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Rotational dynamics

• Rotational dynamics: different shapes
From round bodies (Moon, Mercury), to irregular bodies (Hyperion), to
dumbbell satellite (4179 Toutatis, 216 Kleopatra)
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• The Moon always points the same face to the Earth. All evolved satellites of
the Solar System always point the same hemisphere to the host planet.
•Mars: Phobos, Deimos. Jupiter: Io, Europa, Ganimede, Callisto. Saturn:
Titan, Rhea, Enceladus, Dione. Uranus: Ariel, Umbriel, Titania. Neptune:
Triton, Proteus. Pluto: Charon.
• Only exception: Mercury in a 3:2 spin–orbit resonance.
Moon: 1:1 (1 rotation = 1 revolution), Mercury 3:2 spin–orbit resonance (3
rotations = 2 revolutions).
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Rotational dynamics: consequences of its study

•Moon: physical librations due to earth tides, study of the internal
composition (SMART 1)
•Mercury: study of the gravitational field, the variation of obliquity and
libration provide constraints on the internal structure of the planet, such as the
existence of a solid surface and a liquid core, thus provoking a dynamo effect
responsible of Mercury’s magnetic field (BepiColombo)
• Europa: mass distribution, rotation eventually compatible with a liquid
ocean which could explain the tectonics (Voyager - Galileo)
• Enceladus: resonance conditions can be responsible of the heat excess and
surface geysers
• Hyperion: example of chaotic rotation (in orbital resonance with Titan)
• Titan: an anomalous obliquity might be due to an internal ocean
(Cassini–Huygens)
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Conservative/Dissipative spin–orbit problem

• Model: satellite S, ellipsoid rotating about an internal spin–axis and revolving
around a central body P:
(i) S moves on a Keplerian orbit;
(ii) the spin–axis coincides with the smallest physical axis (principal rotation);
(iii) the spin–axis is perpendicular to the orbital plane (zero obliquity);
(iv) dissipative forces: tidal torque T depending linearly on the angular velocity of
rotation.

• Notation:
A < B < C principal moments of inertia; n = 2π

Trev
≡ 1 mean motion; a semimajor

axis; e eccentricity; r orbital radius; f true anomaly; x angle between pericenter line
and major axis of the ellipsoid.
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Conservative spin-orbit problem

• Neglecting the dissipation:

ẍ +
3
2

B− A
C

(
a
r
)3 sin(2x− 2f ) = 0 . (1)
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ẍ +
3
2

B− A
C

(
a
r
)3 sin(2x− 2f ) = 0 .

(i) ε ≡ 3
2

B−A
C perturbing parameter; Moon–Mercury: ε ' 10−4; if ε = 0 the system is

integrable.

(ii) r and f are known Keplerian functions of the time:

r = a(1− e cos u)

f = 2 arctan
(√1 + e

1− e
tan

u
2

)
.

(iii) r, f depend on e and for e = 0 one has r = a, f = t + t0 for a suitable constant t0; hence,
for circular orbits one gets the integrable equation ẍ + ε sin(2x− 2t − 2t0) = 0.

(iv) Considering the lift of the angle x on R, a p : q spin–orbit resonance for p, q ∈ Z with
q > 0 is a periodic solution for the conservative equation, say t ∈ R→ x = x(t) ∈ R,
such that

x(t + 2πq) = x(t) + 2πp for any t ∈ R .
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• Expanding in power series of e and Fourier series, the spin-orbit eq. is

ẍ + ε

+∞∑
m 6=0,m=−∞

W(
m
2
, e) sin(2x− mt) = 0 , (2)

where the coefficients W(m
2 , e) decay as power series of e.

• Up to the order 4 in e, one obtains

ẍ + ε
[ e4

24
sin(2x + 2t) +

e3

48
sin(2x + t) + (− e

2
+

e3

16
) sin(2x− t) +

+ (1− 5
2

e2 +
13
16

e4) sin(2x− 2t) + (
7
2

e− 123
16

e3) sin(2x− 3t) +

+ (
17
2

e2 − 115
6

e4) sin(2x− 4t) +
845
48

e3 sin(2x− 5t) +

+
533
16

e4 sin(2x− 6t)
]
= 0 .
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• The previous equation can be written in compact form as

ẍ + εVx(x, t) = 0 ,

for a suitable periodic function V = V(x, t). Such equation corresponds to that
of a pendulum subject to a forcing term, depending periodically upon time.

