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Abstract. This is a survey of certain geometric aspects of inviscid and in-
compressible fluid flows, which are described by the solutions to the Euler

equations. We will review Arnold’s theorem on the topological structure of
stationary fluids in compact manifolds, and Moffatt’s theorem on the topolog-
ical interpretation of helicity in terms of knot invariants. The recent realization
theorem by Enciso and Peralta-Salas of vortex lines of arbitrarily complicated

topology for stationary solutions to the Euler equations will be also introduced.
The aim of this paper is not to provide detailed proofs of all the stated results
but to introduce the main ideas and methods behind certain selected topics of
the subject known as Topological Fluid Mechanics. This is the set of lecture

notes the author gave at the XXIV International Fall Workshop on Geometry
and Physics held in Zaragoza (Spain) during September 2015.

1. The Euler equations on a Riemannian 3-manifold

The dynamics of an inviscid and incompressible fluid flow in a smooth domain
of the Euclidean space Ω ⊆ R3 is modeled by the Euler equations

∂u

∂t
+ (u · ∇)u = −∇P , div u = 0 ,

where u(x, t) is a time-dependent vector field representing the velocity field of the
fluid, and P (x, t) is the pressure function. As a boundary condition it is customary
to assume that the field u is tangent to the boundary of the domain, that is

u · ν = 0 on ∂Ω ,

for all t, with ν a field normal to the boundary. The initial velocity field u(x, 0) =
u0(x) is prescribed, and the pressure P (x, 0) ≡ P0(x) at t = 0 is determined (up to
a constant) by the Euler equations:

∆P0 = − div[(u0 · ∇)u0] .

It is well known that there exists a smooth solution to the Euler equations for
short times provided that u0 is smooth and compactly supported, but the global
existence is still a challenging open problem.

Another time-dependent vector field that plays a crucial role in fluid mechanics
is the vorticity, defined as

ω := curlu ,

which is related to the rotation of the fluid and is a measure of the entanglement
of the fluid particle trajectories. It is easy to check that an alternative form of the
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Euler equations using the vorticity is

∂u

∂t
− u× ω = −∇B , div u = 0 ,

where B := P + 1
2 |u|

2 is the Bernoulli function. Here the symbol × denotes the

standard vector product in R3.

The Euler equations can be written in any Riemannian 3-manifold, thus describ-
ing a fluid flow in a curved space. Indeed, let (M, g) be a smooth (possibly with
boundary) Riemannian manifold of dimension 3, oriented but not necessarily com-
pact, and denote the Riemannian volume form by µ. The Euler equations then
read as

(1.1)
∂u

∂t
+∇uu = −∇P , div u = 0 ,

where ∇u is the covariant derivative along u, and div and ∇ are the divergence and
gradient operators, respectively, computed with the metric g. The unknowns are
the velocity field u, which is a time-dependent vector field on M , and the pressure
P , which is a time-dependent real-valued function on M .

The incompressibility condition div u = 0 can be expressed using the volume
form µ as

Luµ = 0 ,

where Lu is the Lie derivative along u. The vorticity ω := curlu is defined as the
only vector field satisfying

(1.2) iωµ = dα ,

where iX is the contraction operator of differential forms with vector fields, and

α := iug

is the 1-form dual to the field u using the metric. It is easy to check that the dual
1-form of the vorticity is ⋆dα, where the symbol ⋆ denotes the Hodge operator.

In terms of the vorticity, the Euler equations read as in the Euclidean case, that
is

(1.3)
∂u

∂t
− u× ω = −∇B , div u = 0 .

Here the Bernoulli function B is defined as above using the Riemannian norm |u|2
of the velocity field, and the vector product u× ω in (M, g) is defined as the only
vector field that satisfies the equation

(1.4) iωiuµ = iu×ωg .

In the following proposition we show how to write the Euler equations using
differential forms:

Proposition 1.1. The Euler equations are equivalent to

∂α

∂t
+ Luα = −dF , d(⋆α) = 0 ,

where α := iug and F := P − 1
2 |u|

2.
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Proof. The equation d(⋆α) = 0 follows from the identity ⋆α = iuµ and the incom-
pressibility condition 0 = Luµ = d(iuµ). Moreover, the standard identity

∇uu =
1

2
∇|u|2 − u× ω

implies that the dual 1-form of the vector field ∇uu is

(1.5)
1

2
d(|u|2)− iωiuµ =

1

2
d(|u|2) + iudα = Luα− 1

2
d(|u|2) ,

where we have used Eqs. (1.2) and (1.4), and Cartan’s formula Luα = iudα+d(iuα).
Writing the first of the Euler equations (1.1) in terms of differential forms, the
proposition easily follows from Eq. (1.5). �

Remark 1.2. In view of Proposition 1.1, the Euler equations can also be equivalently
written as

(1.6)
∂α

∂t
+ iudα = −dB , d(⋆α) = 0 ,

The goal of this article is to introduce certain selected topics on the geometry and
topology of the solutions to the Euler equations. A general view of this subject can
be found in Arnold and Khesin monograph [4]. In Section 2 we explain the notions of
stream lines and vortex lines, and we prove Helmholtz’s transport of vorticity, which
gives rise to both local (helicity) and non-local (KAM-type invariants) conservation
laws. The stationary solutions of the Euler equations are discussed in Section 3,
where we construct some particularly relevant exact solutions, including Seifert
foliations of the 3-sphere S3. In Section 4 we state and sketch the proof of Arnold’s
structure theorem for stationary solutions in compact manifolds, and in Section 5 we
provide a detailed proof of Moffatt’s theorem computing the helicity for divergence-
free vector field modeled on a link. Finally, Beltrami flows are studied in detail in
Section 6, where we also review the recent realization theorem for knotted vortex
lines of Enciso and Peralta-Salas.

2. Stream lines, vortex lines and transport of vorticity

The motion of fluid particles is described by the integral curves of the velocity
field u, that is, by the solutions of the non-autonomous ODE

ẋ(t) = u(x(t), t)

for some initial condition x(0) = x0. These trajectories are usually called particle
paths. The integral curves of u(x, t) at fixed time t are called stream lines and thus
the stream line pattern changes with time if the flow is non-stationary.

