Perturbation theory, KAM theory and Celestial Mechanics 9. Breakdown and applications

Alessandra Celletti

Department of Mathematics
University of Roma "Tor Vergata"

Sevilla, 25-27 January 2016

Outline

1. Break-down of quasi-periodic tori and attractors

2. KAM break-down criterion

3. Partial justification of Greene's method

4. Complex perturbing parameter

5. Applications

Outline

1. Break-down of quasi-periodic tori and attractors

2. KAM break-down criterion

3. Partial justification of Greene's method

4. Complex perturbing parameter
5. Applications

Break-down of quasi-periodic tori and attractors

- We can compute a rigorous lower bound of the break-down threshold of invariant tori by means of KAM theory.
- Which is the real break-down value?
- In physical problems one can compare KAM result with a measure of the parameter. For example in the 3-body problem, $\varepsilon=\frac{m_{\text {Jupier }}}{m_{\text {Sun }}} \simeq 10^{-3}$.
- In model problems one needs to apply numerical techniques: KAM break-down criterion, Greene's technique, frequency analysis, etc.

Outline

1. Break-down of quasi-periodic tori and attractors

2. KAM break-down criterion

3. Partial justification of Greene's method

4. Complex perturbing parameter
5. Applications

KAM break-down criterion [Calleja, Celletti 2010]

- Solve the invariance equation for (K, μ) :

$$
f_{\mu} \circ K(\theta)=K(\theta+\omega) .
$$

- Numerically efficient criterion: close to breakdown, one has a blow up of the Sobolev norms of a trigonometric approximation of the embedding:

$$
K^{(L)}(\theta)=\sum_{|\ell| \leq L} \widehat{K}_{\ell} e^{i \ell \theta} .
$$

- A regular behavior of $\left\|K^{(L)}\right\|_{m}$ as ε increases (for λ fixed) provides evidence of the existence of the invariant attractor. Table: $\varepsilon_{\text {crit }}$ for $\omega_{r}=2 \pi \frac{\sqrt{5}-1}{2}$.

Conservative case	Dissipative case	
$\varepsilon_{\text {crit }}$	λ	$\varepsilon_{\text {crit }}$
0.9716	0.9	0.9721
	0.5	0.9792

Greene's method, periodic orbits and Arnold's tongues

- Greene's method: breakdown of $\mathcal{C}(\omega)$ related to the stability of $\mathcal{P}\left(\frac{p_{j}}{q_{j}}\right) \rightarrow \mathcal{C}(\omega)$, but in the dissipative case: drift in an interval - Arnold tongue - admitting a periodic orbit.

Figure: Left: Arnold’s tongues providing μ vs. ε for 3 periodic orbits. Right: For $\lambda=0.9$ and $\varepsilon=0.5$ invariant attractor with frequency ω_{r} and approximating periodic orbits: $5 / 8(*), 8 / 13(+), 34 / 55(\times)$.

- Greene's method: let $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}$ be the maximal ε for which the periodic orbit has a stability transition; the sequence converges to the breakdown threshold of $\omega_{r}=2 \pi \frac{\sqrt{5}-1}{2}$.

p_{j} / q_{j}	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}($ cons $)$ $\varepsilon_{\text {Sob }}=[0.9716]$	$\varepsilon_{p_{r}, q_{j}}^{\omega_{r}}(\lambda=0.9)$ $\varepsilon_{S o b}=[0.972]$	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.5)$ $\varepsilon_{S o b}=[0.979]$
$1 / 2$	0.9999	0.999	0.999

- Greene's method: let $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}$ be the maximal ε for which the periodic orbit has a stability transition; the sequence converges to the breakdown threshold of $\omega_{r}=2 \pi \frac{\sqrt{5}-1}{2}$.

p_{j} / q_{j}	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}($ cons $)$ $\varepsilon_{\text {Sob }}=[0.9716]$	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.9)$ $\varepsilon_{\text {Sob }}=[0.972]$	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.5)$ $\varepsilon_{\text {Sob }}=[0.979]$
$1 / 2$	0.9999	0.999	0.999
$2 / 3$	0.9582	0.999	0.999

- Greene's method: let $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}$ be the maximal ε for which the periodic orbit has a stability transition; the sequence converges to the breakdown threshold of $\omega_{r}=2 \pi \frac{\sqrt{5}-1}{2}$.

p_{j} / q_{j}	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}($ cons $)$ $\varepsilon_{\text {Sob }}=[0.9716]$	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.9)$ $\varepsilon_{\text {Sob }}=[0.972]$	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.5)$ $\varepsilon_{\text {Sob }}=[0.979]$
$1 / 2$	0.9999	0.999	0.999
$2 / 3$	0.9582	0.999	0.999
$3 / 5$	0.9778	0.999	0.999

