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ABSTRACT. In this paper, we review recent research on certain geometric as-
pects of the vortex lines of stationary ideal fluids. We mainly focus on the
study of knotted and linked vortex lines and vortex tubes, which is a topic
that can be traced back to Lord Kelvin and was popularized by the works
of Arnold and Moffatt on topological hydrodynamics in the 1960s. In this
context, we provide a leisurely introduction to some recent results concerning
the existence of stationary solutions to the Euler equations in Euclidean space
with a prescribed set of vortex lines and vortex tubes of arbitrarily complicated
topology. The content of this paper overlaps substantially with the one the
authors published in the Newsletter of the European Mathematical Society in
June 2015.

1. INTRODUCTION

The dynamics of an inviscid incompressible fluid flow in R? is modeled by the

Euler equations

ou .

E+(u~V)u:—VP, divu =0,
where u(z,t) is the velocity field of the fluid, which is a time-dependent vector
field, and P(z,t) is the pressure function, which is defined by these equations up
to a constant. This system of partial differential equations was first published by
Leonhard Euler in 1757 and still stands as a major challenge for engineers, physicists
and mathematicians.

The motion of the particles in the fluid is described by the integral curves of the
velocity field, that is, by the solutions to the non-autonomous ODE

(1) = u(z(t),1)

for some initial condition z(tg) = xo, and are usually called particle paths. The
integral curves of u(zx,t) at fixed time ¢ are called stream lines, and thus the stream
line pattern changes with time if the flow is unsteady.

Another time-dependent vector field that plays a crucial role in fluid mechanics
is the wvorticity, defined by

w = curlu.
This quantity is related to the rotation of the fluid and is a measure of the entan-

glement of the stream lines. The integral curves of the vorticity w(x,t) at fixed
time ¢, that is to say, the solutions to the autonomous ODE

(1) = w(a(r),1)
1
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for some initial condition z(0) = xg, are the vortez lines of the fluid at time t. A
domain in R? that is the union of vortex lines and whose boundary is a smoothly
embedded torus is called a (closed) vortezx tube. Obviously, the boundary of a vortex
tube is an invariant torus of the vorticity.

In this article we will be concerned with stationary solutions of the Euler equa-
tions, which describe an equilibrium configuration of the fluid. In this case, the
velocity field u does not depend on time, and the Euler equations can then be
written as

uXw=VB, divu =0,

where B := P + 1|u/? is the Bernoulli function. This is a fully nonlinear system
of partial differential equations, so a priori it is not easy to see for which choices
of the function B there exist any solutions and which properties they can exhibit.
It is obvious that for stationary flows, the particle paths coincide with the stream
lines.

Our goal is to introduce some results in fluid mechanics whose common de-
nominator is that the main objects of interest are the stream and vortex lines of
ideal fluid flows. In particular, we shall review the recent construction of stationary
solutions to the Euler equations in R? describing topologically nontrivial fluid struc-
tures [5, 6]. Mathematically, these problems are extremely appealing because they
give rise to remarkable connections between different areas of mathematics, such as
partial differential equations, dynamical systems and differential geometry. From
a physical point of view, these questions are often considered in the Lagrangian
approach to turbulence and in the study of the hydrodynamical instability.

In this context, a major problem that has attracted considerable attention is the
existence of knotted and linked vortex lines and tubes !, see Fig. 1. The interest
in this question dates back to Lord Kelvin [22], who developed an atomic theory
in which atoms were understood as stable knotted thin vortex tubes in the ether,
an ideal fluid modeled by the Euler equations. Kelvin’s theory was inspired by
the transport of vorticity discovered by Helmholtz [14], which in particular implies
that the vortex tubes are frozen within the fluid flow and hence their topological
structure does not change with time. Vortex tubes were called water twists by
Maxwell, and were experimentally constructed by Tait by shooting smoke rings
with a cannon of his own design. The stability required by Kelvin’s atomic theory
led him to conjecture in 1875 that thin vortex tubes of arbitrarily complicated
topology can arise in stationary solutions to the Euler equations [23].