• In Hamiltonian form it is:

H(y, x, t) = 1
2

y2 + εV(x, t) .

The Hamiltonian is integrable for ε = 0, nearly-integrable for ε 6= 0.
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Dissipative spin-orbit problem

• Tidal torque T due to internal non–rigidity: as in [Correia–Laskar] average
over one orbital period:

〈T 〉 = −µ(e,K)
[
ẋ− η(e)

]
,

with

µ(e,K) = K
1 + 3e2 + 3

8 e4

(1− e2)9/2 , η(e) =
1 + 15

2 e2 + 45
8 e4 + 5

16 e6

(1 + 3e2 + 3
8 e4)(1− e2)3/2

.

• The quantity K ≡ 3n k2
ξQ(

Re
a )

3 M
m , where n = mean motion, k2 = Love

number (depending on the structure of the body), Q = quality factor (which
compares the frequency of oscillation of the system to the rate of dissipation
of energy), ξ is a structure constant such that I3 = ξmR2

e , Re = equatorial
radius, M = mass of the central body, m = mass of the satellite.
• K ' 10−8 for Moon–Mercury depending on the physical and orbital
characteristics)
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•We are led to consider the following equation of motion for the dissipative
spin–orbit problem:

ẍ +
3
2

B− A
C

(
a
r
)3 sin(2x− 2f ) = −µ[ẋ− η]

or
ẍ + εVx(x, t) = −µ[ẋ− η] . (3)

• The tidal torque vanishes provided

ẋ ≡ η(e) =
1 + 15

2 e2 + 45
8 e4 + 5

16 e6

(1− e2)
3
2 (1 + 3e2 + 3

8 e4)
.

• It is readily shown that for circular orbits the angular velocity of rotation
corresponds to the synchronous resonance, being ẋ = 1. For Mercury’s
eccentricity e = 0.2056, it turns out that ẋ = 1.256.
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• Poincaré sections in the plane (x, y), conservative and dissipative settings,
different values of the eccentricity.
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Figure: (a) e = 0.0549, ε = 10−3, K = 0; (b) e = 0.0549, ε = 10−3, K = 10−3; (c)
e = 0.2056, ε = 10−3, K = 0; (d) e = 0.2056, ε = 10−3, K = 10−3.
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• SM corresponds to the Poincaré map at times 2π, obtained integrating the
conservative spin–orbit problem with a leap–frog method.
• DSM corresponds to the Poincaré map at times 2π, obtained integrating the
dissipative spin–orbit problem with a leap–frog method.

ẍ + εVx(x, t) = −µ[ẋ− η] .

is equivalent to

ẋ = y

ẏ = −εVx(x, t)− µ[y− η] ,

which can be integrated through a leap–frog method with time-step T as

y′ = (1− µT)y + µηT − εVx(x, t) T

x′ = x + y′ .
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Delaunay action–angle variables

• Action–angle variables for the two–body problem P1 − P2 are known as
Delaunay variables.
• Let (r, ϑ) be the polar coordinates and let (pr, pϑ) be the conjugated
momenta. It is readily seen that pϑ = h, h being the angular momentum.

Figure: Geometrical configuration of Kepler’s problem.
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• The Hamiltonian function governing the two–body motion is given by
(κ = G(m1 + m2))

H(pr, pϑ, r, ϑ) =
1
2
(p2

r +
p2
ϑ

r2 )−
κ

r
.

• Being ϑ a cyclic variable, we introduce the effective potential (see Figure 3)
as

Ve(r) =
p2
ϑ

2r2 −
κ

r
. (4)
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Figure: Graph of the effective potential Ve(r) given in (4) for pϑ = 0.4025 and κ = 1.
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• The Hamiltonian can be written as the one–dim. Hamiltonian:

H(pr, r) =
p2

r

2
+ Ve(r) .

• Taking into account that ϑ is cyclic, let us define the Delaunay action
variables L0, G0 as

L0 ≡
√
κa

G0 ≡ pϑ = h =
√
κa(1− e2) = L0

√
1− e2 .

