Perturbation theory, KAM theory and Celestial Mechanics 6. Two models of Celestial Mechanics

Alessandra Celletti
Department of Mathematics
University of Roma "Tor Vergata"

Sevilla, 25-27 January 2016

Outline

1. Rotational dynamics

2. Conservative/Dissipative spin-orbit problem

2.1 Conservative spin-orbit problem
2.2 Dissipative spin-orbit problem
3. Delaunay action-angle variables

4. Mean, eccentric anomaly and Kepler's equation

5. The restricted three-body problem

Outline

1. Rotational dynamics
2. Conservative/Dissipative spin-orbit problem
2.1 Conservative spin-orbit problem
2.2 Dissipative spin-orbit problem
3. Delaunay action-angle variables
4. Mean, eccentric anomaly and Kepler's equation
5. The restricted three-body problem

Rotational dynamics

- Rotational dynamics: different shapes

From round bodies (Moon, Mercury), to irregular bodies (Hyperion), to dumbbell satellite (4179 Toutatis, 216 Kleopatra)

- The Moon always points the same face to the Earth. All evolved satellites of the Solar System always point the same hemisphere to the host planet.
- Mars: Phobos, Deimos. Jupiter: Io, Europa, Ganimede, Callisto. Saturn: Titan, Rhea, Enceladus, Dione. Uranus: Ariel, Umbriel, Titania. Neptune: Triton, Proteus. Pluto: Charon.
- Only exception: Mercury in a 3:2 spin-orbit resonance.

Moon: 1:1 (1 rotation $=1$ revolution), Mercury $3: 2$ spin-orbit resonance (3 rotations $=2$ revolutions).

Rotational dynamics: consequences of its study

- Moon: physical librations due to earth tides, study of the internal composition (SMART 1)
- Mercury: study of the gravitational field, the variation of obliquity and libration provide constraints on the internal structure of the planet, such as the existence of a solid surface and a liquid core, thus provoking a dynamo effect responsible of Mercury's magnetic field (BepiColombo)
- Europa: mass distribution, rotation eventually compatible with a liquid ocean which could explain the tectonics (Voyager - Galileo)
- Enceladus: resonance conditions can be responsible of the heat excess and surface geysers
- Hyperion: example of chaotic rotation (in orbital resonance with Titan)
- Titan: an anomalous obliquity might be due to an internal ocean
(Cassini-Huygens)

Outline

1. Rotational dynamics

2. Conservative/Dissipative spin-orbit problem
2.1 Conservative spin-orbit problem
2.2 Dissipative spin-orbit problem
3. Delaunay action-angle variables

4. Mean, eccentric anomaly and Kepler's equation

5. The restricted three-body problem

Conservative/Dissipative spin-orbit problem

- Model: satellite \mathcal{S}, ellipsoid rotating about an internal spin-axis and revolving around a central body \mathcal{P} :
(i) S moves on a Keplerian orbit;
(ii) the spin-axis coincides with the smallest physical axis (principal rotation);
(iii) the spin-axis is perpendicular to the orbital plane (zero obliquity);
(iv) dissipative forces: tidal torque \mathcal{T} depending linearly on the angular velocity of rotation.

Conservative/Dissipative spin-orbit problem

- Model: satellite \mathcal{S}, ellipsoid rotating about an internal spin-axis and revolving around a central body \mathcal{P} :
(i) S moves on a Keplerian orbit;
(ii) the spin-axis coincides with the smallest physical axis (principal rotation);
(iii) the spin-axis is perpendicular to the orbital plane (zero obliquity);
(iv) dissipative forces: tidal torque \mathcal{T} depending linearly on the angular velocity of rotation.

- Notation:

$A<B<C$ principal moments of inertia; $n=\frac{2 \pi}{T_{r v v}} \equiv 1$ mean motion; a semimajor axis; e eccentricity; r orbital radius; f true anomaly; x angle between pericenter line and major axis of the ellipsoid.