The integral curves of the vorticity ω(x, t) at fixed time t, that is to say, the
solutions of the autonomous ODE

ẋ(τ) = ω(x(τ), t)

for some initial condition x(0) = x0, are the vortex lines of the fluid at time t.
A remarkable property that was discovered by Helmholtz in the 19th century [4]
is that the vortex lines pattern is the same for any t, up to an ambient diffeo-
morphism, because the vorticity is transported by the fluid flow. This mechanism
places vorticity in a leading role in analyzing the Euler equations.
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Theorem 2.1 (Helmholtz’s transport of vorticity). Let u(x, t) be a time-dependent
solution of the Euler equations, then the vorticity satisfies the transport equation

∂ω

∂t
= −Luω .

Proof. Taking the exterior derivative in the equation ∂α
∂t +Luα = −dF , cf. Propo-

sition 1.1, we obtain

∂(dα)

∂t
= −Lu(dα) ,

where we have used that the exterior derivative and the Lie derivative commute.
On the other hand, differentiating with respect to t in the definition of the vorticity
iωµ = dα, and using the previous equation, we get

i ∂ω
∂t
µ = −Lu(dα) = −Lu(iωµ) .

Finally, standard identities and the fact that u is divergence-free imply

Lu(iωµ) = iω(Luµ) + iLuωµ = iLuωµ ,

so that

i ∂ω
∂t +Luω

µ = 0 ,

and the theorem follows. �

This result implies that the vorticity at time t can be expressed in terms of the
initial vorticity ω(x, 0) = ω0(x) as

ω(x, t) = (ϕt,0)∗ω0(x) ,

where (ϕt,0)∗ denotes the push-forward of the non-autonomous local flow of the
velocity field between the times 0 and t. Accordingly, the topology of the vortex
lines is preserved as far as the solution does not blow-up. Since u is divergence-free,
its local flow ϕt,0 is volume-preserving.

An interesting consequence of the fact that the vorticity is transported by the
velocity field is the existence of infinitely many non-local conservation laws for the
Euler equations. Indeed, any topological property of the phase portrait of the initial
vorticity ω0 is preserved with time, as for example the number of stagnation points
(i.e. zeros of the vorticity) or of periodic vortex lines. Inspired by this property
and KAM theory, Khesin, Kuksin and Peralta-Salas introduced in [18] a functional
acting on the space X1

ex(M) of exact divergence-free vector fields of class C1 on M ,
which is a new conserved quantity for the Euler equations. Recall that a divergence-
free vector field w on M is exact if the closed 1-form iwµ is exact. More precisely,
we have:

Definition 2.2. Let (M, g) be a compact Riemannian 3-manifold without bound-
ary whose total volume is normalized by 1. The partial integrability functional

κ : X1
ex(M) → [0, 1]

assigns to a vectorfield w ∈ X1
ex(M) the (inner) measure of the set equal to the

union of all ergodic, 2-dimensional and of class C1, invariant tori of w.

Theorem 2.3. κ(ω(t)) = κ(ω0) for all t for which the solution is defined.
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This theorem was proved in [18], where it was used to show that the Euler
(local) flow in the space of divergence-free vector fields is not topologically mixing.
We also gave a quantitative criterion estimating the distance (in the Ck norm)
between a solution of the Euler equations and a given divergence-free vector field.
We remark that the functional κ is not an integral operator (i.e. it is not given as
the integral of a well-behaved local density), and in fact it is not even continuous in
X1

ex(M). Nevertheless, κ is lower semi-continuous at certain (partially) integrable
divergence-free vector fields, which is enough to prove the aforementioned results.

The transport of vorticity also implies the conservation of the helicity of ω. In
general, the helicity H(w) of an exact divergence-free vector field w is defined as

(2.1) H(w) :=

∫
M

w · curl−1 w ,

where curl−1 : X1
ex(M) → X1

ex(M) is an operator assigning to w the only vector
field v ∈ X1

ex(M) such that curl v = w. The inverse of curl is a generalization to
manifolds of the Biot-Savart integral operator, and it is well known that can also
be written in terms of a (matrix-valued) integral kernel k(x, y) as

curl−1 w(x) =

∫
M

k(x, y)w(y)µy .

The relevance of the helicity in fluid mechanics, as well as its topological meaning,
were unveiled by Moffatt in 1969 [21]. We will discuss about the relationship
between the helicity and the knottedness of vortex lines in Section 5. Actually, the
helicity is invariant under any volume-preserving diffeomorphisms of w, which in
particular implies the conservation of the helicity of the vorticity, i.e. H(ω(t)) =
H(ω0), as a consequence of Helmholtz’s Theorem 2.1.

Theorem 2.4. Let (M, g) be a compact Riemannian 3-manifold without boundary,
and let Φ : M → M be a volume-preserving diffeomorphism, that is Φ∗µ = µ.
Then, for any exact divergence-free vector field w, we have H(Φ∗w) = H(w).

Proof. Let α be the dual 1-form with the metric of the vector field v = curl−1 w.
Then the dual 1-form of w is ⋆dα, and the helicity can be written as

H(w) =

∫
M

α ∧ dα .

Moreover, the equation iwµ = dα implies that iΦ∗wµ = d(Φ∗α) because Φ is volume-
preserving and the exterior derivative and the push-forward commute. This implies,
in particular, that Φ∗w ∈ X1

ex(M). Accordingly, we can compute the helicity of the
field Φ∗w as

H(Φ∗w) =

∫
M

Φ∗α ∧ d(Φ∗α) =

∫
M

Φ∗(α ∧ dα) =

∫
M

α ∧ dα = H(w) ,

as we wanted to prove. �

A key feature of the helicity, which distinguishes it from the KAM-type invariants
introduced in [18], is that it is an integral operator with a well-behaved integral
kernel. A natural question is whether there exist other quantities that are integrals
of local densities and are invariant under any volume-preserving diffeomorphisms.
This problem has been recently solved by Enciso, Peralta-Salas and Torres de Lizaur
in [11], where they prove that given a functional I defined on X1

ex(M) that is
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associated with a well-behaved integral kernel, then I is invariant under volume-
preserving diffeomorphisms if and only if it is a function of the helicity.

We finish this section recalling that the Euler equations also admit conserva-
tion laws of Noether type, which are associated with continuous symmetries of the
equations. The most important one is the kinetic energy

K(u) :=
1

2

∫
M

|u|2 ,

which is well defined provided that M is compact or u decays fast enough at infinity.
If the Riemannian manifold (M, g) has a Killing vector field ξ, there is another
conserved quantity of Noether type, which is called the momentum of the fluid
flow:

Proposition 2.5. Let ξ be a Killing vector field of a compact manifold (M, g)
without boundary. Then the momentum

M(u) :=

∫
M

u · ξ

is conserved by the Euler equations.

