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Sketch of the Proof for CS systems [Calleja, Celletti, de la
Llave 2013]

Step 1: approximate solution and linearization
Step 2: determine the new approximation
Step 3: solve the cohomological equation
Step 4: convergence of the iterative step
Step 5: local uniqueness

• Analytic tools:

exponential decay of Fourier coefficients of analytic functions;

estimates to bound the derivatives in smaller domains;

quantitative analysis of the cohomology equations;

abstract implicit function theorem.

NOTATION: From now on drop the underline to denote vectors.
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Step 1: approximate solution and linearization

• Let (K, µ) be an approximate solution: fµ ◦ K(θ)− K(θ + ω) = E(θ).

• Using the Lagrangian property in coordinates, DKT(θ) J ◦K(θ) DK(θ) = 0,
the tangent space is

Range
(

DK(θ)
)
⊕ Range

(
V(θ)

)
with V(θ) = J−1 ◦ K(θ) DK(θ)N(θ) and N(θ) = (DK(θ)T DK(θ))−1.

• Define:
M(θ) = [DK(θ) | V(θ)] .
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Lemma
Up to a remainder R:

Dfµ ◦ K(θ) M(θ) = M(θ + ω)

(
Id S(θ)
0 λId

)
+ R(θ) . (R)

Proof: Recall M(θ) = [DK(θ) | V(θ)].
Part 1: taking the derivative of fµ ◦ K(θ) = K(θ + ω) + E(θ), one gets
Dfµ ◦ K(θ) DK(θ) = DK(θ + ω) + DE(θ);
Part 2: due to the remark on the tangent space, one has:

Dfµ ◦ K(θ) V(θ) = DK(θ + ω) S(θ) + V(θ + ω) λId + h.o.t.

with

S(θ) ≡ N(θ + ω)TDK(θ + ω)TDfµ ◦ K(θ) J−1 ◦ K(θ) DK(θ)N(θ)

− N(θ + ω)TDK(θ)TJ−1 ◦ K(θ)DK(θ)N(θ + ω)λId .
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Step 2: determine a new approximation K′ = K + MW, µ′ = µ+ σ satisfying

fµ′ ◦ K′(θ)− K′(θ + ω) = E′(θ) . (APPR− INV)′

• Expanding in Taylor series:

fµ ◦ K(θ) + Dfµ ◦ K(θ) M(θ)W(θ) + Dµfµ ◦ K(θ)σ

−K(θ + ω)−M(θ + ω) W(θ + ω) + h.o.t. = E′(θ) .

• Recalling that fµ ◦ K(θ)− K(θ + ω) = E(θ), the new error E′ is
quadratically smaller provided:

Dfµ ◦ K(θ) M(θ)W(θ)−M(θ + ω) W(θ + ω) + Dµfµ ◦ K(θ)σ = −E(θ) .
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• Combine the previous formula

Dfµ ◦ K(θ) M(θ)W(θ)−M(θ + ω) W(θ + ω) + Dµfµ ◦ K(θ)σ = −E(θ)

and the Lemma:

Dfµ ◦ K(θ) M(θ) = M(θ + ω)

(
Id S(θ)
0 λId

)
+ R(θ) , (R)

to get equations for W = (W1,W2) and σ:

M(θ + ω)

(
Id S(θ)
0 λId

)
W(θ)−M(θ + ω) W(θ+ω) = −E(θ)−Dµfµ◦K(θ)σ .
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•Multiplying by M(θ + ω)−1 and writing W = (W1,W2), one gets(
Id S(θ)
0 λId

)(
W1(θ)
W2(θ)

)
−
(

W1(θ + ω)
W2(θ + ω)

)
=

(
−Ẽ1(θ)− Ã1(θ)σ

−Ẽ2(θ)− Ã2(θ)σ

)
.

with Ẽj(θ) = −(M(θ + ω)−1E)j, Ãj(θ) = (M(θ + ω)−1Dµfµ ◦ K)j.

• In components:

W1(θ)−W1(θ + ω) = −Ẽ1(θ)− S(θ)W2(θ)− Ã1(θ)σ (A)

λW2(θ)−W2(θ + ω) = −Ẽ2(θ)− Ã2(θ)σ (B)
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• Cohomological eq.s with constant coefficients for (W1,W2), σ for known S,
Ẽ ≡ (Ẽ1, Ẽ2), Ã ≡ [Ã1| Ã2]:

W1(θ)−W1(θ + ω) = −Ẽ1(θ)− S(θ)W2(θ)− Ã1(θ)σ (A)

λW2(θ)−W2(θ + ω) = −Ẽ2(θ)− Ã2(θ)σ (B)

• (A) involves small (zero) divisors, since for k = 0 one has 1− eik·ω = 0 in

W1(θ)−W1(θ + ω) =
∑

k

Ŵ1,k eik·θ(1− eik·ω) .

• (B) always solvable for any |λ| 6= 1 by a contraction mapping argument.

