Perturbation theory, KAM theory and Celestial Mechanics 9. Breakdown and applications

Alessandra Celletti

Department of Mathematics University of Roma "Tor Vergata"

Sevilla, 25-27 January 2016

- 1. Break-down of quasi-periodic tori and attractors
- 2. KAM break-down criterion
- 3. Partial justification of Greene's method
- 4. Complex perturbing parameter
- 5. Applications

1. Break-down of quasi-periodic tori and attractors

- 2. KAM break-down criterion
- 3. Partial justification of Greene's method
- 4. Complex perturbing parameter
- 5. Applications

• We can compute a rigorous lower bound of the break–down threshold of invariant tori by means of KAM theory.

• Which is the real break-down value?

• In physical problems one can compare KAM result with a measure of the parameter. For example in the 3-body problem, $\varepsilon = \frac{m_{Jupiter}}{m_{Sum}} \simeq 10^{-3}$.

• In model problems one needs to apply numerical techniques: KAM break–down criterion, Greene's technique, frequency analysis, etc.

- 1. Break-down of quasi-periodic tori and attractors
- 2. KAM break-down criterion
- 3. Partial justification of Greene's method
- 4. Complex perturbing parameter
- 5. Applications

KAM break-down criterion [Calleja, Celletti 2010]

• Solve the invariance equation for (K, μ) :

$$f_{\mu} \circ K(\theta) = K(\theta + \omega)$$
.

• Numerically efficient criterion: close to breakdown, one has a blow up of the Sobolev norms of a trigonometric approximation of the embedding:

$$K^{(L)}(\theta) = \sum_{|\ell| \le L} \widehat{K}_{\ell} e^{i\ell\theta} .$$

• A regular behavior of $||K^{(L)}||_m$ as ε increases (for λ fixed) provides evidence of the existence of the invariant attractor. Table: ε_{crit} for $\omega_r = 2\pi \frac{\sqrt{5}-1}{2}$.

Conservative case	Dissipative case	
ε_{crit}	λ	ε_{crit}
0.9716	0.9	0.9721
	0.5	0.9792

Greene's method, periodic orbits and Arnold's tongues

• Greene's method: breakdown of $\mathcal{C}(\omega)$ related to the stability of $\mathcal{P}(\frac{p_j}{q_j}) \to \mathcal{C}(\omega)$, but in the dissipative case: drift in an interval - *Arnold tongue* - admitting a periodic orbit.

Figure: Left: Arnold's tongues providing μ vs. ε for 3 periodic orbits. Right: For $\lambda = 0.9$ and $\varepsilon = 0.5$ invariant attractor with frequency ω_r and approximating periodic orbits: 5/8 (*), 8/13 (+), 34/55 (×).

p_j/q_j	$\varepsilon_{p_j,q_j}^{\omega_r}(cons)$ $\varepsilon_{Sob} = [0.9716]$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.9)$ $\varepsilon_{Sob} = [0.972]$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.5)$
	$\varepsilon_{Sob} = [0.9716]$	$\varepsilon_{Sob} = [0.972]$	$\varepsilon_{Sob} = [0.979]$
1/2	0.9999	0.999	0.999

$\begin{vmatrix} p_j/q_j \\ \varepsilon_{Sob} = \begin{bmatrix} 0.9 \end{bmatrix}$	$\begin{array}{c} \text{ns})\\ \text{0716} \end{array} \begin{vmatrix} \varepsilon_{p_j,q_j}^{\omega_r} (\lambda = 0.97) \\ \varepsilon_{Sob} = [0.97] \end{vmatrix}$	$\begin{array}{c} 9) \\ \varepsilon_{p_j,q_j}^{\omega_r}(\lambda = 0.5) \\ \varepsilon_{Sob} = [0.979] \end{array}$
1/2 0.9999		0.999
2/3 0.9582	2 0.999	0.999

p_j/q_j	$\varepsilon_{p_j,q_j}^{\omega_r}(cons)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.9)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.5)$ $\varepsilon_{Sob} = [0.979]$
	$\varepsilon_{Sob} = [0.9716]$	$\varepsilon_{Sob} = [0.972]$	$\varepsilon_{Sob} = [0.979]$
1/2	0.9999	0.999	0.999
2/3	0.9582	0.999	0.999
3/5	0.9778	0.999	0.999
	1	1	L]