The mathematical elegance of Kelvin’s theory, in which each knot type corre-
sponds to a chemical element, captivated the scientific community for two decades.
However, by the end of the XIX century, with the discovery of the electron and the
experimental proof that the ether does not exist, it was clear that this theory was
erroneous. Nevertheless, Kelvin’s vortex tubes hypothesis was an important boon
for the development of knot theory and fluid mechanics. In particular, Kelvin’s
conjecture has been a major open problem since then and has had a deep influence
in mathematics.

I3We recall that a knot is a smooth closed curve in R3 without self intersections, and a link is
a disjoint union of knots.
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F1GURE 1. The problem involves showing that there are stationary
solutions of the Euler equations realizing links, e.g. the trefoil knot
and the Borromean rings depicted above, as vortex lines or vortex
tubes.

In modern times, the study of knotted vortex tubes is a central topic in the so
called topological hydrodynamics [3], a young area that was considerably devel-
oped after the foundational works of Arnold [1, 2] and Moffatt [16]. Arnold, in his
celebrated structure theorem, classified the topological structure of the stationary
solutions when the Bernoulli function is not identically constant, and he conjec-
tured that a particular class of stationary solutions called Beltrami flows, should
exhibit stream lines of arbitrarily complicated topology 2. Moffatt introduced the
concept of helicity to study the entangledness and knottedness of the fluid, and
gave a heuristic argument supporting the existence of stationary states with stream
lines of any knot type [17], leaving completely open the case of vortex lines and
tubes ®. A stronger conjecture was stated in the 1990s by R.F. Williams [24], who
asked about the existence of a fluid flow having stream lines tracing out all knots.
The main difficulty of these problems is that they lie somewhere between the par-
tial differential equations and the dynamical systems, which explains why purely
topological or analytical techniques have not been very successful in these kinds of
problems.

It should be emphasised that the interest of Kelvin’s conjecture is not merely
academic; in fact spectacular recent experiments by Kleckner and Irvine at the Uni-
versity of Chicago [15] have physically supported the validity of Kelvin’s conjecture
through the experimental realisation of knotted and linked vortex tubes in actual
fluids using cleverly designed hydrofoils, see Fig. 2. Furthermore, the existence
of topologically complicated stream and vortex lines is crucial in the study of the
Lagrangian theory to turbulence and in magnetohydrodynamics.

The article is organized as follows. In Section 2 we explain how Helmholtz’s
transport of vorticity gives rise to knotted structures in the time-dependent Euler
equations (for short times), and review Moffatt’s heuristic argument suggesting the
existence of stream lines of any knot type in stationary Euler flows. In Section 3
we state Arnold’s structure theorem and introduce Beltrami fields and Arnold’s
conjecture in this context; we also review the geometric approach of Etnyre and
Ghrist to address the existence of knotted vortex lines and tubes in the stationary
Euler equations. In Sections 4 and 5 we state the realisation theorems on vortex

2In Arnold’s words [1]: “Il est probable que les écoulements tels que curlv = Av, A\ = cte, ont
des lignes de courant a la topologie compliquée”.

3In Moffatt’s words [18]: “there may exist steady knotted vortex tubes configurations, but no
technique has as yet been found to prove the existence of such configurations”.
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FIGURE 2. A knotted vortex tube of water obtained in the Irvine
Lab at the University of Chicago. Figure courtesy of William
Irvine.

lines [5] and vortex tubes [6] in R3, proved recently by the authors of this paper,
which establish Kelvin’s and related conjectures; we also include readable detailed
sketches of the proofs of these results. Finally, in Section 6 we show the existence of
high-frequency stationary solutions of the Euler equations on the 3-torus T? and the
3-sphere S? exhibiting vortex lines and tubes of arbitrarily complicated topology.

2. HELMHOLTZ’S TRANSPORT OF VORTICITY AND MOFFATT’S MAGNETIC
RELAXATION ARGUMENT

In 1858 Helmholtz [14] discovered that the vorticity is transported by ideal fluid
flows, so that for different times ¢ty and t; > ¢y the phase portraits of the autonomous
vector fields w(-,tp) and w(-, t1) are topologically equivalent. This turned out to be
a fundamental mechanism in fluid mechanics that placed the vorticity in a leading
role in order to analyse the Euler equations.