Proof. The Euler equations (1.1) imply that

dM(u)

dt
= −

∫
M

ξ ·∇P −
∫
M

ξ ·∇uu = −
∫
M

u ·∇uξ+

∫
M

u ·∇(u ·ξ) = −
∫
M

u ·∇uξ ,

where we have integrated by parts and used that div u = 0. The proposition follows
noticing that u · ∇uξ = 0 because ξ is a Killing field. �

Remark 2.6. A generic Riemannian metric does not admit Killing vector fields,
so the momentum M(u) does not provide a non-trivial conserved quantity. It is
unknown if in such a case the only integral invariants of the Euler equations are
the helicity and the kinetic energy; partial results in this direction in the Euclidean
space were obtained by Serre in [23].

3. Stationary solutions of the Euler equations

In what follows, we will be concerned with stationary solutions of the Euler
equations, which describe an equilibrium configuration of the fluid. In this case,
the velocity field u does not depend on time, so it defines an autonomous dynamical
system on the manifold M . The stationary Euler equations are

(3.1) ∇uu = −∇P , div u = 0 ,

or, equivalently in terms of the Bernoulli function and the vorticity,

(3.2) u× ω = ∇B , div u = 0 .

If the manifold M has a non-empty boundary, it is customary to assume that u is
tangent to the boundary. A divergence-free vector field that satisfies the stationary
Euler equations is sometimes called an Euler vector field.

Remark 3.1. Using the dual 1-form α = iug, the stationary Euler equations can
also be written as

(3.3) iudα = −dB , d(⋆α) = 0 .
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This is a fully nonlinear system of partial differential equations so, a priori, it
is not easy to see for which choices of the function B there exist any solutions
(even locally!) and which properties they can exhibit. In fact, only a few explicit
solutions of the stationary Euler equations are known (even in R3). A particularly
relevant class of solutions are the Beltrami flows, which satisfy the equations

(3.4) curlu = fu , div u = 0 ,

for some function f . These vector fields are solutions of the stationary Euler equa-
tions with constant Bernoulli function, that is the pressure is given by P = −1

2 |u|
2

up to the addition of a constant. Beltrami flows will be studied in detail in Section 6.

The analysis of the integral curves of the autonomous vector fields u and ω, i.e.
the stream and vortex lines, is an important topic in the study of the Lagrangian
turbulence and the hydrodynamical instability. In particular, the existence of Euler
vector fields with periodic stream (or vortex lines) of arbitrary knot type has been
a major open problem in the subject for decades. For example, the topologist and
dynamicist R.F. Williams asked in [25] about the existence of a stationary fluid
flow in R3 having stream lines tracing out all knots at the same time. We recall
that a knot is a smoothly embedded circle in M (without self-intersections). It is
obvious that, for stationary flows, the particle paths coincide with the stream lines.

In order to gain some intuition on the dynamics of the Euler vector fields, let
us now present some interesting examples with geometric meaning. In the next
sections we will review the state of the art of the aforementioned general questions.

Example 3.2. Any Killing vector field u on (M, g) is a stationary solution of the
Euler equation with pressure P = 1

2 |u|
2 (so, in particular, B = |u|2). Indeed,

being a Killing field, div u = 0. Moreover, an easy computation shows that ∇uu =
− 1

2∇(|u|2), thus proving the claim.

Example 3.3. If u is a divergence-free geodesic vector field, it is obviously a
stationary solution of the Euler equations with constant pressure because ∇uu = 0.

These examples provide solutions of the stationary Euler equations for metrics
admitting a Killing field or a geodesic field, which is a highly non-generic phenom-
enon. A simple class of solutions which exist for any compact (M, g) provided that
the first De Rham cohomology group H1(M ;R) is not trivial, are the harmonic
fields, that is the solutions to the equations div u = 0 and curlu = 0. It is well
known that the number of linearly independent harmonic fields on a compact Rie-
mannian manifold is equal to the rank of H1(M ;R) (the first Betti number of M).
Observe that, although the existence of such fields is a purely topological issue,
their dynamical properties strongly depend on the metric.

We finish this section introducing an explicit construction of solutions of the
stationary Euler equations in the sphere S3 with stream and vortex lines of arbitrary
torus knot type. This family was first presented in [18]:

Example 3.4. It is convenient to represent S3 as the unit sphere in R4,

S3 = {(x, y, z, ξ) ∈ R4 : x2 + y2 + z2 + ξ2 = 1} .
It is well known that the Hopf fields u1 = (−y, x, ξ,−z)|S3 and u2 = (−y, x,−ξ, z)|S3
on S3 are Beltrami flows with eigenvalue 2 and −2 respectively, that is

curlu1 = 2u1 , curlu2 = −2u2 .
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The name Hopf fields comes from the fact that they are tangent to two (isotopic)
Hopf fibrations of S3, so that all the integral curves of u1 and u2 are periodic and
linked once to each other. Observe that u2 is somehow the mirror image of u1.

Obviously, the function F = (x2+ y2)|S3 is a common first integral of u1 and u2.
The regular level sets of F are 2-dimensional tori, and the critical level sets consist
of two circles C0 and C1, which correspond to the minimum and maximum values
0 and 1 of F . The integral curves of u1 and u2 lie on these level sets, and are trivial
knots linked once with each core circle C0 and C1. The following properties are
also easy to check:

• |u1|2 = |u2|2 = 1,
• u1 · u2 = 2F − 1
• u1 × u2 = −∇F

where both the dot and cross products · and × are computed using the (induced)
round metric of S3.

We claim that the vector field

u = f1(F )u1 + f2(F )u2

is a smooth stationary solution of the Euler equations for any choice of the functions
f1 and f2 in C∞(R), with a Bernoulli function given by

B =

∫ F

0

H(s)ds , H(s) := f1f
′
1 + f2f

′
2 + 4f1f2 + (2s− 1)(f1f

′
2 + f2f

′
1) .

Observe that the connected components of the level sets of B are given by the
level sets of F . It is trivial to check that u is divergence-free using that u1 and u2

are divergence-free and F is a common first integral of both fields. The equation
u× curlu = ∇B is more complicated to derive, the reader can find a detailed proof
in [18].

