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Break–down of quasi–periodic tori and attractors

•We can compute a rigorous lower bound of the break–down threshold of
invariant tori by means of KAM theory.

•Which is the real break–down value?

• In physical problems one can compare KAM result with a measure of the
parameter. For example in the 3-body problem, ε = mJupiter

mSun
' 10−3.

• In model problems one needs to apply numerical techniques: KAM
break–down criterion, Greene’s technique, frequency analysis, etc.
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KAM break–down criterion [Calleja, Celletti 2010]

• Solve the invariance equation for (K, µ):

fµ ◦ K(θ) = K(θ + ω) .

• Numerically efficient criterion: close to breakdown, one has a blow up of
the Sobolev norms of a trigonometric approximation of the embedding:

K(L)(θ) =
∑
|`|≤L

K̂` ei`θ .

• A regular behavior of ‖K(L)‖m as ε increases (for λ fixed) provides evidence
of the existence of the invariant attractor. Table: εcrit for ωr = 2π

√
5−1
2 .

Conservative case Dissipative case
εcrit λ εcrit

0.9716 0.9 0.9721
0.5 0.9792
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Greene’s method, periodic orbits and Arnold’s tongues

• Greene’s method: breakdown of C(ω) related to the stability of
P(pj

qj
)→ C(ω), but in the dissipative case: drift in an interval - Arnold tongue

- admitting a periodic orbit.
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Figure: Left: Arnold’s tongues providing µ vs. ε for 3 periodic orbits. Right: For
λ = 0.9 and ε = 0.5 invariant attractor with frequency ωr and approximating periodic
orbits: 5/8 (∗), 8/13 (+), 34/55 (×).
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• Greene’s method: let εωr
pj,qj

be the maximal ε for which the periodic orbit has
a stability transition; the sequence converges to the breakdown threshold of
ωr = 2π

√
5−1
2 .

pj/qj εωr
pj,qj

(cons) εωr
pj,qj

(λ = 0.9) εωr
pj,qj

(λ = 0.5)
εSob = [0.9716] εSob = [0.972] εSob = [0.979]

1/2 0.9999 0.999 0.999

2/3 0.9582 0.999 0.999
3/5 0.9778 0.999 0.999
5/8 0.9690 0.993 0.992
8/13 0.9726 0.981 0.987

13/21 0.9711 0.980 0.983
21/34 0.9717 0.976 0.980
34/55 0.9715 0.975 0.979
55/89 0.9716 0.974 0.979
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Partial justification of Greene’s method [Calleja, Celletti, de
la Llave, Falcolini 2014]

• Greene’s criterion: originally developed for the standard map, gives the
existence of an invariant curve with frequency ω if and only if the periodic
orbits with frequencies given by the rational approximants pj/qj approaching
ω are at the border of linear stability, measured by the residue
R(pj

qj
) = 1

4(2− Tr(Df q)).
• Partial justifications for the symplectic case (Falcolini–de la Llave,
MacKay) show that all periodic orbits with rotation number close to ω will
have small residue.

• Partial justifications for the conformally symplectic case ([CCL+Falcolini,
2013]): if there exists a smooth invariant attractor, one can predict the
eigenvalues of the periodic orbits approximating the torus for parameters
close to those of the attractor.
•We use the linearization theorem and give 2 different proofs: deformation
theory and NHIM theory.
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• Let the periodic orbit have frequency ν = (a1, ..., an)/L with aj ∈ Z, L ∈ N.
The spectrum has a pairing rule: Spec(Df L) = {γi, λ

Lγ−1
i }.

Theorem (Calleja,A.C.,Falcolini,de la Llave, 2013)
Let fµ be conformally symplectic, such that f0 admits a Lagrangian invariant
torus with frequency ω. Then, there exists a ngh. U of the torus, s.t. when the
periodic orbit with ν = (a1, ..., an)/L is in U , there exists CN > 0 s.t.

|γi − 1| ≤ L CN ‖µ‖N ' CN ‖ω − ν‖N , i = 1, ..., n .

• Thus we have bounds on the spectral numbers of the periodic orbits.