Conservative spin-orbit problem

- Neglecting the dissipation:

$$
\begin{equation*}
\ddot{x}+\frac{3}{2} \frac{B-A}{C}\left(\frac{a}{r}\right)^{3} \sin (2 x-2 f)=0 . \tag{1}
\end{equation*}
$$

$$
\ddot{x}+\frac{3}{2} \frac{B-A}{C}\left(\frac{a}{r}\right)^{3} \sin (2 x-2 f)=0 .
$$

(i) $\varepsilon \equiv \frac{3}{2} \frac{B-A}{C}$ perturbing parameter; Moon-Mercury: $\varepsilon \simeq 10^{-4}$; if $\varepsilon=0$ the system is integrable.
(ii) r and f are known Keplerian functions of the time:

$$
\begin{aligned}
r & =a(1-e \cos u) \\
f & =2 \arctan \left(\sqrt{\frac{1+e}{1-e}} \tan \frac{u}{2}\right)
\end{aligned}
$$

(iii) r, f depend on e and for $e=0$ one has $r=a, f=t+t_{0}$ for a suitable constant t_{0}; hence, for circular orbits one gets the integrable equation $\ddot{x}+\varepsilon \sin \left(2 x-2 t-2 t_{0}\right)=0$.
(iv) Considering the lift of the angle x on \mathbf{R}, a $p: q$ spin-orbit resonance for $p, q \in \mathbf{Z}$ with $q>0$ is a periodic solution for the conservative equation, say $t \in \mathbf{R} \rightarrow x=x(t) \in \mathbf{R}$, such that

$$
x(t+2 \pi q)=x(t)+2 \pi p \quad \text { for any } t \in \mathbf{R}
$$

- Expanding in power series of e and Fourier series, the spin-orbit eq. is

$$
\begin{equation*}
\ddot{x}+\varepsilon \sum_{m \neq 0, m=-\infty}^{+\infty} W\left(\frac{m}{2}, e\right) \sin (2 x-m t)=0 \tag{2}
\end{equation*}
$$

where the coefficients $W\left(\frac{m}{2}, e\right)$ decay as power series of e.

- Up to the order 4 in e, one obtains

$$
\begin{aligned}
\ddot{x} & +\varepsilon\left[\frac{e^{4}}{24} \sin (2 x+2 t)+\frac{e^{3}}{48} \sin (2 x+t)+\left(-\frac{e}{2}+\frac{e^{3}}{16}\right) \sin (2 x-t)+\right. \\
& +\left(1-\frac{5}{2} e^{2}+\frac{13}{16} e^{4}\right) \sin (2 x-2 t)+\left(\frac{7}{2} e-\frac{123}{16} e^{3}\right) \sin (2 x-3 t)+ \\
& +\left(\frac{17}{2} e^{2}-\frac{115}{6} e^{4}\right) \sin (2 x-4 t)+\frac{845}{48} e^{3} \sin (2 x-5 t)+ \\
& \left.+\frac{533}{16} e^{4} \sin (2 x-6 t)\right]=0
\end{aligned}
$$

- The previous equation can be written in compact form as

$$
\ddot{x}+\varepsilon V_{x}(x, t)=0,
$$

for a suitable periodic function $V=V(x, t)$. Such equation corresponds to that of a pendulum subject to a forcing term, depending periodically upon time.

- In Hamiltonian form it is:

$$
\mathcal{H}(y, x, t)=\frac{1}{2} y^{2}+\varepsilon V(x, t) .
$$

The Hamiltonian is integrable for $\varepsilon=0$, nearly-integrable for $\varepsilon \neq 0$.

Dissipative spin-orbit problem

- Tidal torque \mathcal{T} due to internal non-rigidity: as in [Correia-Laskar] average over one orbital period:

$$
\langle\mathcal{T}\rangle=-\mu(e, K)[\dot{x}-\eta(e)],
$$

with

$$
\mu(e, K)=K \frac{1+3 e^{2}+\frac{3}{8} e^{4}}{\left(1-e^{2}\right)^{9 / 2}}, \quad \eta(e)=\frac{1+\frac{15}{2} e^{2}+\frac{45}{8} e^{4}+\frac{5}{16} e^{6}}{\left(1+3 e^{2}+\frac{3}{8} e^{4}\right)\left(1-e^{2}\right)^{3 / 2}} .
$$