This construction gives rise to interesting particular solutions. First, notice that
the fields {u1, u2} form a 2-basis at each point of F−1(c) for c ∈ (0, 1), so that
u(p) = 0 at a point p ∈ F−1(c) if and only if f1(p) = f2(p) = 0. For example, we
can obtain any Seifert foliation of the 3-sphere by choosing

f1 =
m− n

2
, f2 =

m+ n

2

with m,n coprime integers. With this choice, all the integral curves of u are (m,n)-
torus knots except for the 2 exceptional fibres C0 and C1. We recall that a Seifert
foliation of S3 is a foliation by circles. On the contrary, if

f1 = c1 , f2 = c2

with c1/c2 /∈ Q, all the integral curves are quasi-periodic except for the circles C1

and C2. Analogous results hold for the vorticity ω = curlu, which in the case that
f1 and f2 are constants, is given by the formula

ω = 2f1u1 − 2f2u2 .

This family also illustrates that the stationary Euler equations do not satisfy the
unique continuation property. Indeed, we can choose f1 and f2 such that

f1(s) = f2(s) = 0 if s ∈
[
0,

1

4

]
∪
[3
4
, 1
]
,
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and non-zero otherwise. Therefore, u is zero only on the solid tori F−1([0, 1/4])
and F−1([3/4, 1]).

All the knotted stream lines and vortex lines that one can obtain within this
family of explicit solutions are of torus knot type. The case of more general knots
will be addressed in Section 6 using high-energy Beltrami fields on S3.

Remark 3.5. It is easy to check that any non-vanishing Euler vector field u in
Example 3.4 has a periodic orbit. In fact, it is unknown if there exist smooth non-
vanishing divergence-free vector fields in S3 without periodic orbits (C1 examples
were constructed in [20]).

Example 3.6. A similar, but simpler, example of a family of stationary solutions of
the Euler equations can be constructed in the flat torus T3. We endow T3 with the
2π-periodic coordinates (x, y, z). Then, it is easy to check that for any 2π-periodic
smooth functions f1 : R → R and f2 : R → R, the vector field

u = f1(z)∂x + f2(z)∂y

is a stationary solution of the Euler equations with Bernoulli function

B =
1

2
(f2

1 + f2
2 ) ,

so each connected component of the level sets of B is given by a surface z =
constant. Since z is a first integral of u, the trajectories of the velocity field lie on
the 2-dimensional tori z = constant. Taking f1 = c1 and f2 = c2, with ci constants
such that c1/c2 /∈ Q, it follows that u has no periodic orbits (all the integral curves
of u are quasi-periodic).

4. Arnold’s structure theorem of stationary solutions

In Examples 3.4 and 3.6 of Section 3 we saw that the Bernoulli function is a first
integral of the velocity field u and the vorticity ω. In fact, this is a general property
of any stationary solution of the Euler equations:

Proposition 4.1. Let u be a stationary solution of the Euler equations with Bernoulli
function B. Then B is a first integral of u and ω, that is u · ∇B = ω · ∇B = 0.
Moreover, u(p) and ω(p) are linearly independent non-vanishing vectors at each
point p ∈ M such that ∇B(p) ̸= 0.

Proof. It is immediate from the equation u× ω = ∇B. �

Accordingly, the stream lines and vortex lines of a stationary solution lie on the
level sets of B, which can be interpreted in physical terms as a laminar behavior
for the fluid flow. The turbulent behavior understood as Lagrangian turbulence
(which means that the dynamical system defined by u is chaotic) can only appear
in the domains where B is constant, because in this case the first integral is trivial
and the integral curves of u (and ω) are not constrained to lie on 2-dimensional
surfaces. For a C∞ stationary solution, domains where B is constant can coexist
with domains where it is not a constant, see e.g. Example 3.4. However, in the
analytic (Cω) setting, Arnold observed the following dichotomy [1]. Assume that
(M, g) is an analytic Riemannian manifold and u is a Cω stationary solution of the
Euler equations, then
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• If B is not a constant, its critical set

Cr(B) := {p ∈ M : ∇B(p) = 0}

has codimension at least 1, and in particular it has en empty interior.
• If B is a constant, then the vorticity curlu is proportional to u everywhere,
i.e. there exists a function f such that curlu = fu and div u = 0, and
therefore u is a Beltrami flow.

Arnold’s observation is based on the fact that the critical set Cr(B) is defined
as the zero set of the analytic function (∇B)2, so it is an analytic set by definition.
Since the structure of analytic sets is severely restricted [19] (for instance, they are
stratified submanifolds of codimension greater or equal than one), the aforemen-
tioned dichotomy holds. In fact, Arnold proved in [1] a structure theorem for Cω

stationary solutions of the Euler equations on compact manifolds, which was one
of the landmarks that marked the birth of the modern Topological Hydrodynam-
ics [17]. It asserts that, in the analytic setting, the stream and vortex lines of a
stationary solution of the Euler equations whose velocity field is not collinear with
its vorticity are nicely stacked in a rigid structure analogous to those which appear
in the study of integrable Hamiltonian systems with 2 degrees of freedom:

Theorem 4.2 (Arnold’s structure theorem). Let u be a Cω stationary solution of
the Euler equations on an analytic compact manifold M with non-constant Bernoulli
function. If M has a non-empty boundary ∂M , we assume that u is tangent to the
boundary. Then, there exists an analytic set C of codimension greater or equal than
one, such that M\C consists of finitely many domains Mi such that

(i) Either Mi is trivially fibred by invariant tori of u (so that, in particular,
Mi is diffeomorphic to the product T2 × (−1, 1)), and on each torus, the
velocity field u is conjugate to a linear field.

(ii) Or Mi is trivially fibred by invariant cylinders of u whose boundaries lie on
∂M (so that, in particular, Mi is diffeomorphic to S1 × (−1, 1)× (−1, 1)),
and on each cylinder, all the stream lines of u are periodic.

Proof. We start defining the analytic set C. To this end, we consider the set Λ1

consisting of all the critical level sets of B, that is

Λ1 := {B−1(c) : c is a critical value ofB} ,

and the set Λ2 of all the level sets of B that are tangent at some point to the bound-
ary ∂M . By construction, the set C = Λ1 ∪ Λ2 is an analytic set of codimension
greater or equal than one because it is the union of finitely many level sets of the
analytic function B. The number of level sets in C is finite due to the facts that
M is compact (and then the number of critical value of B is finite), and that M ,
and therefore its boundary ∂M , are analytic manifolds (and hence the number of
values c for which B−1(c) is tangent to ∂M is finite as well). Observe that C does
not need to be a topological submanifold (it may have self-intersections).