•We get also upper/lower bounds on the width of the Arnold tongues.
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• Proof: deformation theory:
I Find a smooth change of variables (normal form) that reduces the system to
(θ + Sµ, λI) up to an error (Sµ polynomial function)

I The spectrum is invariant under smooth changes of variables

I For the system in normal form neglecting the remainder, the spectral
numbers are equal to 1 and the residue is zero

I Estimate the spectrum by bounding the error in the normal form (use the
theory of deformations, [de la Llave, Banyaga, Wayne, Marco, Moriyón]).
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• Proof: NHIM and averaging theory:

I NHIM theory (Fenichel, Hirsch, Pugh, Shub): Tµ is a family of tori
invariant under fµ (the invariant torus for f0 is a NHIM)

I We can write these manifolds as the image of the torus under a family of
maps Kµ such that fµ ◦ Kµ = Kµ ◦ Rµ, where Rµ denotes the dynamics of fµ
restricted to Tµ (R0 is the Diophantine rotation)

I Averaging theory tells us that for N ≤ N0 we can find a diffeomorphism
B(N)
µ and a rotation T

ω
(N)
µ

such that

(B(N)
µ )−1 ◦ Rµ ◦ B(N)

µ = T
ω
(N)
µ

+ O(‖µ‖N+1)

I Periodic orbits (in the NHIM) have n Lyapunov exponents close to 1

I Pairing rule and Lagrangian character of the tori imply that the remaining
exponents of the periodic orbit with ρ = a/L are close to λL.
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Complex perturbing parameter [Calleja, Celletti 2010]

•We compute the solution of the functional equation assuming ε ∈ C.
Applying Newton’s method we follow the solution from ε = 0 increasing the
real and imaginary parts of ε = εr + iεi until blow-up.
• The expansion of the parametrization K in terms of the complex ε as the
sum of a real and an imaginary part becomes (Kj(θ) are real)

K(θ; ε) =

∞∑
j=1

Kj(θ)(εr + iεi)
j

= Kr(θ; εr, εi) + iKi(θ; εr, εi)

and the same for g(θ + K) = sin(θ + K):

εg(θ + K) = εrgr − εigi + i(εrgi + εigr) .
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• Setting γ = ω(1− λ)− µ = γr + iγi, the functional equation corresponds
to the following two equations:

D1DλKr(θ + ω; εr, εi)− εrgr(θ) + εigi(θ)− γr = 0

D1DλKi(θ + ω; εr, εi)− εrgi(θ)− εigr(θ)− γi = 0 .

• Figure: domains of existence in the complex ε–plane for different
mappings, for ω/(2π) = [3, 12, 1, 1, 1, 1, ...] and the golden ratio, for specific
values of λ (cut of Figure top-right is possibly due to the fact that the
frequency is close to a rational).

• The shapes of the existence domains strongly depend on the choice of the
function g(θ) (bottom panel).
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Figure: Axes: εr and εi. a) g(x) = sin x, ω/(2π) =
√

5−1
2 , λ = 0.9; b) g(x) = sin x,

ω/(2π) = [3, 12, 1, 1, 1, 1, ...], λ = 0.9; c) g(x) = sin x + 1
20 sin(4x) + 1

30 sin(6x),
ω/(2π) =

√
5−1
2 , λ = 0.9.
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Applications

•
�� ��Standard map

• Rotational dynamics:
�� ��spin–orbit problem

• Orbital dynamics:
�� ��three–body problem
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KAM stability through confinement

• Confinement in 2–dimensional systems: dim(phase space)=4, dim(constant
energy level)=3, dim(invariant tori)=2→ confinement in phase space for∞
times between bounding invariant tori
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• Confinement no more valid for n > 2: the motion can diffuse through
invariant tori, reaching arbitrarily far regions (Arnold’s diffusion).
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Conservative standard map

Results of the ’90s

• [A.C., L. Chierchia] Let ω = 2π
√

5−1
2 ; |ε| ≤ 0.838 (86% of Greene’s value) there

exists an invariant curve with frequency ω.
• [R. de la Llave, D. Rana] Using accurate strategies and efficient computer–assisted
algorithms, the result was improved to 93% of Greene’s value.
• Very recent results [J.-L. Figueras, A. Haro, A. Luque] in
http://arxiv.org/abs/1601.00084 reaching 99.9%!!!
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Dissipative standard map

• Using K2(θ) = θ + u(θ), the invariance equation is

D1Dλu(θ)− ε sin(θ + u(θ)) + ω(1− λ)− µ = 0 (1)

with Dλu(θ) = u(θ + ω
2 )− λu(θ − ω

2 ).

Proposition [dissipative standard map, R. Calleja, A.C., R. de la Llave
(2016)]

Let ω = 2π
√

5−1
2 and λ = 0.9; then, for ε ≤ εKAM, there exists a unique

solution u = u(θ) of (1), provided that µ = ω(1− λ) + 〈uθ D1Dλu〉.