- The quantity $K \equiv 3 n \frac{k_{2}}{\xi Q}\left(\frac{R_{e}}{a}\right)^{3} \frac{M}{m}$, where $n=$ mean motion, $k_{2}=$ Love number (depending on the structure of the body), $Q=$ quality factor (which compares the frequency of oscillation of the system to the rate of dissipation of energy), ξ is a structure constant such that $I_{3}=\xi m R_{e}^{2}, R_{e}=$ equatorial radius, $M=$ mass of the central body, $m=$ mass of the satellite.
- $K \simeq 10^{-8}$ for Moon-Mercury depending on the physical and orbital characteristics)
- We are led to consider the following equation of motion for the dissipative spin-orbit problem:

$$
\ddot{x}+\frac{3}{2} \frac{B-A}{C}\left(\frac{a}{r}\right)^{3} \sin (2 x-2 f)=-\mu[\dot{x}-\eta]
$$

or

$$
\begin{equation*}
\ddot{x}+\varepsilon V_{x}(x, t)=-\mu[\dot{x}-\eta] . \tag{3}
\end{equation*}
$$

- The tidal torque vanishes provided

$$
\dot{x} \equiv \eta(e)=\frac{1+\frac{15}{2} e^{2}+\frac{45}{8} e^{4}+\frac{5}{16} e^{6}}{\left(1-e^{2}\right)^{\frac{3}{2}}\left(1+3 e^{2}+\frac{3}{8} e^{4}\right)} .
$$

- It is readily shown that for circular orbits the angular velocity of rotation corresponds to the synchronous resonance, being $\dot{x}=1$. For Mercury's eccentricity $e=0.2056$, it turns out that $\dot{x}=1.256$.
- Poincaré sections in the plane (x, y), conservative and dissipative settings, different values of the eccentricity.

Figure: (a) $e=0.0549, \varepsilon=10^{-3}, K=0 ;(b) e=0.0549, \varepsilon=10^{-3}, K=10^{-3} ;(c)$ $e=0.2056, \varepsilon=10^{-3}, K=0 ;(d) e=0.2056, \varepsilon=10^{-3}, K=10^{-3}$.

- SM corresponds to the Poincaré map at times 2π, obtained integrating the conservative spin-orbit problem with a leap-frog method.
- DSM corresponds to the Poincaré map at times 2π, obtained integrating the dissipative spin-orbit problem with a leap-frog method.

$$
\ddot{x}+\varepsilon V_{x}(x, t)=-\mu[\dot{x}-\eta] .
$$

is equivalent to

$$
\begin{aligned}
\dot{x} & =y \\
\dot{y} & =-\varepsilon V_{x}(x, t)-\mu[y-\eta]
\end{aligned}
$$

which can be integrated through a leap-frog method with time-step T as

$$
\begin{aligned}
y^{\prime} & =(1-\mu T) y+\mu \eta T-\varepsilon V_{x}(x, t) T \\
x^{\prime} & =x+y^{\prime}
\end{aligned}
$$

Outline

1. Rotational dynamics

2. Conservative/Dissipative spin-orbit problem

2.1 Conservative spin-orbit problem
2.2 Dissipative spin-orbit problem
3. Delaunay action-angle variables

4. Mean, eccentric anomaly and Kepler's equation

5. The restricted three-body problem

Delaunay action-angle variables

- Action-angle variables for the two-body problem $\mathcal{P}_{1}-\mathcal{P}_{2}$ are known as Delaunay variables.
- Let (r, ϑ) be the polar coordinates and let $\left(p_{r}, p_{\vartheta}\right)$ be the conjugated momenta. It is readily seen that $p_{\vartheta}=h, h$ being the angular momentum.

Figure: Geometrical configuration of Kepler's problem.

- The Hamiltonian function governing the two-body motion is given by $\left(\kappa=G\left(m_{1}+m_{2}\right)\right)$

$$
\mathcal{H}\left(p_{r}, p_{\vartheta}, r, \vartheta\right)=\frac{1}{2}\left(p_{r}^{2}+\frac{p_{\vartheta}^{2}}{r^{2}}\right)-\frac{\kappa}{r} .
$$

- Being ϑ a cyclic variable, we introduce the effective potential (see Figure 3) as

$$
\begin{equation*}
V_{e}(r)=\frac{p_{\vartheta}^{2}}{2 r^{2}}-\frac{\kappa}{r} . \tag{4}
\end{equation*}
$$

Figure: Graph of the effective potential $V_{e}(r)$ given in (4) for $p_{\vartheta}=0.4025$ and $\kappa=1$.