- Greene's method: let $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}$ be the maximal ε for which the periodic orbit has a stability transition; the sequence converges to the breakdown threshold of $\omega_{r}=2 \pi \frac{\sqrt{5}-1}{2}$.

p_{j} / q_{j}	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}($ cons $)$ $\varepsilon_{\text {Sob }}=[0.9716]$	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.9)$ $\varepsilon_{\text {Sob }}=[0.972]$	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.5)$ $\varepsilon_{S o b}=[0.979]$
$1 / 2$	0.9999	0.999	0.999
$2 / 3$	0.9582	0.999	0.999
$3 / 5$	0.9778	0.999	0.999
$5 / 8$	0.9690	0.993	0.992

- Greene's method: let $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}$ be the maximal ε for which the periodic orbit has a stability transition; the sequence converges to the breakdown threshold of $\omega_{r}=2 \pi \frac{\sqrt{5}-1}{2}$.

p_{j} / q_{j}	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}($ cons $)$ $\varepsilon_{S o b}=[0.9716]$	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.9)$ $\varepsilon_{S o b}=[0.972]$	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.5)$ $\varepsilon_{S o b}=[0.979]$
$1 / 2$	0.9999	0.999	0.999
$2 / 3$	0.9582	0.999	0.999
$3 / 5$	0.9778	0.999	0.999
$5 / 8$	0.9690	0.993	0.992
$8 / 13$	0.9726	0.981	0.987

- Greene's method: let $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}$ be the maximal ε for which the periodic orbit has a stability transition; the sequence converges to the breakdown threshold of $\omega_{r}=2 \pi \frac{\sqrt{5}-1}{2}$.

p_{j} / q_{j}	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}($ cons $)$ $\varepsilon_{\text {Sob }}=[0.9716]$	$\varepsilon_{p_{r}, q_{j}}^{\omega_{r}}(\lambda=0.9)$ $\varepsilon_{\text {Sob }}=[0.972]$	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.5)$ $\varepsilon_{S o b}=[0.979]$
$1 / 2$	0.9999	0.999	0.999
$2 / 3$	0.9582	0.999	0.999
$3 / 5$	0.9778	0.999	0.999
$5 / 8$	0.9690	0.993	0.992
$8 / 13$	0.9726	0.981	0.987
$13 / 21$	0.9711	0.980	0.983

- Greene's method: let $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}$ be the maximal ε for which the periodic orbit has a stability transition; the sequence converges to the breakdown threshold of $\omega_{r}=2 \pi \frac{\sqrt{5}-1}{2}$.

p_{j} / q_{j}	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}($ cons $)$ $\varepsilon_{\text {Sob }}=[0.9716]$	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.9)$ $\varepsilon_{\text {Sob }}=[0.972]$	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.5)$ $\varepsilon_{\text {Sob }}=[0.979]$
$1 / 2$	0.9999	0.999	0.999
$2 / 3$	0.9582	0.999	0.999
$3 / 5$	0.9778	0.999	0.999
$5 / 8$	0.9690	0.993	0.992
$8 / 13$	0.9726	0.981	0.987
$13 / 21$	0.9711	0.980	0.983
$21 / 34$	0.9717	0.976	0.980

- Greene's method: let $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}$ be the maximal ε for which the periodic orbit has a stability transition; the sequence converges to the breakdown threshold of $\omega_{r}=2 \pi \frac{\sqrt{5}-1}{2}$.

p_{j} / q_{j}	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}($ cons $)$ $\varepsilon_{\text {Sob }}=[0.9716]$	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.9)$ $\varepsilon_{S o b}=[0.972]$	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.5)$ $\varepsilon_{S o b}=[0.979]$
$1 / 2$	0.9999	0.999	0.999
$2 / 3$	0.9582	0.999	0.999
$3 / 5$	0.9778	0.999	0.999
$5 / 8$	0.9690	0.993	0.992
$8 / 13$	0.9726	0.981	0.987
$13 / 21$	0.9711	0.980	0.983
$21 / 34$	0.9717	0.976	0.980
$34 / 55$	0.9715	0.975	0.979

- Greene's method: let $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}$ be the maximal ε for which the periodic orbit has a stability transition; the sequence converges to the breakdown threshold of $\omega_{r}=2 \pi \frac{\sqrt{5}-1}{2}$.

p_{j} / q_{j}	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}($ cons $)$ $\varepsilon_{\text {Sob }}=[0.9716]$	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.9)$ $\varepsilon_{S o b}=[0.972]$	$\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.5)$ $\varepsilon_{S o b}=[0.979]$
$1 / 2$	0.9999	0.999	0.999
$2 / 3$	0.9582	0.999	0.999
$3 / 5$	0.9778	0.999	0.999
$5 / 8$	0.9690	0.993	0.992
$8 / 13$	0.9726	0.981	0.987
$13 / 21$	0.9711	0.980	0.983
$21 / 34$	0.9717	0.976	0.980
$34 / 55$	0.9715	0.975	0.979
$55 / 89$	0.9716	0.974	0.979