$\varepsilon_{p_j,q_j}^{\omega_r}(cons)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.9)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.5)$
$\varepsilon_{Sob} = [0.9716]$	$\varepsilon_{Sob} = [0.972]$	$\varepsilon_{Sob} = [0.979]$
0.9999	0.999	0.999
0.9582	0.999	0.999
0.9778	0.999	0.999
0.9690	0.993	0.992
	$\varepsilon_{Sob} = [0.9716]$ 0.9999 0.9582 0.9778	$\varepsilon_{Sob} = [0.9716]$ $\varepsilon_{Sob} = [0.972]$ 0.99990.9990.95820.9990.97780.999

p_j/q_j	$\varepsilon_{p_j,q_j}^{\omega_r}(cons)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.9)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.5)$
	$\varepsilon_{Sob} = [0.9716]$	$\varepsilon_{Sob} = [0.972]$	$\varepsilon_{Sob} = [0.979]$
1/2	0.9999	0.999	0.999
2/3	0.9582	0.999	0.999
3/5	0.9778	0.999	0.999
5/8	0.9690	0.993	0.992
8/13	0.9726	0.981	0.987

p_j/q_j	$\varepsilon_{p_j,q_j}^{\omega_r}(cons)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.9)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.5)$
	$\varepsilon_{Sob} = [0.9716]$	$\varepsilon_{Sob} = [0.972]$	$\varepsilon_{Sob} = [0.979]$
1/2	0.9999	0.999	0.999
2/3	0.9582	0.999	0.999
3/5	0.9778	0.999	0.999
5/8	0.9690	0.993	0.992
8/13	0.9726	0.981	0.987
13/21	0.9711	0.980	0.983
			,

p_j/q_j	$\varepsilon_{p_j,q_j}^{\omega_r}(cons)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.9)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.5)$
	$\varepsilon_{Sob} = [0.9716]$	$\varepsilon_{Sob} = [0.972]$	$\varepsilon_{Sob} = [0.979]$
1/2	0.9999	0.999	0.999
2/3	0.9582	0.999	0.999
3/5	0.9778	0.999	0.999
5/8	0.9690	0.993	0.992
8/13	0.9726	0.981	0.987
13/21	0.9711	0.980	0.983
21/34	0.9717	0.976	0.980

$\varepsilon_{p_i,q_i}^{\omega_r}(cons)$	$\varepsilon_{p_i,q_i}^{\omega_r}(\lambda=0.9)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.5)$
$\varepsilon_{Sob} = [0.9716]$	$\varepsilon_{Sob} = [0.972]$	$\varepsilon_{Sob} = [0.979]$
0.9999	0.999	0.999
0.9582	0.999	0.999
0.9778	0.999	0.999
0.9690	0.993	0.992
0.9726	0.981	0.987
0.9711	0.980	0.983
0.9717	0.976	0.980
0.9715	0.975	0.979
	0.9999 0.9582 0.9778 0.9690 0.9726 0.9711 0.9717	$\varepsilon_{Sob} = [0.9716]$ $\varepsilon_{Sob} = [0.972]$ 0.99990.99990.95820.99990.97780.99990.96900.9930.97260.9810.97110.9800.97170.976

p_j/q_j	$\varepsilon_{p_j,q_j}^{\omega_r}(cons)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.9)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.5)$
	$\varepsilon_{Sob} = [0.9716]$	$\varepsilon_{Sob} = [0.972]$	$\varepsilon_{Sob} = [0.979]$
1/2	0.9999	0.999	0.999
2/3	0.9582	0.999	0.999
3/5	0.9778	0.999	0.999
5/8	0.9690	0.993	0.992
8/13	0.9726	0.981	0.987
13/21	0.9711	0.980	0.983
21/34	0.9717	0.976	0.980
34/55	0.9715	0.975	0.979
55/89	0.9716	0.974	0.979

- 1. Break-down of quasi-periodic tori and attractors
- 2. KAM break-down criterion
- 3. Partial justification of Greene's method
- 4. Complex perturbing parameter
- 5. Applications

Partial justification of Greene's method [Calleja, Celletti, de la Llave, Falcolini 2014]

• Greene's criterion: originally developed for the standard map, gives the existence of an invariant curve with frequency ω if and only if the periodic orbits with frequencies given by the rational approximants p_j/q_j approaching ω are at the border of linear stability, measured by the *residue* $R(\frac{p_j}{q_i}) = \frac{1}{4}(2 - Tr(Df^q)).$

• Partial justifications for the symplectic case (Falcolini–de la Llave, MacKay) show that all periodic orbits with rotation number close to ω will have small residue.