Using the transport of vorticity, it is easy to construct time-dependent solutions
of the Euler equations with vortex lines of complex topology. The basic idea is the
following: Suppose that u(z,t) is a time-dependent solution of the Euler equations.
Then its vorticity satisfies the transport equation

ow w,
= w?u )
ot
with [+, ] the commutator of vector fields. Therefore, the vorticity at time ¢ can be

expressed in terms of the vorticity wo(z) at time tg as

w(x,t) = (Br,t0)swo (),

where (¢4, )« denotes the push-forward of the non-autonomous flow of the velocity
field between the times ¢y and t.

From this expression for the vorticity it stems that the vortex lines at time ¢
are diffeomorphic to those at time ty. Accordingly, one can attempt to construct
the initial vorticity wg with a prescribed set of vortex lines and tubes. This is a
problem in dynamical systems where the only constraint on the vector field wq is
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that divwy = 0, which in R? implies that wy is exact, i.e. there exists a vector
field ug such that curlug = wg. The initial vorticity wp can be constructed as
follows. let L be the finite link in R? that we want to realise as a set of vortex lines.
As it has trivial normal bundle, a tubular neighbourhood Nj of each component
Ly of L is diffeomorphic to S! x R2. We take each neighbourhood N}, so that
the compact sets N are pairwise disjoint. Let us parameterize Nj with local
coordinates a € S! := R/(27Z) and z = (z1,22) € R%. In these coordinates, the
Euclidean volume reads as

dx = f(a,z)dadz dzy

for some smooth positive function f. Using this parametrization, we can define a
vector field vy in each domain Ni as:

2

k= Lp) (8(1 + G(pZ)aLp) )
f

where we have used the polar coordinates (p, ¢) defined as z; = pcosy and z5 =
psinp, and F and G are smooth functions such that F(0) =1 and F =0 for p > 1.
By construction, v, is a smooth vector field compactly supported in N, and it is
straightforward to check that it is volume preserving for any choice of the functions
F and G. Moreover, L is an integral curve of vy, and for any pg > 0, the domain
{p < po}, expressed in the coordinates (a, p, @), is an invariant tube of vy.

Using the fields vg, we can prescribe the initial vorticity as the compactly sup-
ported divergence-free vector field

( ) vk(x) if x € Ng,
wolxr) =
0 0 if 2 € R3\ |J Ny .

Through the Biot—Savart operator, this initial vorticity corresponds to the initial

velocity
1 (z —y) X wo(y)
= — — —2d
Uo(ﬂf) A7 /]RS “/I;_y|3 Y,

which falls off at infinity as |ug(x)| < C/|z|?.

By construction, the link L is a union of vortex lines of the initial vorticity wy.
This field is integrable and nondegenerate in the sense that each tubular neigh-
bourhood Ny is filled by vortex tubes, and the vortex lines are either periodic or
quasi-periodic depending on whether the value of the function G(p?) on the in-
variant torus {p = po} is rational or not. Therefore, the classical local (in time)
existence theorem implies that there is a smooth solution to the Euler equations
with initial datum wg which is defined for ¢t € [0,7T) (it is not known whether the
maximal time of existence T' > 0 is actually infinite). The solution u has a set of
vortex lines diffeomorphic to the link L for all ¢ € [0,T'), and vortex tubes enclosing
these vortex lines, as we wanted to show.

The importance of this simple argument is that it suggests the existence of
stationary solutions of the Euler equations with knotted and linked vortex lines and
tubes. Heuristically, one can argue as follows. If there is a smooth global solution
u(x,t) that evolves, for large times, into an equilibrium state, characterized by a
stationary solution to Euler us (), it is conceivable, although certainly not at all
obvious, that this stationary solution should also have a set of closed vortex lines
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diffeomorphic to L. Of course, these hypotheses prevent us from promoting this
heuristic argument to a rigorous result.

In this direction, Moffatt [17] introduced a particularly influential scenario which
was inspired by ideas of the physicists Zakharov and Zeldovitch. Moffatt’s heuristic
argument, based on the magnetic relaxation phenomenon, supports the existence
of knotted stream lines, although making his approach precise seems to be way
out of reach despite the recent rigorous results in this direction, see e.g. [12]. To
explain this argument, let us consider the following magnetohydrodynamic system
with viscosity pu:

%_’_(u.v)u:_VP—|—,uAu—|—H><cur1H,
88717? =[H,u], divu=divH =0.