Outline

1. Break-down of quasi-periodic tori and attractors

2. KAM break-down criterion

3. Partial justification of Greene's method

4. Complex perturbing parameter

5. Applications

Partial justification of Greene's method [Calleja, Celletti, de la Llave, Falcolini 2014]

- Greene's criterion: originally developed for the standard map, gives the existence of an invariant curve with frequency ω if and only if the periodic orbits with frequencies given by the rational approximants p_{j} / q_{j} approaching ω are at the border of linear stability, measured by the residue $R\left(\frac{p_{j}}{q_{j}}\right)=\frac{1}{4}\left(2-\operatorname{Tr}\left(D f^{q}\right)\right)$.
- Partial justifications for the symplectic case (Falcolini-de la Llave, MacKay) show that all periodic orbits with rotation number close to ω will have small residue.

Partial justification of Greene's method [Calleja, Celletti, de la Llave, Falcolini 2014]

- Greene's criterion: originally developed for the standard map, gives the existence of an invariant curve with frequency ω if and only if the periodic orbits with frequencies given by the rational approximants p_{j} / q_{j} approaching ω are at the border of linear stability, measured by the residue $R\left(\frac{p_{j}}{q_{j}}\right)=\frac{1}{4}\left(2-\operatorname{Tr}\left(D f^{q}\right)\right)$.
- Partial justifications for the symplectic case (Falcolini-de la Llave, MacKay) show that all periodic orbits with rotation number close to ω will have small residue.
- Partial justifications for the conformally symplectic case ([CCL+Falcolini, 2013]): if there exists a smooth invariant attractor, one can predict the eigenvalues of the periodic orbits approximating the torus for parameters close to those of the attractor.

Partial justification of Greene's method [Calleja, Celletti, de la Llave, Falcolini 2014]

- Greene's criterion: originally developed for the standard map, gives the existence of an invariant curve with frequency ω if and only if the periodic orbits with frequencies given by the rational approximants p_{j} / q_{j} approaching ω are at the border of linear stability, measured by the residue $R\left(\frac{p_{j}}{q_{j}}\right)=\frac{1}{4}\left(2-\operatorname{Tr}\left(D f^{q}\right)\right)$.
- Partial justifications for the symplectic case (Falcolini-de la Llave, MacKay) show that all periodic orbits with rotation number close to ω will have small residue.
- Partial justifications for the conformally symplectic case ([CCL+Falcolini, 2013]): if there exists a smooth invariant attractor, one can predict the eigenvalues of the periodic orbits approximating the torus for parameters close to those of the attractor.
- We use the linearization theorem and give 2 different proofs: deformation theory and NHIM theory.
- Let the periodic orbit have frequency $\nu=\left(a_{1}, \ldots, a_{n}\right) / L$ with $a_{j} \in \mathbb{Z}, L \in \mathbb{N}$. The spectrum has a pairing rule: $\operatorname{Spec}\left(D f^{L}\right)=\left\{\gamma_{i}, \lambda^{L} \gamma_{i}^{-1}\right\}$.

Theorem (Calleja,A.C.,Falcolini,de la Llave, 2013)

Let f_{μ} be conformally symplectic, such that f_{0} admits a Lagrangian invariant torus with frequency ω. Then, there exists a ngh. \mathcal{U} of the torus, s.t. when the periodic orbit with $\nu=\left(a_{1}, \ldots, a_{n}\right) / L$ is in \mathcal{U}, there exists $C_{N}>0$ s.t.

$$
\left|\gamma_{i}-1\right| \leq L C_{N}\|\mu\|^{N} \simeq C_{N}\|\omega-\nu\|^{N}, \quad i=1, \ldots, n .
$$

- Thus we have bounds on the spectral numbers of the periodic orbits.
- We get also upper/lower bounds on the width of the Arnold tongues.
- Proof: deformation theory:
- Find a smooth change of variables (normal form) that reduces the system to ($\theta+S_{\mu}, \lambda I$) up to an error (S_{μ} polynomial function)
- The spectrum is invariant under smooth changes of variables
- For the system in normal form neglecting the remainder, the spectral numbers are equal to 1 and the residue is zero
- Estimate the spectrum by bounding the error in the normal form (use the theory of deformations, [de la Llave, Banyaga, Wayne, Marco, Moriyón]).
- Proof: NHIM and averaging theory:
- NHIM theory (Fenichel, Hirsch, Pugh, Shub): \mathcal{T}_{μ} is a family of tori invariant under f_{μ} (the invariant torus for f_{0} is a NHIM)
- We can write these manifolds as the image of the torus under a family of maps K_{μ} such that $f_{\mu} \circ K_{\mu}=K_{\mu} \circ R_{\mu}$, where R_{μ} denotes the dynamics of f_{μ} restricted to \mathcal{T}_{μ} (R_{0} is the Diophantine rotation)
- Averaging theory tells us that for $N \leq N_{0}$ we can find a diffeomorphism $B_{\mu}^{(N)}$ and a rotation $T_{\omega_{\mu}^{(N)}}$ such that