Partial justification of Greene's method [Calleja, Celletti, de la Llave, Falcolini 2014]

• Greene's criterion: originally developed for the standard map, gives the existence of an invariant curve with frequency ω if and only if the periodic orbits with frequencies given by the rational approximants p_j/q_j approaching ω are at the border of linear stability, measured by the *residue* $R(\frac{p_j}{q_i}) = \frac{1}{4}(2 - Tr(Df^q)).$

• Partial justifications for the symplectic case (Falcolini–de la Llave, MacKay) show that all periodic orbits with rotation number close to ω will have small residue.

• Partial justifications for the conformally symplectic case ([CCL+Falcolini, 2013]): if there exists a smooth invariant attractor, one can predict the eigenvalues of the periodic orbits approximating the torus for parameters close to those of the attractor.

Partial justification of Greene's method [Calleja, Celletti, de la Llave, Falcolini 2014]

• Greene's criterion: originally developed for the standard map, gives the existence of an invariant curve with frequency ω if and only if the periodic orbits with frequencies given by the rational approximants p_j/q_j approaching ω are at the border of linear stability, measured by the *residue* $R(\frac{p_j}{q_i}) = \frac{1}{4}(2 - Tr(Df^q)).$

• Partial justifications for the symplectic case (Falcolini–de la Llave, MacKay) show that all periodic orbits with rotation number close to ω will have small residue.

• Partial justifications for the conformally symplectic case ([CCL+Falcolini, 2013]): if there exists a smooth invariant attractor, one can predict the eigenvalues of the periodic orbits approximating the torus for parameters close to those of the attractor.

• We use the linearization theorem and give 2 different proofs: deformation theory and NHIM theory.

• Let the periodic orbit have frequency $\nu = (a_1, ..., a_n)/L$ with $a_j \in \mathbb{Z}, L \in \mathbb{N}$. The spectrum has a pairing rule: $Spec(Df^L) = \{\gamma_i, \lambda^L \gamma_i^{-1}\}.$

Theorem (Calleja, A.C., Falcolini, de la Llave, 2013)

Let f_{μ} be conformally symplectic, such that f_0 admits a Lagrangian invariant torus with frequency ω . Then, there exists a ngh. \mathcal{U} of the torus, s.t. when the periodic orbit with $\nu = (a_1, ..., a_n)/L$ is in \mathcal{U} , there exists $C_N > 0$ s.t.

$$|\gamma_i - 1| \le L C_N ||\mu||^N \simeq C_N ||\omega - \nu||^N$$
, $i = 1, ..., n$.

- Thus we have bounds on the spectral numbers of the periodic orbits.
- We get also upper/lower bounds on the width of the Arnold tongues.

- Proof: deformation theory:
- Find a smooth change of variables (normal form) that reduces the system to $(\theta + S_{\mu}, \lambda I)$ up to an error $(S_{\mu}$ polynomial function)
- ► The spectrum is invariant under smooth changes of variables
- ► For the system in normal form neglecting the remainder, the spectral numbers are equal to 1 and the residue is zero
- ► Estimate the spectrum by bounding the error in the normal form (use the theory of deformations, [de la Llave, Banyaga, Wayne, Marco, Moriyón]).