- The Hamiltonian can be written as the one-dim. Hamiltonian:

$$
\mathcal{H}\left(p_{r}, r\right)=\frac{p_{r}^{2}}{2}+V_{e}(r)
$$

- Taking into account that ϑ is cyclic, let us define the Delaunay action variables L_{0}, G_{0} as

$$
\begin{aligned}
L_{0} & \equiv \sqrt{\kappa a} \\
G_{0} & \equiv p_{\vartheta}=h=\sqrt{\kappa a\left(1-e^{2}\right)}=L_{0} \sqrt{1-e^{2}} .
\end{aligned}
$$

- Notice that one can express the elliptic elements a, e in terms of the Delaunay action variables as

$$
a=\frac{L_{0}^{2}}{\kappa}, \quad e=\sqrt{1-\frac{G_{0}^{2}}{L_{0}^{2}}} .
$$

- The Hamiltonian function expressed in terms of the action variables becomes

$$
\begin{equation*}
\mathcal{H}=\mathcal{H}\left(L_{0}\right)=-\frac{\kappa^{2}}{2 L_{0}^{2}} . \tag{5}
\end{equation*}
$$

- The Delaunay angle variables are the mean anomaly

$$
\ell_{0} \equiv n\left(t-t_{0}\right)=\frac{2 \pi}{T}\left(t-t_{0}\right)
$$

and the argument of perihelion g_{0}.

Figure: The argument of perihelion g_{0}.

Outline

1. Rotational dynamics

2. Conservative/Dissipative spin-orbit problem
2.1 Conservative spin-orbit problem
2.2 Dissipative spin-orbit problem
3. Delaunay action-angle variables
4. Mean, eccentric anomaly and Kepler's equation
5. The restricted three-body problem

Mean, eccentric anomaly and Kepler's equation

- We introduce as follows a quantity u called the eccentric anomaly:

Figure: The eccentric anomaly u.

- It follows that

$$
\begin{aligned}
r & =a(1-e \cos u) \\
\tan \frac{f}{2} & =\sqrt{\frac{1+\mathrm{e}}{1-\mathrm{e}}} \tan \frac{u}{2} \\
\ell_{0} & =u-e \sin u
\end{aligned}
$$

the latter known as Kepler's equation.

- Solve this equation to get u as a function of the time, being $\ell_{0}=n\left(t-t_{0}\right)$ as well as $u=u(t)$; insert it in the previous relations to obtain $r=r(t), f=f(t)$.
- An approximate solution can be computed as far as e is small. Indeed, the inversion of Kepler's equation provides u as a function of ℓ_{0} as a series of e :

$$
\begin{aligned}
u & =\ell_{0}+e \sin u \\
& =\ell_{0}+e \sin \left(\ell_{0}+e \sin u\right) \\
& =\ell_{0}+e \sin \left(\ell_{0}+e \sin \left(\ell_{0}+e \sin u\right)\right) \\
& =\ell_{0}+\left(e-\frac{e^{3}}{8}\right) \sin \ell_{0}+\frac{1}{2} e^{2} \sin \left(2 \ell_{0}\right)+\frac{3}{8} e^{3} \sin \left(3 \ell_{0}\right)+O\left(e^{4}\right)
\end{aligned}
$$

where $O\left(e^{4}\right)$ denotes a quantity of order e^{4}.