$$
\left(B_{\mu}^{(N)}\right)^{-1} \circ R_{\mu} \circ B_{\mu}^{(N)}=T_{\omega_{\mu}^{(N)}}+O\left(\|\mu\|^{N+1}\right)
$$

- Periodic orbits (in the NHIM) have n Lyapunov exponents close to 1
- Pairing rule and Lagrangian character of the tori imply that the remaining exponents of the periodic orbit with $\rho=a / L$ are close to λ^{L}.

Outline

1. Break-down of quasi-periodic tori and attractors

2. KAM break-down criterion

3. Partial justification of Greene's method

4. Complex perturbing parameter
5. Applications

Complex perturbing parameter [Calleja, Celletti 2010]

- We compute the solution of the functional equation assuming $\varepsilon \in \mathbb{C}$.

Applying Newton's method we follow the solution from $\varepsilon=0$ increasing the real and imaginary parts of $\varepsilon=\varepsilon_{r}+i \varepsilon_{i}$ until blow-up.

- The expansion of the parametrization K in terms of the complex ε as the sum of a real and an imaginary part becomes ($K_{j}(\theta)$ are real)

$$
\begin{aligned}
K(\theta ; \varepsilon) & =\sum_{j=1}^{\infty} K_{j}(\theta)\left(\varepsilon_{r}+i \varepsilon_{i}\right)^{j} \\
& =K_{r}\left(\theta ; \varepsilon_{r}, \varepsilon_{i}\right)+i K_{i}\left(\theta ; \varepsilon_{r}, \varepsilon_{i}\right)
\end{aligned}
$$

and the same for $g(\theta+K)=\sin (\theta+K)$:

$$
\varepsilon g(\theta+K)=\varepsilon_{r} g_{r}-\varepsilon_{i} g_{i}+i\left(\varepsilon_{r} g_{i}+\varepsilon_{i} g_{r}\right)
$$

- Setting $\gamma=\omega(1-\lambda)-\mu=\gamma_{r}+i \gamma_{i}$, the functional equation corresponds to the following two equations:

$$
\begin{aligned}
D_{1} D_{\lambda} K_{r}\left(\theta+\omega ; \varepsilon_{r}, \varepsilon_{i}\right)-\varepsilon_{r} g_{r}(\theta)+\varepsilon_{i} g_{i}(\theta)-\gamma_{r} & =0 \\
D_{1} D_{\lambda} K_{i}\left(\theta+\omega ; \varepsilon_{r}, \varepsilon_{i}\right)-\varepsilon_{r} g_{i}(\theta)-\varepsilon_{i} g_{r}(\theta)-\gamma_{i} & =0 .
\end{aligned}
$$

- Figure: domains of existence in the complex ε-plane for different mappings, for $\omega /(2 \pi)=[3,12,1,1,1,1, \ldots]$ and the golden ratio, for specific values of λ (cut of Figure top-right is possibly due to the fact that the frequency is close to a rational).
- The shapes of the existence domains strongly depend on the choice of the function $g(\theta)$ (bottom panel).

Figure: Axes: ε_{r} and ε_{i}. a) $\left.g(x)=\sin x, \omega /(2 \pi)=\frac{\sqrt{5}-1}{2}, \lambda=0.9 ; b\right) g(x)=\sin x$, $\omega /(2 \pi)=[3,12,1,1,1,1, \ldots], \lambda=0.9 ; c) g(x)=\sin x+\frac{1}{20} \sin (4 x)+\frac{1}{30} \sin (6 x)$, $\omega /(2 \pi)=\frac{\sqrt{5}-1}{2}, \lambda=0.9$.