• Proof: NHIM and averaging theory:

▶ NHIM theory (Fenichel, Hirsch, Pugh, Shub): \mathcal{T}_{μ} is a family of tori invariant under f_{μ} (the invariant torus for f_0 is a NHIM)

► We can write these manifolds as the image of the torus under a family of maps K_{μ} such that $f_{\mu} \circ K_{\mu} = K_{\mu} \circ R_{\mu}$, where R_{μ} denotes the dynamics of f_{μ} restricted to \mathcal{T}_{μ} (R_0 is the Diophantine rotation)

Averaging theory tells us that for $N \le N_0$ we can find a diffeomorphism $B_{\mu}^{(N)}$ and a rotation $T_{\omega_{\mu}^{(N)}}$ such that

$$(B^{(N)}_{\mu})^{-1} \circ R_{\mu} \circ B^{(N)}_{\mu} = T_{\omega^{(N)}_{\mu}} + O(\|\mu\|^{N+1})$$

▶ Periodic orbits (in the NHIM) have *n* Lyapunov exponents close to 1

▶ Pairing rule and Lagrangian character of the tori imply that the remaining exponents of the periodic orbit with $\rho = a/L$ are close to λ^L .

- 1. Break-down of quasi-periodic tori and attractors
- 2. KAM break-down criterion
- 3. Partial justification of Greene's method
- 4. Complex perturbing parameter
- 5. Applications

• We compute the solution of the functional equation assuming $\varepsilon \in \mathbb{C}$. Applying Newton's method we follow the solution from $\varepsilon = 0$ increasing the real and imaginary parts of $\varepsilon = \varepsilon_r + i\varepsilon_i$ until blow-up.

• The expansion of the parametrization *K* in terms of the complex ε as the sum of a real and an imaginary part becomes $(K_j(\theta) \text{ are real})$

$$\begin{aligned} K(\theta;\varepsilon) &= \sum_{j=1}^{\infty} K_j(\theta) (\varepsilon_r + i\varepsilon_i)^j \\ &= K_r(\theta;\varepsilon_r,\varepsilon_i) + iK_i(\theta;\varepsilon_r,\varepsilon_i) \end{aligned}$$

and the same for $g(\theta + K) = \sin(\theta + K)$:

$$\varepsilon g(\theta + K) = \varepsilon_r g_r - \varepsilon_i g_i + i(\varepsilon_r g_i + \varepsilon_i g_r).$$

• Setting $\gamma = \omega(1 - \lambda) - \mu = \gamma_r + i\gamma_i$, the functional equation corresponds to the following two equations:

$$D_1 D_\lambda K_r(\theta + \omega; \varepsilon_r, \varepsilon_i) - \varepsilon_r g_r(\theta) + \varepsilon_i g_i(\theta) - \gamma_r = 0$$

$$D_1 D_\lambda K_i(\theta + \omega; \varepsilon_r, \varepsilon_i) - \varepsilon_r g_i(\theta) - \varepsilon_i g_r(\theta) - \gamma_i = 0.$$

• Figure: domains of existence in the complex ε -plane for different mappings, for $\omega/(2\pi) = [3, 12, 1, 1, 1, 1, ...]$ and the golden ratio, for specific values of λ (cut of Figure top-right is possibly due to the fact that the frequency is close to a rational).

• The shapes of the existence domains strongly depend on the choice of the function $g(\theta)$ (bottom panel).

Figure: Axes: ε_r and ε_i . a) $g(x) = \sin x$, $\omega/(2\pi) = \frac{\sqrt{5}-1}{2}$, $\lambda = 0.9$; b) $g(x) = \sin x$, $\omega/(2\pi) = [3, 12, 1, 1, 1, 1, ...]$, $\lambda = 0.9$; c) $g(x) = \sin x + \frac{1}{20} \sin(4x) + \frac{1}{30} \sin(6x)$, $\omega/(2\pi) = \frac{\sqrt{5}-1}{2}$, $\lambda = 0.9$.

- 1. Break-down of quasi-periodic tori and attractors
- 2. KAM break-down criterion
- 3. Partial justification of Greene's method
- 4. Complex perturbing parameter
- 5. Applications

Applications

- Standard map
- Rotational dynamics: (spin-orbit problem)
- Orbital dynamics: (three–body problem)

KAM stability through confinement

• Confinement in 2-dimensional systems: dim(phase space)=4, dim(constant energy level)=3, dim(invariant tori)=2 \rightarrow confinement in phase space for ∞ times between bounding invariant tori

• Confinement no more valid for n > 2: the motion can diffuse through invariant tori, reaching arbitrarily far regions (Arnold's diffusion).