• The drift µ must be suitably tuned and cannot be chosen independently from ω.

• Preliminary result: conf. symplectic version, careful estimates, continuation
method using the Fourier expansion of the initial approximate solution⇒

εKAM =
�� ��99% of the critical breakdown threshold .
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Rotational dynamics

The Moon and all evolved satellites, always point the same face to the host planet:
1:1 resonance, i.e. 1 rotation = 1 revolution (Phobos, Deimos - Mars, Io, Europa,
Ganimede, Callisto - Jupiter, Titan, Rhea, Enceladus, etc.).
Only exception: Mercury in a 3:2 spin–orbit resonance (3 rotations = 2 revolutions).

• Important dissipative effect: tidal torque, due to the non–rigidity of planets and
satellites.
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Conservative spin–orbit problem

• Spin–orbit problem: triaxial satellite S (with A < B < C) moving on a
Keplerian orbit around a central planet P , assuming that the spin–axis is
perpendicular to the orbit plane and coincides with the shortest physical axis.

• Equation of motion:

ẍ + ε(
a
r
)3 sin(2x− 2f ) = 0 , ε =

3
2

B− A
C

.

• The (Diophantine) frequencies of the bounding tori are for example:

ω− ≡ 1− 1

2 +
√

5−1
2

, ω+ ≡ 1 +
1

2 +
√

5−1
2

.

Proposition [spin–orbit model, A.C. (1990)]

Consider the spin–orbit Hamiltonian defined in U × T2 with U ⊂ R open set.
Then, for the true eccentricity of the Moon e = 0.0549, there exist invariant
tori, bounding the motion of the Moon, for any ε ≤ εMoon = 3.45 · 10−4.
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Dissipative spin–orbit problem

• Possible forthcoming estimates: spin–orbit equation with tidal torque given
by

ẍ + ε
(a

r

)3
sin(2x− 2f ) = −λ(ẋ− µ) , (2)

where λ, µ depend on the orbital (e) and physical properties of the satellite.

Proposition [A.C., L. Chierchia (2009)]

Let λ0 ∈ R+, ω Diophantine. There exists 0 < ε0 < 1, such that for any
ε ∈ [0, ε0] and any λ ∈ [−λ0, λ0] there exists a unique function u = u(θ, t)
with 〈u〉 = 0, such that

x(t) = ω t + u(ωt, t)

solves the equation of motion with µ = ω (1 + 〈u2
θ〉).
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Conservative three–body problem

• Consider the motion of a small body (with negligible mass) under the
gravitational influence of two primaries, moving on Keplerian orbits about
their common barycenter (restricted problem).
• Assume that the orbits of the primaries are circular and that all bodies move
on the same plane: planar, circular, restricted three–body problem (PCR3BP).

• Adopting suitable normalized units and action–angle Delaunay variables
(L,G) ∈ R2, (`, g) ∈ T2, we obtain a 2 d.o.f. Hamiltonian function:

H(L,G, `, g) = − 1
2L2 − G + εR(L,G, `, g) .

• ε primaries’ mass ratio (ε = 0 Keplerian motion). Actions: L =
√

a,
G = L

√
1− e2.

• Degenerate Hamiltonian, but Arnold’s isoenergetic non–degenerate (persistence of
invariant tori on a fixed energy surface), i.e. setting h(L,G) = − 1

2L2 − G:

det
(

h′′(L,G) h′(L,G)
h′(L,G)T 0

)
= det

 − 3
L4 0 1

L3

0 0 −1
1
L3 −1 0

 =
3
L4 6= 0 for all L 6= 0 .
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• Dimension phase space = 4 , fix the energy: dim = 3; dimension invariant
tori = 2.

Result: The stability of the small body can be obtained by proving the
existence of invariant surfaces which confine the motion of the asteroid on a
preassigned energy level.

Sample: Sun, Jupiter, asteroid 12 Victoria with

aV ' 0.449 , eV ' 0.220 , ıV '
8.363− 1.305

360
= 1.961 · 10−2 .

• Size of the perturbing parameter: εJ = 0.954 · 10−3.
• Approximations: disregard eJ = 4.82 · 10−2 (worst physical
approximation), inclinations, gravitational effects of other bodies (Mars and
Saturn), dissipative phenomena (tides, solar winds, Yarkovsky effect,...)