- The complete solution can be expressed as

$$
\begin{equation*}
u=\ell_{0}+e \sum_{k=1}^{\infty} \frac{1}{k}\left[J_{k-1}(k e)+J_{k+1}(k e)\right] \sin \left(k \ell_{0}\right), \tag{6}
\end{equation*}
$$

where $J_{k}(x)$ are the Bessel's functions of order k and argument x; they are defined by the relation

$$
J_{k}(x) \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (k t-x \sin t) d t
$$

- The functions $J_{k}(x)$ can be developed as follows:

$$
\begin{align*}
J_{0}(x) & \equiv \sum_{m=0}^{\infty} \frac{(-1)^{m}}{(m!)^{2}}\left(\frac{x}{2}\right)^{2 m} \\
J_{k}(x) & \equiv\left(\frac{x}{2}\right)^{k} \frac{1}{k!} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!\prod_{j=1}^{m}(k+j)}\left(\frac{x}{2}\right)^{2 m} \tag{7}
\end{align*}
$$

Outline

1. Rotational dynamics

2. Conservative/Dissipative spin-orbit problem
2.1 Conservative spin-orbit problem
2.2 Dissipative spin-orbit problem
3. Delaunay action-angle variables
4. Mean, eccentric anomaly and Kepler's equation
5. The restricted three-body problem

The restricted three-body problem

- Consider a particle (i.e. an asteroid) under the influence of 2 primaries \mathcal{P}_{1}, \mathcal{P}_{2} with masses m_{1}, m_{2} (i.e. Sun and Jupiter). Assume that \diamond all bodies move on the same plane;
\diamond the mass of the particle is so small that it does not influence the primaries; \diamond the primaries move on circular Keplerian orbits.

The restricted three-body problem

- Consider a particle (i.e. an asteroid) under the influence of 2 primaries \mathcal{P}_{1}, \mathcal{P}_{2} with masses m_{1}, m_{2} (i.e. Sun and Jupiter). Assume that
\diamond all bodies move on the same plane;
\diamond the mass of the particle is so small that it does not influence the primaries;
\diamond the primaries move on circular Keplerian orbits.
- This problem is named the restricted, circular, planar 3-body problem (RCPTBP) \rightarrow described by a 2 d.o.f. Hamiltonian:

$$
H(L, G, \ell, g ; \varepsilon)=-\frac{1}{2 L^{2}}-G+\varepsilon F_{\varepsilon}(L, G, \ell, g ; \varepsilon)
$$

- Angle variables: ℓ is the mean-anomaly, $g=g_{0}-\psi$ with $g_{0}=$ argument of the perihelion, $\psi=$ longitude of \mathcal{P}_{2}, coinciding with time if the common frequency of the primaries is 1 and if $m_{1}+m_{2}=1$.
- Action variables: $L=\sqrt{\kappa a}$ and $G=L \sqrt{1-e^{2}}$.
- Perturbative parameter $\varepsilon=m_{2} /\left(m_{1}+m_{2}\right)$.
- About the perturbation $F_{\varepsilon}(L, G, \ell, g ; \varepsilon)$.
- Setting $x^{(2)}$ the Jupiter-Sun vector, $x^{(A)}$ the asteroid-Sun vector, the perturbation is

$$
F_{\varepsilon}=x^{(A)} \cdot x^{(2)}-\frac{1}{\left|x^{(A)}-x^{(2)}\right|}
$$

expressed in terms of the Delaunay variables, with $x^{(2)}$ being the relative circular motion of $\mathcal{P}_{1}: x^{(2)}=\left(\cos \left(t_{0}+t\right), \sin \left(t_{0}+t\right)\right)$.

- Expanding in Fourier-Taylor series:

$$
\begin{aligned}
& F_{\varepsilon}(L, G, \ell, g)=-\left(1+\frac{a^{2}}{4}+\frac{9}{64} a^{4}+\frac{3}{8} a^{2} e^{2}\right) \\
+ & \left(\frac{1}{2}+\frac{9}{16} a^{2}\right) a^{2} e \cos \ell-\left(\frac{3}{8} a^{3}+\frac{15}{64} a^{5}\right) \cos (\ell+g) \\
+ & \left(\frac{9}{4}+\frac{5}{4} a^{2}\right) a^{2} e \cos (\ell+2 g)-\left(\frac{3}{4} a^{2}+\frac{5}{16} a^{4}\right) \cos (2 \ell+2 g) \\
- & \frac{3}{4} a^{2} e \cos (3 \ell+2 g)-\left(\frac{5}{8} a^{3}+\frac{35}{128} a^{5}\right) \cos (3 \ell+3 g) \\
- & \frac{35}{64} a^{4} \cos (4 \ell+4 g)-\frac{63}{128} a^{5} \cos (5 \ell+5 g) .
\end{aligned}
$$