Conservative standard map

Results of the '90s

• [A.C., L. Chierchia] Let $\omega = 2\pi \frac{\sqrt{5}-1}{2}$; $|\varepsilon| \le 0.838$ (86% of Greene's value) there exists an invariant curve with frequency ω .

• [R. de la Llave, D. Rana] Using accurate strategies and efficient computer–assisted algorithms, the result was improved to 93% of Greene's value.

• Very recent results [J.-L. Figueras, A. Haro, A. Luque] in

http://arxiv.org/abs/1601.00084 reaching 99.9%!!!

Dissipative standard map

• Using $K_2(\theta) = \theta + u(\theta)$, the invariance equation is

$$D_1 D_\lambda u(\theta) - \varepsilon \sin(\theta + u(\theta)) + \omega(1 - \lambda) - \mu = 0$$
(1)

with $D_{\lambda}u(\theta) = u(\theta + \frac{\omega}{2}) - \lambda u(\theta - \frac{\omega}{2}).$

Proposition [dissipative standard map, R. Calleja, A.C., R. de la Llave (2016)]

Let $\omega = 2\pi \frac{\sqrt{5}-1}{2}$ and $\lambda = 0.9$; then, for $\varepsilon \leq \varepsilon_{KAM}$, there exists a unique solution $u = u(\theta)$ of (1), provided that $\mu = \omega(1 - \lambda) + \langle u_{\theta} D_1 D_{\lambda} u \rangle$.

• The drift μ must be suitably tuned and cannot be chosen independently from ω .

Dissipative standard map

• Using $K_2(\theta) = \theta + u(\theta)$, the invariance equation is

$$D_1 D_\lambda u(\theta) - \varepsilon \sin(\theta + u(\theta)) + \omega(1 - \lambda) - \mu = 0$$
(1)

with $D_{\lambda}u(\theta) = u(\theta + \frac{\omega}{2}) - \lambda u(\theta - \frac{\omega}{2}).$

Proposition [dissipative standard map, R. Calleja, A.C., R. de la Llave (2016)]

Let $\omega = 2\pi \frac{\sqrt{5}-1}{2}$ and $\lambda = 0.9$; then, for $\varepsilon \leq \varepsilon_{KAM}$, there exists a unique solution $u = u(\theta)$ of (1), provided that $\mu = \omega(1 - \lambda) + \langle u_{\theta} D_1 D_{\lambda} u \rangle$.

• The drift μ must be suitably tuned and cannot be chosen independently from ω .

Dissipative standard map

• Using $K_2(\theta) = \theta + u(\theta)$, the invariance equation is

$$D_1 D_\lambda u(\theta) - \varepsilon \sin(\theta + u(\theta)) + \omega(1 - \lambda) - \mu = 0$$
(1)

with $D_{\lambda}u(\theta) = u(\theta + \frac{\omega}{2}) - \lambda u(\theta - \frac{\omega}{2}).$

Proposition [dissipative standard map, R. Calleja, A.C., R. de la Llave (2016)]

Let $\omega = 2\pi \frac{\sqrt{5}-1}{2}$ and $\lambda = 0.9$; then, for $\varepsilon \leq \varepsilon_{KAM}$, there exists a unique solution $u = u(\theta)$ of (1), provided that $\mu = \omega(1 - \lambda) + \langle u_{\theta} D_1 D_{\lambda} u \rangle$.

• The drift μ must be suitably tuned and cannot be chosen independently from ω .

• Preliminary result: conf. symplectic version, careful estimates, continuation method using the Fourier expansion of the initial approximate solution \Rightarrow

 $\varepsilon_{KAM} = (99\% \text{ of the critical breakdown threshold })$

Rotational dynamics

The **Moon** and all evolved satellites, always point the same face to the host planet: 1:1 resonance, i.e. 1 rotation = 1 revolution (Phobos, Deimos - Mars, Io, Europa, Ganimede, Callisto - Jupiter, Titan, Rhea, Enceladus, etc.). Only exception: **Mercury** in a 3:2 spin–orbit resonance (3 rotations = 2 revolutions).

• Important dissipative effect: **tidal torque**, due to the non-rigidity of planets and satellites.