Accordingly, the set M\C consists of finitely many pre-compact domains Mi,
on each Mi any level set of B that intersects ∂M do it transversely, and ∇B does
not vanish at any point of Mi. It is easy to check that these properties imply that
the union of the level sets of B in Mi defines a 2-dimensional foliation, which is a
trivial bundle over the interval (−1, 1) whose fiber is an orientable surface Σi that
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is a regular level set of B (possibly with boundary). Moreover, Proposition 4.1
implies that u and ω are linearly independent vectors at each point of Mi.

If Σi has an empty boundary, it must be diffeomorphic to a torus T2 because it
supports the non-vanishing vector field u. Therefore, any level set of B in Mi is
diffeomorphic to T2. Moreover, Helmholtz’s transport of vorticity, cf. Theorem 2.1,
implies for stationary fluids that

(4.1) [u, ω] = 0 ,

where [·] is the commutator of vector fields. Since u and ω are linearly independent
at any point of Mi, we conclude that their flows define an R2-action, and therefore
both u and ω are conjugate to a linear vector field [3] on each level set of B in Mi.

If Σi has a boundary, it must lie on ∂M , and since both ∂M and Σi are invariant
by the vector field u, which does not vanish on Σi, it follows that ∂Σi consists of
finitely many periodic orbits of u. Additionally, the vorticity ω is a transverse
symmetry of u because both fields commute by Eq. (4.1), so all the integral curves
of u in Σi are periodic. It is known that the only orientable surface with boundary
that can be foliated by circles is the cylinder, and therefore Σi is diffeomorphic to
S1 × (−1, 1). The same holds for any other level set of B in Mi, thus concluding
the proof of the theorem. �

Remark 4.3. Arnold’s theorem is an a posteriori consequence in the sense that it
describes the topological structure of the stationary solutions of the Euler equations
under certain assumptions, but it does not say anything on the existence of solutions
of this type.

The Cω assumption in Arnold’s theorem is not key, actually it is only used to
control the critical set of B and the intersections of the level sets of B and ∂M . It
is not difficult to prove an analogous result assuming, for example, that ∂M = ∅
and B is a C2 function that is Morse-Bott. The compactness of M is not key either,
so that analogous results hold for non-compact manifolds assuming that u and ω
satisfy certain growth conditions at infinity, e.g.

|u(x)|+ |ω(x)| < C

for all x ∈ M . In the non-compact case, apart from regular level sets of B dif-
feomorphic to T2 and S1 × R, we can have level sets diffeomorphic to R2, which
correspond to the three possible leaves for R2-actions.

If M is a compact manifold without boundary, Theorem 4.2 implies that all the
connected components of the regular level sets of B are tori. In particular, this
implies that a necessary condition for the existence of Cω stationary solutions of
the Euler equations whose velocity field is not collinear with the vorticity, is that
M must admit an analytic function all whose regular level sets are diffeomorphic
to a torus. I do not know if such functions exist on any compact 3-manifold.
However, an easy consequence of this observation is that for “most” functions B,
the stationary Euler equations do not have a global solution:

Corollary 4.4. Let M be a compact 3-manifold without boundary. Then, there
exists an open and dense set of functions S ⊂ C2(M) such that if B ∈ S, then there
are no C1 global solutions of the stationary Euler equations in M with Bernoulli
function B, for any choice of the metric g.
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Proof. The set S of C2 Morse functions on M is open and dense in C2(M). More-
over, the compactness of M implies that any function B ∈ S attains its maximum
value at some point p ∈ M , and therefore the regular level sets of B in a neigh-
borhood of p are diffeomorphic to spheres. Then, the function B cannot be the
Bernoulli function of a stationary solution of the Euler equations. �

This result contributes to understand the apparent contradiction between the
fact that a “generic” stationary fluid is integrable (laminar) because the function
B is generically non-constant, and the common wisdom that integrability is a rare
phenomenon (turbulence should be typical). The point is that for a generic function
B there are no stationary solutions.

Another consequence of Arnold’s structure theorem is that the way the stream
lines are arranged is severely restricted, which manifests in the fact that under
appropriate assumptions the stream lines cannot be of certain knot types [13]:

Theorem 4.5. Let u be a Cω stationary solution of the Euler equations in S3 (for
an arbitrary metric) with non-constant Bernoulli function. Assume that u does
not vanish anywhere. Then the periodic stream lines of u can only be knots of the
following types: torus knots, cablings of torus knots or connected sums of them.

This theorem suggests that if we want to construct stationary solutions of the
Euler equations with complicated dynamics (e.g. with stream or vortex lines of
any knot type), we should consider Beltrami flows, cf. Eq. (3.4). In this case, the
Bernoulli function B is a constant, so Arnold’s structure theorem does not give any
information (u and ω are collinear everywhere). We shall see in Section 6 that the
Beltrami flows with constant proportionality factor

curlu = λu ,

with λ ∈ R\{0}, are flexible enough in order to realize stream lines of arbitrarily
complicated topology.

5. Helicity and Moffatt’s theorem

H.K. Moffatt introduced in 1969 (inspired by an analogous quantity defined by
Woltjer in the context of the magnetohydrodynamics [26]) a functional to mea-
sure the “degree of knottedness” of a divergence-free vector field: the helicity [21].
We have already introduced it in Section 2, see Eq. (2.1) and Theorem 2.4, where
we showed that H is a conserved quantity for the time-dependent Euler equations
and, more generally, it is invariant under the action of volume-preserving diffeo-
morphisms on exact divergence-free vector fields. The topological interpretation of
the helicity was first unveiled by Moffatt for vector fields modeled on a link in the
following sense:

Definition 5.1. We say that a divergence-free vector field w in R3 is modeled on
the two-component link γ1 ∪ γ2 (each γi is a knot) if w is supported in a tubular
neighborhood T1∪T2 of the link, and w|Ti is tangent to a trivial fibration by circles
of Ti where all fibres are unlinked to each other.

Before stating Moffatt’s theorem, let us introduce some notation. For each tubu-
lar neighborhood Ti of the knot γi there is a diffeomorphism Ψi : Ti → S1 × D2,
where D2 is the unit 2-dimensional disk. Then, denoting by Π : S1 × D2 → D2
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the natural projection over the disk, the vector field w|Ti is tangent to the trivial
fibration defined by Π ◦ Ψi : Ti → D2, and we choose the diffeomorphism Ψi such
that all the fibres are unlinked to each other; such a trivialization of a tubular
neighborhood of a knot is called preferred, and it always exists and is unique up
to isotopy. We parameterize the set S1 × D2 with coordinates θ ∈ S1 = R/Z and
y ∈ D2, and denote by Φi the flux of w|Ti across a transverse section of Ti; since
w is divergence-free, it is straightforward to check that Φi does not depend on the
section, which can be chosen to be Ψ−1

i ({θ = 0}).