In this equation, u(z,t) represents the velocity field of a plasma, H(x,t) is the
associated magnetic field and P(z,t) is the pressure of the plasma.

Just as in the case of the previous argument based on the vorticity transport,
the idea is to take initial conditions (Hp,ug) such that the vector field Hy has a
prescribed set of invariant closed lines, possibly knotted and linked. The construc-
tion of Hy, whose only constraint is being volume preserving, can be done exactly
as in the case of vortex lines. Then one can argue that, if there is a global solution
with this choice of initial conditions, it is reasonable that the viscous term u Awu
forces the velocity to become negligible as ¢ — oo. If the magnetic field also has
some definite limit H,(x) as t — oo, then this limit field satisfies

Hy xcurl H, = VP, divH, =0.

Formally, these equations are the same as the stationary Euler equations, so H
is then a stationary solution to the Euler equations. Since the magnetic field is
transported by the flow of the velocity field, the same argument as above suggests
that one can hope that H,, should have a set of integral curves (i.e., stream lines)
diffeomorphic to any prescribed link. The problems that appear when one tries to
make this argument rigorous are similar to those appearing in the case of vortex
lines, e.g., it relies on the global existence of solutions to the aforementioned MHD
system, which is currently not known.

3. ARNOLD’S STRUCTURE THEOREM, BELTRAMI FIELDS AND THE CONTACT
GEOMETRY APPROACH

In spite of the fact that it is very challenging to make rigorous the ideas intro-
duced in Section 2, these arguments are the main theoretical basis for the firm belief
in the validity of Kelvin’s and related conjectures among the physics community.

A landmark in this direction is Arnold’s structure theorem [1, 2], which asserts
that, under mild technical assumptions, the stream and vortex lines of a stationary
solution to Euler whose velocity field is not everywhere collinear with its vorticity,
are nicely stacked in a rigid structure akin to those which appear in the study of
integrable Hamiltonian systems with two degrees of freedom:

Theorem 3.1 (Arnold’s structure theorem). Let u be a solution to the stationary
Euler equations in a bounded domain Q C R3 with analytic boundary. Suppose
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that u is tangent to the boundary and analytic in the closure of the domain. If u
and its vorticity w are not everywhere collinear, then there is an analytic set C, of
codimension at least 1, so that Q\C' consists of a finite number of subdomains in
which the dynamics of u and w are of one of the following two types:

o The subdomain is trivially fibered by tori invariant under u and w. On
each torus, the flows of u and w are conjugate to linear flows (rational or
irrational).

e The subdomain is trivially fibered by cylinders invariant under u whose
boundaries sit on 02. All the stream lines of u on each cylinder are peri-
odic.

The proof of Arnold’s structure theorem is based on two simple observations:
the Bernoulli function B is a nontrivial first integral of both v and w, and on each
regular level set of B, the fields v and w are linearly independent and commute.
For our purposes, the main consequence of Arnold’s theorem is that when v and w
are not collinear, there is not much freedom in choosing how the vortex lines and
vortex tubes can sit in space, so it should be difficult to construct topologically
complicated vortex structures. This rough idea was confirmed in [9] by showing
that, under appropriate hypotheses, the rigid structure predicted by Arnold indeed
leads to obstructions on admissible knot and link types for stream and vortex lines.

In fact, with suitable assumptions, it is not difficult to extend Arnold’s theorem
to solutions defined on the whole R3, so the hypothesis that u is defined on a
bounded domain € is not essential. Actually, Arnold himself emphasised that the
key hypothesis is that the velocity and the vorticity should not be everywhere
collinear, and predicted that when this condition is not satisfied, i.e., when the
velocity and vorticity are everywhere parallel, then one should be able to construct
stationary solutions to the Euler equations with stream and vortex lines of arbitrary
topological complexity.