Conservative spin-orbit problem

• Spin–orbit problem: triaxial satellite S (with A < B < C) moving on a Keplerian orbit around a central planet \mathcal{P} , assuming that the spin–axis is perpendicular to the orbit plane and coincides with the shortest physical axis.

Conservative spin-orbit problem

Spin–orbit problem: triaxial satellite S (with A < B < C) moving on a Keplerian orbit around a central planet P, assuming that the spin–axis is perpendicular to the orbit plane and coincides with the shortest physical axis.
Equation of motion:

$$\ddot{x} + \varepsilon (\frac{a}{r})^3 \sin(2x - 2f) = 0$$
, $\varepsilon = \frac{3}{2} \frac{B - A}{C}$.

• The (Diophantine) frequencies of the bounding tori are for example:

$$\omega_{-} \equiv 1 - \frac{1}{2 + \frac{\sqrt{5}-1}{2}} , \qquad \omega_{+} \equiv 1 + \frac{1}{2 + \frac{\sqrt{5}-1}{2}} .$$

Proposition [spin-orbit model, A.C. (1990)]

Consider the spin–orbit Hamiltonian defined in $U \times \mathbb{T}^2$ with $U \subset \mathbb{R}$ open set. Then, for the true eccentricity of the Moon e = 0.0549, there exist invariant tori, bounding the motion of the Moon, for any $\varepsilon \leq \varepsilon_{Moon} = 3.45 \cdot 10^{-4}$. • Possible forthcoming estimates: spin–orbit equation with tidal torque given by

$$\ddot{x} + \varepsilon \left(\frac{a}{r}\right)^3 \sin(2x - 2f) = -\lambda(\dot{x} - \mu) , \qquad (2)$$

where λ , μ depend on the orbital (e) and physical properties of the satellite.

• Possible forthcoming estimates: spin–orbit equation with tidal torque given by

$$\ddot{x} + \varepsilon \left(\frac{a}{r}\right)^3 \sin(2x - 2f) = -\lambda(\dot{x} - \mu) , \qquad (2)$$

where λ , μ depend on the orbital (e) and physical properties of the satellite.

Proposition [A.C., L. Chierchia (2009)]

Let $\lambda_0 \in \mathbb{R}_+$, ω Diophantine. There exists $0 < \varepsilon_0 < 1$, such that for any $\varepsilon \in [0, \varepsilon_0]$ and any $\lambda \in [-\lambda_0, \lambda_0]$ there exists a unique function $u = u(\theta, t)$ with $\langle u \rangle = 0$, such that

$$x(t) = \omega t + u(\omega t, t)$$

solves the equation of motion with $\mu = \omega (1 + \langle u_{\theta}^2 \rangle)$.

Conservative three–body problem

- Consider the motion of a small body (with negligible mass) under the gravitational influence of two primaries, moving on Keplerian orbits about their common barycenter (*restricted* problem).
- Assume that the orbits of the primaries are circular and that all bodies move on the same plane: *planar, circular, restricted three–body problem* (PCR3BP).

Conservative three–body problem

• Consider the motion of a small body (with negligible mass) under the gravitational influence of two primaries, moving on Keplerian orbits about their common barycenter (*restricted* problem).

Assume that the orbits of the primaries are circular and that all bodies move on the same plane: *planar*, *circular*, *restricted three–body problem* (PCR3BP).
Adopting suitable normalized units and action–angle Delaunay variables (L, G) ∈ ℝ², (ℓ, g) ∈ T², we obtain a 2 d.o.f. Hamiltonian function:

$$\mathcal{H}(L,G,\ell,g) = -\frac{1}{2L^2} - G + \varepsilon R(L,G,\ell,g) \; .$$

• ε primaries' mass ratio ($\varepsilon = 0$ Keplerian motion). Actions: $L = \sqrt{a}$, $G = L\sqrt{1 - e^2}$.