Outline

1. Break-down of quasi-periodic tori and attractors

2. KAM break-down criterion

3. Partial justification of Greene's method

4. Complex perturbing parameter

5. Applications

Applications

- Standard map
- Rotational dynamics: spin-orbit problem
- Orbital dynamics: three-body problem

KAM stability through confinement

- Confinement in 2-dimensional systems: dim(phase space)=4, dim(constant energy level $)=3$, $\operatorname{dim}($ invariant tori $)=2 \rightarrow$ confinement in phase space for ∞ times between bounding invariant tori

- Confinement no more valid for $n>2$: the motion can diffuse through invariant tori, reaching arbitrarily far regions (Arnold's diffusion).

standard map

Results of the '90s

- [A.C., L. Chierchia] Let $\omega=2 \pi \frac{\sqrt{5}-1}{2} ;|\varepsilon| \leq 0.838$ (86% of Greene's value) there exists an invariant curve with frequency ω.
- [R. de la Llave, D. Rana] Using accurate strategies and efficient computer-assisted algorithms, the result was improved to 93% of Greene's value.
- Very recent results [J.-L. Figueras, A. Haro, A. Luque] in http://arxiv.org/abs/1601.00084 reaching 99.9\%!!!

standard map

- Using $K_{2}(\theta)=\theta+u(\theta)$, the invariance equation is

$$
\begin{equation*}
D_{1} D_{\lambda} u(\theta)-\varepsilon \sin (\theta+u(\theta))+\omega(1-\lambda)-\mu=0 \tag{1}
\end{equation*}
$$

with $D_{\lambda} u(\theta)=u\left(\theta+\frac{\omega}{2}\right)-\lambda u\left(\theta-\frac{\omega}{2}\right)$.

Proposition [dissipative standard map, R. Calleja, A.C., R. de la Llave (2016)]

Let $\omega=2 \pi \frac{\sqrt{5}-1}{2}$ and $\lambda=0.9$; then, for $\varepsilon \leq \varepsilon_{K A M}$, there exists a unique solution $u=u(\theta)$ of (1), provided that $\mu=\omega(1-\lambda)+\left\langle u_{\theta} D_{1} D_{\lambda} u\right\rangle$.

- The drift μ must be suitably tuned and cannot be chosen independently from ω.

standard map

- Using $K_{2}(\theta)=\theta+u(\theta)$, the invariance equation is

$$
\begin{equation*}
D_{1} D_{\lambda} u(\theta)-\varepsilon \sin (\theta+u(\theta))+\omega(1-\lambda)-\mu=0 \tag{1}
\end{equation*}
$$

with $D_{\lambda} u(\theta)=u\left(\theta+\frac{\omega}{2}\right)-\lambda u\left(\theta-\frac{\omega}{2}\right)$.

Proposition [dissipative standard map, R. Calleja, A.C., R. de la Llave (2016)]

Let $\omega=2 \pi \frac{\sqrt{5}-1}{2}$ and $\lambda=0.9$; then, for $\varepsilon \leq \varepsilon_{K A M}$, there exists a unique solution $u=u(\theta)$ of (1), provided that $\mu=\omega(1-\lambda)+\left\langle u_{\theta} D_{1} D_{\lambda} u\right\rangle$.

- The drift μ must be suitably tuned and cannot be chosen independently from ω.

standard map

- Using $K_{2}(\theta)=\theta+u(\theta)$, the invariance equation is

$$
\begin{equation*}
D_{1} D_{\lambda} u(\theta)-\varepsilon \sin (\theta+u(\theta))+\omega(1-\lambda)-\mu=0 \tag{1}
\end{equation*}
$$

with $D_{\lambda} u(\theta)=u\left(\theta+\frac{\omega}{2}\right)-\lambda u\left(\theta-\frac{\omega}{2}\right)$.
Proposition [dissipative standard map, R. Calleja, A.C., R. de la Llave (2016)]

Let $\omega=2 \pi \frac{\sqrt{5}-1}{2}$ and $\lambda=0.9$; then, for $\varepsilon \leq \varepsilon_{K A M}$, there exists a unique solution $u=u(\theta)$ of (1), provided that $\mu=\omega(1-\lambda)+\left\langle u_{\theta} D_{1} D_{\lambda} u\right\rangle$.

- The drift μ must be suitably tuned and cannot be chosen independently from ω.
- Preliminary result: conf. symplectic version, careful estimates, continuation method using the Fourier expansion of the initial approximate solution \Rightarrow

$$
\varepsilon_{K A M}=99 \% \text { of the critical breakdown threshold. }
$$

Rotational dynamics

The Moon and all evolved satellites, always point the same face to the host planet: 1:1 resonance, i.e. 1 rotation $=1$ revolution (Phobos, Deimos - Mars, Io, Europa, Ganimede, Callisto - Jupiter, Titan, Rhea, Enceladus, etc.). Only exception: Mercury in a $3: 2$ spin-orbit resonance (3 rotations $=2$ revolutions).

- Important dissipative effect: tidal torque, due to the non-rigidity of planets and satellites.

Conservative spin-orbit problem

- Spin-orbit problem: triaxial satellite \mathcal{S} (with $A<B<C$) moving on a Keplerian orbit around a central planet \mathcal{P}, assuming that the spin-axis is perpendicular to the orbit plane and coincides with the shortest physical axis.