Theorem 5.2 (Moffatt’s theorem). Let w be a divergence-free vector field in R3

that is modeled on the link γ1 ∪ γ2. Then

H(w) = 2Φ1Φ2Lk(γ1, γ2) ,

where Lk(γ1, γ2) is the linking number of γ1 and γ2.

Proof. To simplify the computations, we shall assume that the metric in coordinates
(θ, y) is flat, that is ds2 = dθ2 + dy2. By construction of the diffeomorphism Ψi,
and since w is divergence-free, a straightforward computation shows that

(Ψi)∗w = Fi(y)∂θ ,

for some smooth function Fi : D2 → R with Fi(∂D2) = 0.

Now, consider the vector field u := curl−1 w, which is smooth in R3 and can
be computed using the Biot-Savart integral operator. In coordinates (θ, y) we can
write this vector field as follows:

(Ψi)∗u = u
(i)
θ ∂θ + u(i)

y ∂y ,

where u
(i)
θ and u

(i)
y are certain functions of θ and y whose explicit form is not

relevant for our purposes. Using the expression of the metric in coordinates (θ, y),
we compute the helicity of w as

H(w) =

∫
T1∪T2

u · ω =

∫
S1×D2

F1(y)u
(1)
θ dθ dy +

∫
S1×D2

F2(y)u
(2)
θ dθ dy

=

∫
D2

F1(y)
(∫

S1
u
(1)
θ dθ

)
dy +

∫
D2

F2(y)
(∫

S1
u
(2)
θ dθ

)
dy .

For each value y = c, the integral of u
(i)
θ in the θ variable, is just the circulation

of the vector field u along the circle γc
i := Ψ−1

i ({y = c}), |c| < 1, which can be
computed using Stokes theorem:

(5.1)

∫
S1
u
(i)
θ dθ =

∫
γc
i

u · ds =
∫
Σc

i

w · νdσ .

In this formula Σc
i is any surface with ∂Σc

i = γc
i (a Seifert surface of the knot γc

i ,
which is isotopic to γi), ν is a unit vector field normal to the surface and dσ is
the surface measure. Since the trivialization Ψi of the tubular neighborhood Ti is
preferred, we can choose the surface Σc

i to be tangent to the fibres Ψ−1
i ({y = c}),

and hence to the vector field w|Ti , and transverse to the fibres Ψ−1
i′ ({y = c}), and

hence to the vector field w|Ti′ , with i′ = i+ 1 mod. 2. Therefore, since the flux of
w|Ti′ does not depend on the transverse section, and the linking number of γ1 and
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γ2 is just the number of intersections with sign of γ1 with any Seifert surface of γ2
(and conversely), we easily deduce that

(5.2)

∫
Σc

i

w · νdσ = Φi′Lk(γ1, γ2) .

Using Eqs. (5.1) and (5.2) in the expression of the helicity, we finally obtain

H = Φ2Lk(γ1, γ2)

∫
D2

F1(y)dy +Φ1Lk(γ1, γ2)

∫
D2

F2(y)dy = 2Φ1Φ2Lk(γ1, γ2) ,

as we wanted to prove. �

Remark 5.3. We observe that the assumption that the vector field w|Ti is tangent
to a trivial fibration by circles of Ti where all fibres are unlinked to each other
(or equivalently, that the trivialization Ψi is preferred) is crucially used for the
existence of a Seifert surface Σc

i of γc
i which is tangent to the field w|Ti . Indeed, if

the trivialization is preferred, the fibre γc
i (provided with an orientation) defines the

zero homology class in H1(R3\γi;Z), and hence the Seifert surface Σc
i can be taken

to be disjoint from the neighborhood Ψ−1
i ({|y| < c}) and tangent to a 1-parameter

family of fibres γc′

i with |c′| ∈ [|c|, 1).

Moffatt’s theorem holds for vector fields that are modeled on a link, which is
a very restrictive class of flows. For a general divergence-free vector field, the
relationship between helicity and the linkage/knottedness of the trajectories of the
field is not so clear. In [2], Arnold proved for compact manifolds that the helicity
can be interpreted as an asymptotic (in the sense of t → ∞) and averaged (in the
sense of integrating over the whole manifold) linking number of the trajectories.
Nevertheless, the implications of the helicity on the dynamical properties of the
field is still unclear. For example, Taubes proved [24] that there are no uniquely
ergodic divergence-free vector fields with positive helicity, but non-vanishing helicity
does not imply, however, the existence of periodic orbits, at least in class C1:

Theorem 5.4. For any constant c ̸= 0, there exists a C1 non-vanishing divergence-
free vector field w in the 3-sphere S3 without periodic orbits and with helicity

H(w) = c .

Remark 5.5. The proof of this theorem is a variation of Kuperberg’s construc-
tion [20] of C1 non-vanishing divergence-free vector fields in S3 without periodic
orbits. It is unknown if such vector fields exist in class C2.

There is no obstruction on the values that the helicity can take for stationary
solutions of the Euler equations. For instance, consider the family of stationary
solutions in S3 introduced in Example 3.4 with constant coefficients f1 = c1 and
f2 = c2, ci ∈ R. Then, the helicity of the vorticity H(ω) is given by

H(ω) = 2(c21 − c22) ,

which can be any real number. However, Beltrami flows with constant propor-
tionality factor, which satisfy the equation ω = λu, always have non-zero helicity
H(ω) = λ−1∥ω∥2L2(M).

We finish this section recalling Rechtman’s theorem [22], which shows the exis-
tence of periodic stream lines and vortex lines for non-vanishing stationary solutions
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of the Euler equations in the analytic class (Cω). In the proof of this result, the
dichotomy observed by Arnold in the Cω setting that was discussed in Section 4
turns out to be key: either u has a non-trivial analytic first integral, or it is a
Beltrami flow.

Theorem 5.6. Let u be a Cω stationary solution of the Euler equations on a com-
pact manifold M without boundary, and assume that u does not vanish anywhere.
Then, if M is not a T2-bundle over a circle, the velocity field u has a periodic
stream line.