• Degenerate Hamiltonian, but Arnold's isoenergetic non-degenerate (persistence of invariant tori on a fixed energy surface), i.e. setting $h(L, G) = -\frac{1}{2L^2} - G$:

$$\det \begin{pmatrix} h''(L,G) & h'(L,G) \\ h'(L,G)^T & 0 \end{pmatrix} = \det \begin{pmatrix} -\frac{3}{L^4} & 0 & \frac{1}{L^3} \\ 0 & 0 & -1 \\ \frac{1}{L^3} & -1 & 0 \end{pmatrix} = \frac{3}{L^4} \neq 0 \quad \text{for all } L \neq 0.$$

• Dimension phase space = 4, fix the energy: dim = 3; dimension invariant tori = 2.

Result: The stability of the small body can be obtained by proving the existence of invariant surfaces which confine the motion of the asteroid on a preassigned energy level.

Sample: Sun, Jupiter, asteroid 12 Victoria with

$$a_{\rm V} \simeq 0.449$$
, $e_{\rm V} \simeq 0.220$, $v_{\rm V} \simeq \frac{8.363 - 1.305}{360} = 1.961 \cdot 10^{-2}$.

• Size of the perturbing parameter: $\varepsilon_J = 0.954 \cdot 10^{-3}$.

• Approximations: disregard $e_J = 4.82 \cdot 10^{-2}$ (worst physical approximation), inclinations, gravitational effects of other bodies (Mars and Saturn), dissipative phenomena (tides, solar winds, Yarkovsky effect,...)

Empirical criterion: expand the perturbation in e and a, neglecting contributions smaller than e_J. Neglect terms of order O(ε) in F_ε (i.e. replace F_ε by F₀).
One-parameter family of Hamiltonians (0 < G < L):

$$H_{\mathrm{SJV}}(L,G,\ell,g;\varepsilon) = -rac{1}{2L^2} - G + \varepsilon H_1(L,G,\ell,g) \; ,$$

with $(a = L^2, e = \sqrt{1 - \frac{G^2}{L^2}})$

$$\begin{split} H_1(L,G,\ell,g) &= -(1+\frac{a^2}{4}+\frac{9}{64}a^4+\frac{3}{8}a^2e^2) \\ + & \left(\frac{1}{2}+\frac{9}{16}a^2\right)a^2e\,\cos\ell - \left(\frac{3}{8}a^3+\frac{15}{64}a^5\right)\cos(\ell+g) \\ + & \left(\frac{9}{4}+\frac{5}{4}a^2\right)a^2e\,\cos(\ell+2g) - \left(\frac{3}{4}a^2+\frac{5}{16}a^4\right)\cos(2\,\ell+2\,g) \\ - & \frac{3}{4}a^2e\,\cos(3\,\ell+2\,g) - \left(\frac{5}{8}a^3+\frac{35}{128}a^5\right)\cos(3\,\ell+3\,g) \\ - & \frac{35}{64}a^4\cos(4\,\ell+4\,g) - \frac{63}{128}a^5\cos(5\ell+5g) \,. \end{split}$$

• Fixing the perturbation parameter at the value $\varepsilon = \varepsilon_J$, we obtain the *Sun–Jupiter–Victoria Hamiltonian*:

$$\begin{aligned} \overline{H}_{\rm SJV}(L,G,\ell,g) &= -\frac{1}{2L^2} - G + \varepsilon_J H_1(L,G,\ell,g) , \\ &= H_0(L,G) + \varepsilon_J H_1(L,G,\ell,g) . \end{aligned}$$

• Observed values: $L_{\rm V} = \sqrt{a_{\rm V}} \simeq 0.670, G_{\rm V} = L_{\rm V} \sqrt{1 - e_{\rm V}^2} \simeq 0.654.$

• Define the "osculating energy value" in terms of the Keplerian approximation and in terms of the "secular" effects; define $E_V^{(0)}$ and $E_V^{(1)}$ as

$$\begin{aligned} H_0(L_V, G_V) &= -\frac{1}{2L_V^2} - G_V \simeq -1.768 = E_V^{(0)} , \\ \langle H_1(L_V, G_V, \cdot, \cdot) \rangle &\simeq -1.060 = E_V^{(1)} , \\ E_V(\varepsilon) &= E_V^{(0)} + \varepsilon E_V^{(1)} . \end{aligned}$$

• Osculating energy level of the Sun-Jupiter-Victoria model:

$$\overline{E}_{\mathrm{V}} = E_{\mathrm{V}}(\varepsilon_J) = E_{\mathrm{V}}^{(0)} + \varepsilon_J E_{\mathrm{V}}^{(1)} \simeq -1.769$$
.