Conservative spin-orbit problem

- Spin-orbit problem: triaxial satellite \mathcal{S} (with $A<B<C$) moving on a Keplerian orbit around a central planet \mathcal{P}, assuming that the spin-axis is perpendicular to the orbit plane and coincides with the shortest physical axis.
- Equation of motion:

$$
\ddot{x}+\varepsilon\left(\frac{a}{r}\right)^{3} \sin (2 x-2 f)=0, \quad \varepsilon=\frac{3}{2} \frac{B-A}{C} .
$$

- The (Diophantine) frequencies of the bounding tori are for example:

$$
\omega_{-} \equiv 1-\frac{1}{2+\frac{\sqrt{5}-1}{2}}, \quad \omega_{+} \equiv 1+\frac{1}{2+\frac{\sqrt{5}-1}{2}}
$$

Proposition [spin-orbit model, A.C. (1990)]

Consider the spin-orbit Hamiltonian defined in $U \times \mathbb{T}^{2}$ with $U \subset \mathbb{R}$ open set. Then, for the true eccentricity of the Moon $e=0.0549$, there exist invariant tori, bounding the motion of the Moon, for any $\varepsilon \leq \varepsilon_{\text {Moon }}=3.45 \cdot 10^{-4}$.

Dissipative spin-orbit problem

- Possible forthcoming estimates: spin-orbit equation with tidal torque given by

$$
\begin{equation*}
\ddot{x}+\varepsilon\left(\frac{a}{r}\right)^{3} \sin (2 x-2 f)=-\lambda(\dot{x}-\mu), \tag{2}
\end{equation*}
$$

where λ, μ depend on the orbital (e) and physical properties of the satellite.

Dissipative spin-orbit problem

- Possible forthcoming estimates: spin-orbit equation with tidal torque given by

$$
\begin{equation*}
\ddot{x}+\varepsilon\left(\frac{a}{r}\right)^{3} \sin (2 x-2 f)=-\lambda(\dot{x}-\mu) \tag{2}
\end{equation*}
$$

where λ, μ depend on the orbital (e) and physical properties of the satellite.

Proposition [A.C., L. Chierchia (2009)]

Let $\lambda_{0} \in \mathbb{R}_{+}, \omega$ Diophantine. There exists $0<\varepsilon_{0}<1$, such that for any $\varepsilon \in\left[0, \varepsilon_{0}\right]$ and any $\lambda \in\left[-\lambda_{0}, \lambda_{0}\right]$ there exists a unique function $u=u(\theta, t)$ with $\langle u\rangle=0$, such that

$$
x(t)=\omega t+u(\omega t, t)
$$

solves the equation of motion with $\mu=\omega\left(1+\left\langle u_{\theta}^{2}\right\rangle\right)$.

three-body problem

- Consider the motion of a small body (with negligible mass) under the gravitational influence of two primaries, moving on Keplerian orbits about their common barycenter (restricted problem).
- Assume that the orbits of the primaries are circular and that all bodies move on the same plane: planar, circular, restricted three-body problem (PCR3BP).

three-body problem

- Consider the motion of a small body (with negligible mass) under the gravitational influence of two primaries, moving on Keplerian orbits about their common barycenter (restricted problem).
- Assume that the orbits of the primaries are circular and that all bodies move on the same plane: planar, circular, restricted three-body problem (PCR3BP).
- Adopting suitable normalized units and action-angle Delaunay variables $(L, G) \in \mathbb{R}^{2},(\ell, g) \in \mathbb{T}^{2}$, we obtain a 2 d.o.f. Hamiltonian function:

$$
\mathcal{H}(L, G, \ell, g)=-\frac{1}{2 L^{2}}-G+\varepsilon R(L, G, \ell, g)
$$

- ε primaries' mass ratio ($\varepsilon=0$ Keplerian motion). Actions: $L=\sqrt{a}$, $G=L \sqrt{1-e^{2}}$.
- Degenerate Hamiltonian, but Arnold's isoenergetic non-degenerate (persistence of invariant tori on a fixed energy surface), i.e. setting $h(L, G)=-\frac{1}{2 L^{2}}-G$:

$$
\operatorname{det}\left(\begin{array}{cc}
h^{\prime \prime}(L, G) & h^{\prime}(L, G) \\
h^{\prime}(L, G)^{T} & 0
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
-\frac{3}{L^{4}} & 0 & \frac{1}{L^{3}} \\
0 & 0 & -1 \\
\frac{1}{L^{3}} & -1 & 0
\end{array}\right)=\frac{3}{L^{4}} \neq 0 \quad \text { for all } L \neq 0
$$

- Dimension phase space $=4$, fix the energy: $\operatorname{dim}=3$; dimension invariant tori $=2$.