• Non–degeneracy condition: computing the averages of eqs. (A), (B),
determine 〈W2〉, σ by solving (W2 = 〈W2〉+ B0 + σB̃0)(

〈S〉 〈SB0〉+ 〈Ã1〉
(λ− 1)Id 〈Ã2〉

)(
〈W2〉
σ

)
=

(
−〈SB̃0〉 − 〈Ẽ1〉
−〈Ẽ2〉

)
.
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)(
〈W2〉
σ

)
=

(
−〈SB̃0〉 − 〈Ẽ1〉
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λW2(θ)−W2(θ + ω) = −Ẽ2(θ)− Ã2(θ)σ (B)

• (A) involves small (zero) divisors, since for k = 0 one has 1− eik·ω = 0 in

W1(θ)−W1(θ + ω) =
∑

k
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Step 3: solve the cohomological equations
• Non–average parts of W1, W2: solve cohomological equations of the form

λw(θ)− w(θ + ω) = η(θ)

with η : Tn → C known and with zero average.

Lemma
Let |λ| ∈ [A,A−1] for 0 < A < 1, ω ∈ D(C, τ), η ∈ Aρ, ρ > 0 or η ∈ Hm,
m ≥ τ , and ∫

Tn
η(θ) dθ = 0 .

Then, there is one and only one solution w with zero average and

‖w‖Aρ−δ ≤ C6 C δ−τ‖η‖Aρ ,
‖w‖Hm−τ ≤ C7 C ‖η‖Hm .
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Sketch of the proof. Expand η as

η(θ) =
∑
j∈Zn

η̂je2πij·θ

and using
λw(θ)− w(θ + ω) = η(θ)

find
ŵj = (λ− e2πij·ω)−1 η̂j ;

when λ = 1, j = 0, it must be η̂0 = 0.

Estimate the multipliers using Cauchy bounds and use the Diophantine
condition ([Rüssmann]).
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Step 4: convergence of the iterative step
• The invariance equation is satisfied with an error quadratically smaller, i.e.

‖E′‖Aρ−δ ≤ C8δ
−2τ‖E‖2

Aρ , ‖E′‖Hm−τ ≤ C9‖E‖2
Hm .

• The procedure can be iterated to get a sequence of approximate solutions,
say {Kj, µj}. Convergence: through an abstract implicit function theorem,
alternating the iteration with carefully chosen smoothings operators defined in
a scale of Banach spaces (analytic functions or Sobolev spaces).

Step 5: local uniqueness
• Under smallness conditions, if there exist two solutions (Ka, µa), (Kb, µb),
then there exists ψ ∈ Rn such that

Kb(θ) = Ka(θ + ψ) and µa = µb .
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• Step 4 requires the following (technical) estimates.

• Given an approximate solution (K,E) with ‖E‖ sufficiently small.

Lemma
The torus K(Tn) is approximately Lagrangian:

‖K∗Ω‖ρ− δ2 ≤ C0 δ
−1 ‖E‖ρ

‖K∗Ω‖m−1 ≤ C0 ‖E‖m .

Lemma

Bound R in Dfµ ◦ K(θ) M(θ) = M(θ + ω)

(
Id S(θ)
0 λId

)
+ R(θ) by

‖R‖ρ− δ2 ≤ C0 δ
−1 ‖E‖ρ

‖R‖m−1 ≤ C0 ‖E‖m .
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Lemma
Estimates for the corrections (W, σ):

‖W‖ρ−δ ≤ C0ν
−1 δ−τ ‖E‖ρ , |σ| ≤ C0‖E‖ρ

‖W‖m−τ ≤ C0ν
−1 ‖E‖m , |σ| ≤ C0‖E‖m .

• In Nash–Moser theory the convergence of the iterative step is obtained
implementing a quadratic iterative scheme. The quadratic estimates on the
step amount to prove that:

Lemma
If ‖E‖ is sufficiently small:

‖E(K + MW, µ+ σ)‖ρ−δ ≤ C0ν
−2δ−2τ ‖E‖2

ρ

‖E(K + MW, µ+ σ)‖m−τ ≤ C0ν
−2 ‖E‖2

m .
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• Abstract implicit function theorem. Define a scale of Banach spaces with
smoothing operators:

X 0 ⊇ X r′ ⊇ X r ⊇ X∞ , 0 ≤ r′ ≤ r ≤ ∞ ,

with norms satisfying ‖g‖X r′ ≤ ‖g‖X r , 0 ≤ r′ ≤ r.

♦ Banach spaces: analytic or Sobolev spaces with smoothing operators.

Analytic: smoothing obtained by rescaling the size of the strip on which
analytic functions are defined.

Sobolev: {St}t≥0 is a family of smoothing operators such that it satisfies
interpolation inequalities and (̂Stu)k = ûk e−|k|/t:

i) limt→∞ ‖(St − Id)u‖X 0 = 0 ,

ii) ‖Stu‖Xm ≤ Ctm−`‖u‖X` , 0 ≤ ` ≤ m , u ∈ X ` ,
iii) ‖(Id− St)u‖X` ≤ Ct−(m−`)‖u‖Xm , 0 ≤ ` ≤ m , u ∈ X m .