• From now on we will be concerned with such one-parameter family of energy surfaces:

$$\mathcal{S}_{\varepsilon,\mathrm{V}} = H^{-1}_{\mathrm{SJV}}(E_{\mathrm{V}}(\varepsilon))$$

• We consider two invariant tori on $S_{0,V}$, which bound from above and below the observed value L_V : we define

$$ilde{L}_{\pm}=L_V\pm 0.001$$
 .

• The corresponding frequencies are:

$$\underline{\tilde{\omega}}_{\pm} = \frac{\partial H_0}{\partial (L,G)} = \left(\frac{1}{\tilde{L}_{\pm}^3}, -1\right) = (\tilde{\alpha}_{\pm}, -1) .$$

• Since we need Diophantine frequencies, we compute the continued fraction representation up to the order 5 of $\tilde{\alpha}_{\pm}$ and then we modify the frequencies by adding a tail of all one's.

• Result: two quadratic "noble" numbers α_{\pm} given by:

$$\begin{aligned} \alpha_{-} &= & [3; 3, 4, 2, 1^{\infty}] = 3.30976937631389...\\ \alpha_{+} &= & [3; 2, 1, 17, 5, 1^{\infty}] = 3.33955990647860.. \end{aligned}$$

We can now define the Diophantine frequencies

$$\underline{\omega}_{\pm} = (\alpha_{\pm}, -1) \; ,$$

with corresponding Diophantine constants

$$au_{\pm} = au = 1 \;, \quad \gamma_{-} = 7.224496 \cdot 10^{-3} \;, \quad \gamma_{+} = 3.324329 \cdot 10^{-2} \;.$$

• We are interested in the KAM continuation of the following unperturbed tori, which lie on the energy level $H_0^{-1}(E_V^{(0)})$:

$$\mathcal{T}_0^{\pm} = \{(L_{\pm}, G_{\pm})\} \times \mathbb{T}^2 ,$$

with

$$L_{\pm} = \frac{1}{\alpha_{\pm}^{1/3}}$$
, $G_{\pm} = -\frac{1}{2L_{\pm}^2} - E_V^{(0)}$.

Concrete example: Sun, Jupiter, asteroid 12 Victoria with a = 0.449 (in Jupiter–Sun unit distance) and e = 0.22, so that L_V ≃ 0.670, G_V ≃ 0.654.
Select the energy level as E^{*}_V = -¹/_{2L²} − G_V + ε_J⟨R(L_V, G_V, ℓ, g)⟩ ≃ −1.769,

where $\varepsilon_J \simeq 10^{-3}$ is the observed Jupiter–Sun mass–ratio. On such (3–dim) energy level prove the existence of two (2–dim) trapping tori with frequencies ω_{\pm} .

• Concrete example: Sun, Jupiter, asteroid 12 Victoria with a = 0.449 (in Jupiter–Sun unit distance) and e = 0.22, so that $L_V \simeq 0.670$, $G_V \simeq 0.654$. • Select the energy level as $E_V^* = -\frac{1}{2L_V^2} - G_V + \varepsilon_J \langle R(L_V, G_V, \ell, g) \rangle \simeq -1.769$, where $\varepsilon_J \simeq 10^{-3}$ is the observed Jupiter–Sun mass–ratio. On such (3–dim) energy level prove the existence of two (2–dim) trapping tori with frequencies ω_{\pm} .

Proposition [three-body problem, A.C., L. Chierchia (2007)]

Let $E = E_V^*$. Then, for $|\varepsilon| \le 10^{-3}$ the unperturbed tori with trapping frequencies ω_{\pm} can be analytically continued into KAM tori for the perturbed system on the energy level $\mathcal{H}^{-1}(E_V^*)$ keeping fixed the ratio of the frequencies.

• Due to the link between a, e and L, G, this result guarantees that a, e remain close to the unperturbed values within an interval of size of order ε .

Corollary: The values of the perturbed integrals L(t) and G(t) stay close forever to their initial values L_V and G_V and the actual motion (in the mathematical model) is nearly elliptical with osculating orbital values close to the observed ones.