Remark 5.7. It is not known if any C∞ non-vanishing stationary solution of the
Euler equations, on a 3-manifold that is not a torus bundle over the circle, has a
periodic stream line. If the stationary solution is a Beltrami flow (with possibly
non-constant proportionality factor), then it always has a period stream line if the
manifold is not a torus bundle over the circle, see Theorem 6.3 in the following
section.

Compare Theorem 5.6 with Examples 3.4 and 3.6. In the first example, we
constructed a family of stationary solutions in S3 such that any non-vanishing
velocity field in this family has a periodic stream line (either the circle C0 or the
circle C1). In the second example, we constructed a family of stationary solutions
in T3, and showed that there is a non-vanishing velocity field in this family without
periodic stream lines (all the integral curves are quasi-periodic).

6. Beltrami flows and knotted vortex structures

In Section 3 we introduced a special class of stationary solutions of the Euler
equations, the Beltrami flows, which satisfy Eq. (3.4). Obviously the stream lines
of a Beltrami field are the same as its vortex lines, so henceforth we will only refer
to the former. A straightforward consequence of the Beltrami equation is that the
proportionality factor f is a first integral of u (and ω), that is u · ∇f = ω · ∇f = 0.
Accordingly, the stream lines of the stationary solution lie on the level sets of the
function f , which implies a laminar-type behavior of the fluid on the regions where
f is not a constant. In fact, Theorem 4.5 also holds for Cω non-vanishing Beltrami
fields in S3 with non-constant proportionality factor, thus showing that not any
knot type is admissible for the stream lines of these kinds of fields.

Despite its apparent simplicity, the solutions of the Beltrami equation are very
difficult to handle. In particular, it can be shown [10] that there are no nontrivial
(local) solutions for an open and dense set of factors f in the Ck topology, k > 7.
The reason is that the existence of a non-trivial solution of the Beltrami equation
in a domain U implies that f must satisfy the constraint P [f ] = 0 in U , where P
is a non-linear partial differential operator involving derivatives of order at most 6.
Observe that Arnold’s structure theorem does not apply in this setting because the
vorticity is parallel to the velocity field, so the compact regular level sets of f do
not need to be diffeomorphic to a torus. Nevertheless, it is not difficult to show
that f cannot have a (connected component of a) regular level set diffeomorphic to
the sphere S2:

Proposition 6.1. Let u be a non-trivial solution of the Beltrami equation with
proportionality factor f in a neighborhood U of a regular level set Λc := f−1(c).
Then no connected component of Λc can be diffeomorphic to S2.
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Proof. Assume that a connected component Σ of Λc is diffeomorphic to S2. Since
u is divergence-free and f is a first integral, it is easy to check that the induced
vector field j∗u on Σ preserves the area 2-form

µ2 := j∗(i ∇f

|∇f|2
µ) .

Here j : Σ → U is the inclusion of the surface Σ in U . Then, j∗u being divergence-
free on a surface Σ diffeomorphic to S2, it is standard that it has a periodic trajec-
tory γ ⊂ Σ (because j∗u has a non-trivial first integral on Σ). An easy application
of Stokes theorem allows us to write

0 <

∫
γ

u =

∫
D

curlu · ν dσ = c

∫
D

u · ν dσ = 0 ,

where D ⊂ Σ is a disk with boundary ∂D = γ, ν is a normal field to Σ and dσ is
the induced surface measure on Σ. To pass to the second equality we have used
that u is a Beltrami flow and f = c on Σ, and in the last equality we have noticed
that u is tangent to Σ. This contradiction shows that no connected component of
a regular level set of f can be diffeomorphic to S2. �

In light of the previous comments, we are naturally led to consider a constant pro-
portionality factor f to construct stationary solutions with complex vortex patterns.
Then, we will focus our attention on Beltrami fields which satisfy the equation

curlu = λu

for some nonzero constant λ. This equation immediately implies that div u = 0.

Beltrami flows do not need to be integrable, in fact Arnold conjectured in [1]
that they could present stream lines of arbitrarily complicated topology, which is
fully consistent with Williams’ problem stated in Section 2. From the analytic
viewpoint, Beltrami flows with constant factor have some nice properties:

(i) The Beltrami PDE is linear, although not elliptic (the principal symbol of
the curl operator is an antisymmetric matrix).

(ii) They satisfy the Helmholtz equation ∆u+λ2u = 0 and hence, by standard
elliptic regularity, they are Cω if the manifold (M, g) is analytic. However,
in the Euclidean space R3 they cannot have finite energy (there are no
L2(R3) eigenfunctions of the Laplacian).

(iii) There are infinitely many (linearly independent) Beltrami fields on any
manifold. Indeed, if (M, g) is compact without boundary, the curl operator
has a (non-empty) discrete spectrum; if the manifold is open, there is a
non-trivial solution for any constant λ, and typically the multiplicity is
infinite (e.g. in R3). Analogous results hold for manifolds with boundary
provided that u is tangent to the boundary.

Remark 6.2. In the context of magnetohydrodynamics, Beltrami fields are called
force-free fields. They describe magnetic fields H created by a plasma current J
through Maxwell’s equation curlH = J , and they do not exert any force on the
plasma because the Lorentz force J ×H vanishes by the Beltrami condition.

In Example 3.4 we introduced the Hopf fields, which are Beltrami flows on S3 with
the lowest possible eigenvalues (in absolute value). Other paradigmatic examples
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are the ABC flows, which are the eigenfields of the curl operator in the flat torus
T3 with the lowest (positive) eigenvalue:

u(x, y, z) = [A sin z + C cos y]∂x + [B sinx+A cos z]∂y + [C sin y +B cosx]∂z ,

where (x, y, z) ∈ (R/2πZ)3, and A,B,C are real parameters. If one of the parame-
ters is zero, then the field has a non-trivial first integral. For other values, the ABC
fields are typically chaotic and non-integrable, exhibiting transverse homoclinic in-
tersections, see e.g. [5]. An interesting open problem in this context is whether all
knot types of stream lines in T3 can be realized within the ABC family.

In terms of the dual 1-form α = iug, the Beltrami equation is

⋆dα = λα .

In particular, α∧dα = λ|u|2µ, so if the velocity field u does not vanish, α is a contact
1-form on M and the rescaled field |u|−2u is the Reeb field of α. Conversely, Etnyre
and Ghrist observed [14] that if R is the Reeb field of a contact 1-form α, there
exists a metric g such that curlR = R and |R| = 1 computed with this metric. So,
R is a (non-vanishing) Beltrami field on (M, g) (in fact it is also geodesic). The
metric g is not unique, and does not need to be complete if M is open. Since any
Reeb flow has a closed integral curve by Taubes’ theorem [15], the Beltrami-contact
correspondence implies a remarkable consequence:

Theorem 6.3. Any non-vanishing Beltrami field with constant proportionality fac-
tor on a compact manifold (without boundary) has a periodic stream line. The same
result holds for Beltrami fields with non-constant proportionality factor, provided
that the manifold is not a torus bundle over the circle.

