,....0,

for some vectors m, ..., m, € Z".
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Resonant perturbation theory

e Consider the following Hamiltonian system with n degrees of freedom

H(L, ) = h(I) +¢f (L, p) , IeR", peT"

and let w(l) = 8’5—(11) be the frequency vector of the motion.

e We assume that the frequency vector satisfies £ resonance relations, with

{ < n, of the form
w-my, =0 fork=1,....¢,

for some vectors m, ..., m, € Z".
e Example: w = (1,2, 3), then we have:
w-(11,-4,-1) = 11-8-3=0

w-(3,0,—1) = 3-3=0
w-(16,-5,-2) = 16—10—6=0.
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e A resonant perturbation theory can be implemented to eliminate the
non-resonant terms.

e The aim is to construct a change of variables C : (I, ¢) — (I, ), such that
the new Hamiltonian takes the form - B

H I, ) =W m ¢ \smy- )+ (I, 2)

where /' depends on ¢ only through the combinations m, - ¢’ with
k=1,...0
e Notice that the combinations nz; - ¢ are slow:

d

E(mk‘f):ﬂk‘gzo

and the rate of variation of n; - ¢’ will be small.
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e Let us first define the angles

9, =

19]'/ = m]/

j=1,..¢
j=0+1,..,n,

=

.f’
.E,

where the first ¢ angle variables are the resonant angles, while the latter n — ¢
angles are defined as arbitrary linear combinations with integer coefficients
my.

e The corresponding actions are defined as

Ij = m,l, J:1>7€

L = my-J, j=04+1,..,n.
e Next we construct a canonical transformation which removes (to higher

orders) the dependence on the short—period angles (Y41, ..., J,), while the
lowest order Hamiltonian will necessarily depend upon the resonant angles.
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e To this end, let us first decompose the perturbation, expressed in terms of
the variables (/, ), as

f(L0) =f(J) +£:(L, 01, ... 90) + ful, D) 3)

f(J) is the average of the perturbation over the angles,
fr(J, 91, ..., 9¢) is the part depending on the resonant angles,
fa(J,¥) is the non-resonant part.

e Example: assume that
F(J,0) = JF +J5 4+ Jy cos(¥) — 92) + J1J3 cos (201 + 30,) .
Assume that the resonance relation is:
w; —wr =0.
Then, we have:
) = J+75
(1,02, 0102) = Jycos(¥) — )
fulJ1,J2,0102) = J1J3 cos(291 + 309,) .
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e In analogy to classical perturbation theory, we implement a canonical
transformation of the form

a(J',9)
_ / Ly 2
J = l+573ﬁ
oD(J',0)
! LABRS
v = Q+5781, ; “4)

such that the new Hamiltonian is

H/(llaﬁ/) - h/(l/)m] : ﬁ/7 7@6 : ﬁ/) + ng/(lluﬁ/) .

e Using the decomposition of f and expanding up to 2" order in ¢, one
obtains:

W+ 50 + o (U 0) + O)

"\ Oh 0B
= W) +e) ETA ef () + efr(I, 01, 00) + efu(L, 0) + O(7) .
k=1
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e We obtain the desired results

W01, 00) = h(J') +ef (L) + efe (L, 01,0, 00) ®)
provided
SNSRGL:
S o =—f(I,0), 6)
— " 0y

where Q = Qi (J) = 81;(11).

e The solution of (6) gives the generating function allowing to reduce the
Hamiltonian to the required form; moreover, the conjugated action variables,
say J)., |, .... J, are constants of the motion up to 2" order in €, since (5) does

not depend on ¥y 1, ..., V.

e Notice that using the new frequencies €2, the resonant relations take the
form  =0fork =1, ..., 7.
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3. Example of resonant perturbation theory
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Example of resonant perturbation theory

e As an application of resonant perturbation theory we consider the
three—body problem Hamiltonian

2
H(L.G.Lig) = —315 +R(L.G.L.g). ™

with the perturbing function expanded as

R = Ru(L,G)+ Ryo(L,G)cosl + Ry (L,G)cos(f + g)
+ Ri2(L,G)cos({+2g) + Rxn(L,G)cos(2( + 2g)
+ Rx(L,G)cos(30+2g) + Rs3(L,G) cos(3¢ + 3g)
+ Ru(L,G)cos(4¢ +4g) + Rss(L,G)cos(50+5¢) + ...,  (8)

for some coefficients R;;.
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e Let w = (wy, wy) be the frequency of motion; we assume that the following

resonance relation is satisfied:
we+ 2w, =0.

e We perform the canonical change of variables

1
v = (+2g, J1:§G7
1 1
v, = 2 Jp==-L—--G.
2 3 2 D) 4

e In the new coordinates the unperturbed Hamiltonian takes the form

20/22
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e The perturbing function is given by

R(J17J27ﬂ17192) =

_I_

_l’_

1 1 1
Roo(J) + Rio(J) cos(502) + Ri1(J) cos(5 01 +  2)
1
Ri2(J) cos(¥y) + Rap(J) cos(Vy + 2192)
3 3
R32( )COS(Q91 + 192) —{—R33( )COS(2191 + 192)

Rya(J) cos(291 + ¥2) + Rss(J )cos( I + 192)

e Let us split the perturbation as

R=R(J)+R.(J,91) +Ru(], V),

where

R(J) is the average over the angles,
R,(J,91) = Ri2(J) cos(¥)) is the resonant part,
R, contains all the remaining non—-resonant terms.
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e We look for a change of coordinates close to the identity with generating
function ® = ®(J', ¥) such that

!/
o) LD - ),

being (/') = 24

e The above expression is well defined since {2 is non-resonant for the
Fourier components appearing in R,,. Finally, the new unperturbed
Hamiltonian is given by

W(J' 01) = h(J') + eRoo(J') + eR12(J) cos(Vy) .

22/22
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