Therefore, if one tries to prove Kelvin’s conjecture, or to construct stationary
solutions with stream and vortex lines of any link type, it is natural to consider
solutions of the form

(1) curlu = fu, divu =0,

with f a smooth function on R®. Taking the divergence in this equation we infer
that Vf-u =0, i.e., that f is a first integral of the velocity field. As a consequence
of this, the trajectories of w must lie on the level sets of the function f. The
solutions to this equation are very difficult to handle. In fact, it can be shown [7]
that there are no nontrivial solutions for an open and dense set of factors f in the
C* topology, k > 7. The reason is that the existence of a non-trivial solution to
Eq. (1) in a domain U implies that f must satisfy the constraint P[f] = 0 in U,
where P is a non-linear partial differential operator involving derivatives of order
at most 6.

Observe that Arnold’s structure theorem does not apply to stationary solutions
satisfying Eq. (1) because the vorticity is parallel to the velocity field, so the com-
pact regular level sets of f do not need to be diffeomorphic to a torus. Nevertheless,
it is not difficult to show [7] that f cannot have a connected component of a regular
level set diffeomorphic to the sphere S2:
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Proposition 3.2. Let u be a non-trivial solution of Eq. (1) with proportionality
factor f in a neighborhood U of a reqular level set A. := f~(c). Then no connected
component of A, can be diffeomorphic to S?.

Proof. Assume that a connected component ¥ of A, is diffeomorphic to S2. Since
u is divergence-free and f is a first integral, it is easy to check that the induced
vector field j*u on X preserves the area 2-form

H2 = j*(l v dac).

IV £I12

Here j : ¥ — U is the inclusion of the surface ¥ in U and dz is the Euclidean
volume form. Then, j*u being divergence-free on a surface ¥ diffeomorphic to S?,
it is standard that it has a periodic trajectory v C ¥ (because j*u has a non-trivial
first integral on ). An easy application of Stokes theorem allows us to write

0</u=/curlu-ydazc/u-VdU:O,
¥ D D

where D C ¥ is a disk with boundary 0D =, v is a normal field to ¥ and do is
the induced surface measure on ¥. To pass to the second equality we have used
Eq. (1) and f = con X, and in the last equality we have noticed that u is tangent
to X. This contradiction shows that no connected component of a regular level set
of f can be diffeomorphic to S2. O

In light of the previous comments, in order to keep things simple, we are naturally
led to consider a constant proportionality factor f to construct stationary solutions
with complex vortex patterns. Then, we will focus our attention on Beltrami fields,
which satisfy the equation

curlu = \u

for some nonzero constant A. This equation immediately implies that divu =
0. Notice that Beltrami fields satisfy the equation Au = —A2u, and hence by
standard elliptic regularity they are real analytic. However, they cannot be in
L?(R?) so they do not have finite energy. Actually, it is an open question whether
the Euler equations in R3 admit any (nonzero) stationary solutions with finite
energy. Obviously the stream lines of a Beltrami field are the same as its vortex
lines, so henceforth we will only refer to the latter.

After establishing his structure theorem, Arnold conjectured that, contrary to
what happens in the non-collinear case, Beltrami fields could present vortex lines of
arbitrary topological complexity, which is fully consistent with Kelvin’s conjecture.
Indeed, there is abundant numerical evidence and some analytical results that sug-
gest that the dynamics of a Beltrami field can be extremely complex. The most
thoroughly studied examples are the ABC fields, introduced by Arnold in [1]:

u(z) = (Asinzs + C cos z2, Bsinzy + Acos 3,
Csinxy + Bcosxl) .
Here A, B,C are real parameters. It is remarkable that all our intuition about

Beltrami fields comes from the analysis of a few exact solutions, which basically
consist of fields with Euclidean symmetries and the ABC family.

From the experimental viewpoint, it was observed in actual fluid flows [20] that
in turbulent regions of low dissipation, and hence governed by the Euler equations,
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the velocity and vorticity vectors have a tendency to align, which is precisely the
Beltrami condition. This is an additional support in order to consider Beltrami
fields as the right solutions if one wants to construct topologically complicated
vortex structures. As a matter of fact, these fields also play an important role in
magnetohydrodynamics, where they are known as force-free magnetic fields. These
force-free solutions model the dynamics of plasmas in stellar atmospheres, where
complicated magnetic tubes, which are the analogues of vortex tubes, have been
observed.