Remark 6.4. The second claim in this theorem does not follow from Taubes’ theo-
rem, but from a more general result proved by Hutchings and Taubes [16]. Beltrami
fields with non-constant proportionality factor are related to the so called sta-
ble Hamiltonian structures, or equivalently to volume-preserving geodesible fields,
see [16, 22] for details.

The existence of Beltrami fields on any open Riemannian manifold (in R3, in
particular) with a set of periodic stream lines diffeomorphic to any given link was
proved in [7]. This result settles Arnold’s conjecture for non-compact manifolds
and yields a positive answer to Williams’ question.

Theorem 6.5 (Realization theorem for stream/vortex lines). Let (M, g) be a Cω

open Riemannian 3-manifold, and L a locally finite link in M . Then, for any
constant λ ̸= 0, any non-negative integer r and any ϵ > 0, there exist a vector field
u on M satisfying the equation curlu = λu, and a diffeomorphism Φ : M → M
close to the identity as ∥Φ− id∥Cr(M) < ϵ in the Cr norm, such that Φ(L) is a set
of hyperbolic periodic stream/vortex lines of u.

We recall that a link is a disjoint union of knots, and that locally finite means
that the number of connected components of the link intersecting any compact
set is finite. We also assume that each knot is a smoothly embedded circle. A
periodic orbit of a vector field is hyperbolic if all the eigenvalues of the corresponding
monodromy matrix (i.e. the solution to the normal variational equation evaluated
on the periodic trajectory) have absolute values different from 1. It follows from
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div u = 0 that the hyperbolic periodic stream lines are of saddle type with both a
stable manifold and an unstable manifold of dimension 2.

We remark that the Beltrami field u in this theorem may vanish at some points
(so it does not need to define a Reeb flow), and it may have (and typically will
have) other periodic stream lines. The assumption that the manifold is Cω is used
to apply the Cauchy-Kowalewski theorem in the proof.

The growth of u at infinity is not controlled in general, although if we assume
that the link L is finite and the manifold is the Euclidean space R3, we can bound
the Beltrami field as

|Dju(x)| < Cj

|x|
,

thus implying that u defines a complete flow. Under these same assumptions, En-
ciso and Peralta-Salas proved in [8] a realization theorem analogous to Theorem 6.5
where the periodic stream lines Φ(L) are elliptic (and hence linearly stable). We
recall that a periodic orbit is elliptic if all the eigenvalues of the corresponding
monodromy matrix are purely imaginary and have absolute values equal to 1. Ac-
tually, the theorem proved in [8] gives much more information because it shows
the existence of a set of invariant solid tori of u (and hence of ω) that is a tubular
neighborhood of the link L, and u is non-degenerate in a KAM sense and ergodic
on the boundary of each solid torus. In the context of fluid mechanics these solid
tori are called vortex tubes, so we prove the existence of stationary solutions of the
Euler equations with vortex tubes that are knotted in an arbitrarily complicated
way. The existence of these structures was conjectured by Lord Kelvin in the 19th
century, see e.g. [9] for a recent account of this problem.

A key tool in order to prove Theorem 6.5 (and the aforementioned realization
theorem for vortex tubes) is the following Runge-type global approximation theo-
rem [7, 8]. It establishes the flexibility of Beltrami fields in open manifolds in the
sense that any phenomenon that can be realized by a local solution can be realized
by a global solution as well. As customary, we will say that a PDE is satisfied in a
closed set K if it holds in some open set containing K.

Theorem 6.6. Let v be a vector field that solves the Beltrami equation curl v = λv,
λ ∈ R\{0}, in a compact set K ⊂ M such that all the connected components
of M\K are unbounded. Then, for any non-negative integer r and any positive
constant ϵ, there exists a vector field u satisfying the Beltrami equation curlu = λu
in M such that ∥u− v∥Cr(K) < ϵ.

The topological assumption on the compact set K implies that this approxima-
tion theorem cannot be applied if M is compact (with or without boundary). In
fact, an analogous theorem cannot hold in compact manifolds without boundary
because in such a case the spectrum of the curl operator is discrete, so not any
value of λ is allowed for global solutions, while locally the equation curlu = λu
admits a non-trivial solution for any λ.

Nevertheless, for the flat torus T3 and the round sphere S3 (and quotients of
S3 with a finite subgroup of isometries), a realization theorem for periodic stream
lines (and invariant solid tori) that is analogous to Theorem 6.5 can be proved [12]
using Beltrami fields with high energy λ. A key point is that, in these manifolds,
the multiplicity of λ tends to infinity as λ → ∞ (the spectrum of curl is very
degenerate), which provides a large set of solutions for each large enough λ. In
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the realization theorem proved in [12], the link L is finite and is assumed to be
contained in a contractible subset (this is always the case in S3, but not in T3),
and the diffeomorphism Φ transforming L into a union of periodic stream lines of
a Beltrami field has the effect of contracting L into a ball of radius λ−1. More
precisely, the theorem we proved is the following. In the statement, we write M3

to denote either T3 or S3. Notice that the spectrum of the curl operator in M3

contains all the integers.

Theorem 6.7. Let L be a finite link in M3. In the case of the torus, we also assume
that L is contained in a contractible subset of T3. Then for any large enough odd
integer λ there exists a Beltrami field u satisfying the equation curlu = λu and a
diffeomorphism Φ : M3 → M3 connected with the identity such that Φ(L) is a union
of stream/vortex lines of u.

For each compact and without boundary 3-manifold M there is a generic set
of metrics (generic in the sense of a residual set in the Ck norm) such that the
spectrum of the curl operator is simple [6], i.e. for each λ in the spectrum of curl
the equation curlu = λu has a unique solution up to a multiplicative constant fac-
tor. Therefore, the idea used to prove Theorem 6.7 does not hold, and hence the
following important question remains open:

Open problem: Let (M, g) be a compact Riemannian 3-manifold without bound-
ary. For each knot L ⊂ M , does there exist a Beltrami field u satisfying curlu = λu
that realizes L as a periodic stream line, up to a diffeomorphism of M?
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