Result: The stability of the small body can be obtained by proving the existence of invariant surfaces which confine the motion of the asteroid on a preassigned energy level.

Sample: Sun, Jupiter, asteroid 12 Victoria with

$$
a_{\mathrm{V}} \simeq 0.449, \quad e_{\mathrm{V}} \simeq 0.220, \quad \imath_{\mathrm{V}} \simeq \frac{8.363-1.305}{360}=1.961 \cdot 10^{-2}
$$

- Size of the perturbing parameter: $\varepsilon_{J}=0.954 \cdot 10^{-3}$.
- Approximations: disregard $e_{J}=4.82 \cdot 10^{-2}$ (worst physical approximation), inclinations, gravitational effects of other bodies (Mars and Saturn), dissipative phenomena (tides, solar winds, Yarkovsky effect,...)
- Empirical criterion: expand the perturbation in e and a, neglecting contributions smaller than e_{J}. Neglect terms of order $O(\varepsilon)$ in F_{ε} (i.e. replace F_{ε} by F_{0}).
- One-parameter family of Hamiltonians $(0<G<L)$:

$$
H_{\mathrm{SJV}}(L, G, \ell, g ; \varepsilon)=-\frac{1}{2 L^{2}}-G+\varepsilon H_{1}(L, G, \ell, g)
$$

with ($a=L^{2}, e=\sqrt{1-\frac{G^{2}}{L^{2}}}$)

$$
\begin{aligned}
& H_{1}(L, G, \ell, g)=-\left(1+\frac{a^{2}}{4}+\frac{9}{64} a^{4}+\frac{3}{8} a^{2} e^{2}\right) \\
+ & \left(\frac{1}{2}+\frac{9}{16} a^{2}\right) a^{2} e \cos \ell-\left(\frac{3}{8} a^{3}+\frac{15}{64} a^{5}\right) \cos (\ell+g) \\
+ & \left(\frac{9}{4}+\frac{5}{4} a^{2}\right) a^{2} e \cos (\ell+2 g)-\left(\frac{3}{4} a^{2}+\frac{5}{16} a^{4}\right) \cos (2 \ell+2 g) \\
- & \frac{3}{4} a^{2} e \cos (3 \ell+2 g)-\left(\frac{5}{8} a^{3}+\frac{35}{128} a^{5}\right) \cos (3 \ell+3 g) \\
- & \frac{35}{64} a^{4} \cos (4 \ell+4 g)-\frac{63}{128} a^{5} \cos (5 \ell+5 g) .
\end{aligned}
$$

- Fixing the perturbation parameter at the value $\varepsilon=\varepsilon_{J}$, we obtain the Sun-Jupiter-Victoria Hamiltonian:

$$
\begin{aligned}
\bar{H}_{\mathrm{SJV}}(L, G, \ell, g) & =-\frac{1}{2 L^{2}}-G+\varepsilon_{J} H_{1}(L, G, \ell, g) \\
& =H_{0}(L, G)+\varepsilon_{J} H_{1}(L, G, \ell, g)
\end{aligned}
$$

- Observed values: $L_{\mathrm{V}}=\sqrt{a_{\mathrm{V}}} \simeq 0.670, G_{\mathrm{V}}=L_{\mathrm{V}} \sqrt{1-e_{\mathrm{V}}^{2}} \simeq 0.654$.
- Define the "osculating energy value" in terms of the Keplerian approximation and in terms of the "secular" effects; define $E_{\mathrm{V}}^{(0)}$ and $E_{\mathrm{V}}^{(1)}$ as

$$
\begin{aligned}
H_{0}\left(L_{\mathrm{V}}, G_{\mathrm{V}}\right) & =-\frac{1}{2 L_{\mathrm{V}}^{2}}-G_{\mathrm{V}} \simeq-1.768=E_{\mathrm{V}}^{(0)} \\
\left\langle H_{1}\left(L_{\mathrm{V}}, G_{\mathrm{V}}, \cdot, \cdot\right)\right\rangle & \simeq-1.060=E_{\mathrm{V}}^{(1)} \\
E_{\mathrm{V}}(\varepsilon) & =E_{\mathrm{V}}^{(0)}+\varepsilon E_{\mathrm{V}}^{(1)} .
\end{aligned}
$$

- Osculating energy level of the Sun-Jupiter-Victoria model:

$$
\bar{E}_{\mathrm{V}}=E_{\mathrm{V}}\left(\varepsilon_{J}\right)=E_{\mathrm{V}}^{(0)}+\varepsilon_{J} E_{\mathrm{V}}^{(1)} \simeq-1.769
$$