• Notice that one can express the elliptic elements a, e in terms of the
Delaunay action variables as

a =
L2

0
κ
, e =

√
1−

G2
0

L2
0
.
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• The Hamiltonian function expressed in terms of the action variables
becomes

H = H(L0) = −
κ2

2L2
0
. (5)

• The Delaunay angle variables are the mean anomaly

`0 ≡ n(t − t0) =
2π
T
(t − t0)

and the argument of perihelion g0.

Figure: The argument of perihelion g0.
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Mean, eccentric anomaly and Kepler’s equation

•We introduce as follows a quantity u called the eccentric anomaly:

Figure: The eccentric anomaly u.

• It follows that

r = a(1− e cos u)

tan
f
2

=

√
1 + e
1− e

tan
u
2

`0 = u− e sin u ,

the latter known as Kepler’s equation.
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• Solve this equation to get u as a function of the time, being `0 = n(t − t0) as
well as u = u(t); insert it in the previous relations to obtain r = r(t), f = f (t).

• An approximate solution can be computed as far as e is small. Indeed, the
inversion of Kepler’s equation provides u as a function of `0 as a series of e:

u = `0 + e sin u

= `0 + e sin(`0 + e sin u)

= `0 + e sin(`0 + e sin(`0 + e sin u))

= `0 + (e− e3

8
) sin `0 +

1
2

e2 sin(2`0) +
3
8

e3 sin(3`0) + O(e4) ,

where O(e4) denotes a quantity of order e4.
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• The complete solution can be expressed as

u = `0 + e
∞∑

k=1

1
k

[
Jk−1(ke) + Jk+1(ke)

]
sin(k`0) , (6)

where Jk(x) are the Bessel’s functions of order k and argument x; they are
defined by the relation

Jk(x) ≡
1

2π

∫ 2π

0
cos(kt − x sin t)dt .

• The functions Jk(x) can be developed as follows:

J0(x) ≡
∞∑

m=0

(−1)m

(m!)2

( x
2

)2m

Jk(x) ≡ (
x
2

)k 1
k!

∞∑
m=0

(−1)m

m!
∏m

j=1(k + j)

( x
2

)2m
. (7)
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The restricted three–body problem

• Consider a particle (i.e. an asteroid) under the influence of 2 primaries P1,
P2 with masses m1, m2 (i.e. Sun and Jupiter). Assume that
� all bodies move on the same plane;
� the mass of the particle is so small that it does not influence the primaries;
� the primaries move on circular Keplerian orbits.

• This problem is named the restricted, circular, planar 3–body problem
(RCPTBP)→ described by a 2 d.o.f. Hamiltonian:

H(L,G, `, g; ε) = − 1
2L2 − G + εFε(L,G, `, g; ε) .

• Angle variables: ` is the mean-anomaly, g = g0 − ψ with g0 = argument of
the perihelion, ψ = longitude of P2, coinciding with time if the common
frequency of the primaries is 1 and if m1 + m2 = 1.
• Action variables: L =

√
κa and G = L

√
1− e2.

• Perturbative parameter ε = m2/(m1 + m2).
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• About the perturbation Fε(L,G, `, g; ε).

• Setting x(2) the Jupiter–Sun vector, x(A) the asteroid–Sun vector, the
perturbation is

Fε = x(A) · x(2) − 1
|x(A) − x(2)|

,

expressed in terms of the Delaunay variables, with x(2) being the relative
circular motion of P1: x(2) =

(
cos(t0 + t), sin(t0 + t)

)
.

• Expanding in Fourier-Taylor series:

Fε(L,G, `, g) = −(1 +
a2

4
+

9
64

a4 +
3
8

a2e2)

+
(1

2
+

9
16

a2
)

a2e cos `−
(3

8
a3 +

15
64

a5
)

cos(`+ g)

+
(9

4
+

5
4

a2
)

a2e cos(`+ 2g)−
(3

4
a2 +

5
16

a4
)

cos(2 `+ 2 g)

− 3
4

a2e cos(3 `+ 2 g)−
(5

8
a3 +

35
128

a5
)

cos(3 `+ 3 g)

− 35
64

a4 cos(4 `+ 4 g)− 63
128

a5 cos(5`+ 5g) .
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