A. Celletti (Univ. Roma Tor Vergata) Perturbation theory, KAM theory and Celestial MechanicsSevilla, 25-27 January 2016 16 / 25



• For generic Banach spaces:

Theorem
(Abstract IFT) Let α > 0, p > α, p− α ≤ q ≤ p + 13α and let X q be a scale
of Banach spaces with smoothing operators; let (K, µ) be an approximate
solution with error E and let (W, σ) be the improvement. Assume:

a) ‖(W, σ)‖X q−α ≤ C0‖E‖X q ,

b) ‖DE(K, µ) MW + DµE(K, µ)σ + E‖X p−α ≤ C0‖E‖2
X p ,

c) ‖E‖X p+13α ≤ C0(1 + ‖(K, µ)‖X p+13α).

Then, if (K0, µ0) is an approximate solution with ‖E0‖ sufficiently small, there
exists (Ke, µe) such that E(Ke, µe) = 0 and

‖(Ke − K0, µe − µ0)‖X p ≤ C0‖E0‖X p−α .
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• Analytic spaces: at each step the domains shrink by δh:

ρ0 = ρ , δh =
ρ0

2h+2 , ρh+1 = ρh − δh , h ≥ 0 .

Then, the error is quadratic and for a, b > 0:

‖E(Kh+1, µh+1)‖ρh+1 ≤ C0 ν
aδb

h ‖E(Kh, µh)‖2
ρh

and, if ε0 ≡ ‖E(K0, µ0)‖ρ0 is small enough, then:

‖Kh − K0‖ρh ≤ CKε0 , |µh − µ0| ≤ Cµε0 .
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The a-posteriori approach

• Following [LGJV2005], for conformally symplectic systems, by adjusting
the parameters under a suitable non-degeneracy condition near an
approximately invariant torus, there is a true invariant torus, [CCL].

• A KAM theory with adjustment of parameters was developed in
[Moser1967], but with a parameter count different than in [CCL], since
[Moser1967] is very general and does not take into account the geometric
structure.

Advantages of the a-posteriori approach:
I it can be developed in any coordinate frame, not necessarily in action-angle
variables;
I the system is not assumed to be nearly integrable;
I instead of constructing a sequence of coordinate transformations on
shrinking domains as in the perturbation approach, we shall compute suitable
corrections to the embedding and the drift.
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Consequences of the a-posteriori approach for conformally symplectic
systems (with R. Calleja, R. de la Llave):

I the method provides an efficient algorithm to determine the breakdown
threshold, very suitable for computer implementations;

B very refined quantitative estimates;

I local behavior near quasi–periodic solutions;

I partial justification of Greene’s criterion (also with C. Falcolini);

I a bootstrap of regularity, which allows to state that all smooth enough tori
are analytic, whenever the map is analytic;

I analyticity domains of the quasi–periodic attractors in the symplectic limit;

I whiskered tori for conformally symplectic systems.
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KAM algorithm

Given K0 : Tn →M, µ0 ∈ Rn, let λ ∈ R be the conformal factor for fµ0 .

1) E0 ← fµ0 ◦ K0 − K0 ◦ Tω
2) α← DK0

3) N0 ← [α>α]−1

4) M0 ← [α| J−1 ◦ K0αN0]

5) β ← M−1
0 ◦ Tω

6) Ẽ0 ← βE0

7) P0 ← αN0

S0 ← (P0 ◦ Tω)>Dfµ0 ◦ K0 J−1 ◦ K0P0

Ã0 ← M−1
0 ◦ Tω Dµfµ0 ◦ K0
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8) (Ba0)0 solves λ(Ba0)0 − (Ba0)0 ◦ Tω = −(Ẽ(2)
0 )0

(Bb0)0 solves λ(Bb0)0 − (Bb0)0 ◦ Tω = −(Ã(2)
0 )0

9) Find W(2)
0 , σ0 solving

0 = −S0 W(2)
0 − S0(Ba0)0 − S0(Bb0)0σ0 − Ẽ(1)

0 − Ã(1)
0 σ0

(λ− 1)W(2)
0 = −Ẽ(2)

0 − Ã(2)
0 σ0 .

10) (W(2)
0 )0 = (Ba0)0 + σ0(Bb0)0

11) W(2)
0 = (W(2)

0 )0 + W(2)
0

12) (W(1)
0 )0 solves

(W(1)
0 )0 − (W(1)

0 )0 ◦ Tω = −(S0W(2)
0 )0 − (Ẽ(1)

0 )0 − (Ã(1)
0 )0σ0

13) K1 ← K0 + M0W0

µ1 ← µ0 + σ0 .
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Remark
• Steps 2), 8), 10), 11), 12) involve diagonal operations in the Fourier space.
• The other steps are diagonal in the real space (while steps 10), 11) are
diagonal in both spaces).
• If we represent a function in discrete points or in Fourier space, then we can
compute the other functions by applying the Fast Fourier Transform (FFT).
This implies that if we use N Fourier modes to discretize the function, then we
need O(N) storage and O(N log N) operations.
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