A. Celletti (Univ. Roma Tor Vergata) Perturbation theory, KAM theory and Celestial MechanicsSevilla, 25-27 January 2016 27 / 32



• Empirical criterion: expand the perturbation in e and a, neglecting contributions
smaller than eJ . Neglect terms of order O(ε) in Fε (i.e. replace Fε by F0).
• One-parameter family of Hamiltonians (0 < G < L):

HSJV(L,G, `, g; ε) = −
1

2L2 − G + εH1(L,G, `, g) ,

with (a = L2, e =
√

1− G2

L2 )

H1(L,G, `, g) = −(1 +
a2

4
+

9
64

a4 +
3
8

a2e2)

+
(1

2
+

9
16

a2
)

a2e cos `−
(3

8
a3 +

15
64

a5
)

cos(`+ g)

+
(9

4
+

5
4

a2
)

a2e cos(`+ 2g)−
(3

4
a2 +

5
16

a4
)

cos(2 `+ 2 g)

− 3
4

a2e cos(3 `+ 2 g)−
(5

8
a3 +

35
128

a5
)

cos(3 `+ 3 g)

− 35
64

a4 cos(4 `+ 4 g)− 63
128

a5 cos(5`+ 5g) .
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• Fixing the perturbation parameter at the value ε = εJ , we obtain the
Sun–Jupiter–Victoria Hamiltonian:

HSJV(L,G, `, g) = − 1
2L2 − G + εJH1(L,G, `, g) ,

= H0(L,G) + εJH1(L,G, `, g) .

• Observed values: LV =
√

aV ' 0.670, GV = LV

√
1− e2

V ' 0.654.
• Define the “osculating energy value" in terms of the Keplerian
approximation and in terms of the “secular" effects; define E(0)

V and E(1)
V as

H0(LV,GV) = − 1
2L2

V
− GV ' −1.768 = E(0)

V ,〈
H1(LV,GV, ·, ·)

〉
' −1.060 = E(1)

V ,

EV(ε) = E(0)
V + εE(1)

V .

• Osculating energy level of the Sun-Jupiter-Victoria model:

EV = EV(εJ) = E(0)
V + εJE(1)

V ' −1.769 .
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• From now on we will be concerned with such one–parameter family of
energy surfaces:

Sε,V = H−1
SJV

(
EV(ε)

)
.

•We consider two invariant tori on S0,V, which bound from above and below
the observed value LV: we define

L̃± = LV ± 0.001 .

• The corresponding frequencies are:

ω̃± =
∂H0

∂(L,G)
=
( 1

L̃3
±
,−1

)
= (α̃±,−1) .

• Since we need Diophantine frequencies, we compute the continued fraction
representation up to the order 5 of α̃± and then we modify the frequencies by
adding a tail of all one’s.
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• Result: two quadratic “noble" numbers α± given by:

α− = [3; 3, 4, 2, 1∞] = 3.30976937631389...

α+ = [3; 2, 1, 17, 5, 1∞] = 3.33955990647860...

We can now define the Diophantine frequencies

ω± = (α±,−1) ,

with corresponding Diophantine constants

τ± = τ = 1 , γ− = 7.224496 · 10−3 , γ+ = 3.324329 · 10−2 .

•We are interested in the KAM continuation of the following unperturbed
tori, which lie on the energy level H−1

0 (E(0)
V ):

T ±0 = {(L±,G±)} × T2 ,

with
L± =

1

α
1/3
±

, G± = − 1
2L2
±
− E(0)

V .
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• Concrete example: Sun, Jupiter, asteroid 12 Victoria with a = 0.449 (in
Jupiter–Sun unit distance) and e = 0.22, so that LV ' 0.670, GV ' 0.654.
• Select the energy level as E∗V = − 1

2L2
V
− GV + εJ〈R(LV,GV, `, g)

〉
' −1.769,

where εJ ' 10−3 is the observed Jupiter–Sun mass–ratio. On such (3–dim) energy
level prove the existence of two (2–dim) trapping tori with frequencies ω±.

Proposition [three–body problem, A.C., L. Chierchia (2007)]

Let E = E∗V. Then, for |ε| ≤ 10−3 the unperturbed tori with trapping
frequencies ω± can be analytically continued into KAM tori for the perturbed
system on the energy levelH−1

(
E∗V) keeping fixed the ratio of the

frequencies.

• Due to the link between a, e and L, G, this result guarantees that a, e remain
close to the unperturbed values within an interval of size of order ε.

Corollary: The values of the perturbed integrals L(t) and G(t) stay close
forever to their initial values LV and GV and the actual motion (in the
mathematical model) is nearly elliptical with osculating orbital values close to
the observed ones.
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