- From now on we will be concerned with such one-parameter family of energy surfaces:

$$
\mathcal{S}_{\varepsilon, \mathrm{V}}=H_{\mathrm{SJV}}^{-1}\left(E_{\mathrm{V}}(\varepsilon)\right)
$$

- We consider two invariant tori on $\mathcal{S}_{0, \mathrm{v}}$, which bound from above and below the observed value L_{V} : we define

$$
\tilde{L}_{ \pm}=L_{V} \pm 0.001
$$

- The corresponding frequencies are:

$$
\underline{\underline{\omega}}_{ \pm}=\frac{\partial H_{0}}{\partial(L, G)}=\left(\frac{1}{\tilde{L}_{ \pm}^{3}},-1\right)=\left(\tilde{\alpha}_{ \pm},-1\right) .
$$

- Since we need Diophantine frequencies, we compute the continued fraction representation up to the order 5 of $\tilde{\alpha}_{ \pm}$and then we modify the frequencies by adding a tail of all one's.
- Result: two quadratic "noble" numbers $\alpha_{ \pm}$given by:

$$
\begin{aligned}
& \alpha_{-}=\left[3 ; 3,4,2,1^{\infty}\right]=3.30976937631389 \ldots \\
& \alpha_{+}=\left[3 ; 2,1,17,5,1^{\infty}\right]=3.33955990647860 \ldots
\end{aligned}
$$

We can now define the Diophantine frequencies

$$
\underline{\omega}_{ \pm}=\left(\alpha_{ \pm},-1\right),
$$

with corresponding Diophantine constants

$$
\tau_{ \pm}=\tau=1, \quad \gamma_{-}=7.224496 \cdot 10^{-3}, \quad \gamma_{+}=3.324329 \cdot 10^{-2}
$$

- We are interested in the KAM continuation of the following unperturbed tori, which lie on the energy level $H_{0}^{-1}\left(E_{V}^{(0)}\right)$:

$$
\mathcal{T}_{0}^{ \pm}=\left\{\left(L_{ \pm}, G_{ \pm}\right)\right\} \times \mathbb{T}^{2}
$$

with

$$
L_{ \pm}=\frac{1}{\alpha_{ \pm}^{1 / 3}}, \quad G_{ \pm}=-\frac{1}{2 L_{ \pm}^{2}}-E_{V}^{(0)}
$$

- Concrete example: Sun, Jupiter, asteroid 12 Victoria with $a=0.449$ (in Jupiter-Sun unit distance) and $e=0.22$, so that $L_{\mathrm{V}} \simeq 0.670, G_{\mathrm{V}} \simeq 0.654$.
- Select the energy level as $E_{\mathrm{V}}^{*}=-\frac{1}{2 L_{\mathrm{v}}^{2}}-G_{\mathrm{V}}+\varepsilon_{J}\left\langle R\left(L_{\mathrm{V}}, G_{\mathrm{V}}, \ell, g\right)\right\rangle \simeq-1.769$, where $\varepsilon_{J} \simeq 10^{-3}$ is the observed Jupiter-Sun mass-ratio. On such (3-dim) energy level prove the existence of two (2-dim) trapping tori with frequencies $\omega_{ \pm}$.
- Concrete example: Sun, Jupiter, asteroid 12 Victoria with $a=0.449$ (in Jupiter-Sun unit distance) and $e=0.22$, so that $L_{\mathrm{V}} \simeq 0.670, G_{\mathrm{V}} \simeq 0.654$.
- Select the energy level as $E_{\mathrm{V}}^{*}=-\frac{1}{2 L_{\mathrm{V}}^{2}}-G_{\mathrm{V}}+\varepsilon_{J}\left\langle R\left(L_{\mathrm{V}}, G_{\mathrm{V}}, \ell, g\right)\right\rangle \simeq-1.769$, where $\varepsilon_{J} \simeq 10^{-3}$ is the observed Jupiter-Sun mass-ratio. On such (3-dim) energy level prove the existence of two (2-dim) trapping tori with frequencies $\omega_{ \pm}$.

Proposition [three-body problem, A.C., L. Chierchia (2007)]

Let $E=E_{\mathrm{V}}^{*}$. Then, for $|\varepsilon| \leq 10^{-3}$ the unperturbed tori with trapping frequencies $\omega_{ \pm}$can be analytically continued into KAM tori for the perturbed system on the energy level $\mathcal{H}^{-1}\left(E_{\mathrm{V}}^{*}\right)$ keeping fixed the ratio of the frequencies.

- Due to the link between a, e and L, G, this result guarantees that a, e remain close to the unperturbed values within an interval of size of order ε.

Corollary: The values of the perturbed integrals $L(t)$ and $G(t)$ stay close forever to their initial values L_{V} and G_{V} and the actual motion (in the mathematical model) is nearly elliptical with osculating orbital values close to the observed ones.