An interesting approach to the problem on the existence of knotted and linked
vortex lines in stationary Euler flows is due to Etnyre and Ghrist. It hinges on the
connection of Beltrami fields with contact geometry [10]. The main observation is
the following. Let u be a Beltrami field and « its dual 1-form, so that the Beltrami
equation can be written using the Hodge *-operator as

xdo = Ao
Therefore, if the Beltrami field does not vanish anywhere, we have that
a Ado = Mu|* dey A dag A das

does not vanish either, so that by definition « defines a contact 1-form. Conversely,
if v is a contact 1-form in R3, there is a smooth Riemannian metric g adapted to
the form « so that this 1-form satisfies the Beltrami equation above with the Hodge
x-operator corresponding to the metric g. The vector field dual to the 1-form « is
a Beltrami field with respect to the adapted metric g, and is called Reeb field in
contact geometry.

The reason why this observation is useful is that the machinery of contact ge-
ometry is very well suited for the construction of contact forms whose associated
Reeb fields have a prescribed invariant set, e.g. a set of closed integral curves or
invariant tori. Therefore, one finds that there is a metric in R3, which in general
is neither flat nor complete, such that the Euler equations in this metric admit a
stationary solution of Beltrami type having a set of vortex lines and vortex tubes of
any knot and link type. The geometric properties of a metric adapted to a contact
1-form are very rigid [11], so this strategy cannot work when we consider the Euler
equations for a fixed (e.g. Euclidean) metric.

4. A REALISATION THEOREM FOR KNOTTED VORTEX LINES

In this section we shall discuss a realisation theorem showing the existence of
Beltrami fields with a set of closed vortex lines diffeomorphic to any given link [5]:

Theorem 4.1. Let L C R? be a finite link and let A be any nonzero real number.
Then one can deform the link L by a diffeomorphism ® of R3, arbitrarily close to
the identity in the C™ norm, such that ®(L) is a set of vortex lines of a Beltrami
field w, which satisfies the equation curlu = Mu in R3. Moreover, u falls off at
infinity as |Diu(x)| < C;/|z|.

We have only considered the case of finite links, but the case of locally finite
links can be tackled similarly at the expense of losing the decay condition of the
velocity field. In particular, taking into account the fact that the knot types modulo
diffeomorphism are countable, it follows that there exists a stationary solution to
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the Euler equations whose stream lines realise all knots at the same time, thus
yielding a positive answer to a question of Williams [24].

The closed vortex lines in the set ®(L) are hyperbolic, i.e. their associated
monodromy matrices do not have any nontrivial eigenvalues of modulus 1. Since
divu = 0, this immediately implies that these vortex lines are unstable. Notice,
however, that the theorem does not guarantee that ®(L) contains all closed vortex
lines of the Beltrami field.

The 1/|z| decay we have is optimal within the class of Beltrami solutions, not
necessarily with constant proportionality factor [19], so our solutions belong to the
space LP(R3) for all p > 3. Notice that the 1/|z| decay was not proved in [5]
(indeed, in this paper the Beltrami field was not shown to satisfy any conditions at
infinity), but follows from the more refined global approximation theorem that we
proved in [6].

We shall next sketch the proof of Theorem 4.1. The heart of the problem is that
one needs to extract topological information from a PDE. Our basic philosophy
is to use the methods of differential topology and dynamical systems to control
auxiliary constructions and those of PDEs to realise these auxiliary constructions
in the framework of solutions to the Euler equations. For concreteness, to explain
the gist of the proof we will concentrate on constructing a solution for which we
are prescribing just one vortex line L, which is a (possibly knotted) curve in R®.

Step 1: a geometric construction. It is well know that, perturbing the knot
a little through a small diffeomorphism, we can assume that L is analytic. Since
the normal bundle of a knot is trivial, we can take an analytic ribbon ¥ around L.
More precisely, there is an analytic embedding h of the cylinder S! x (-4, ) into
R? whose image is ¥ and such that h(S! x {0}) = L.

In a small tubular neighbourhood N of the knot L we can take an analytic
coordinate system
0,2,p) : N — S' x (=6,8) x (—0,0)
adapted to the ribbon X. Basically, 6 and z are suitable extensions of the angular
variable on the knot and of the signed distance to L as measured along the ribbon
3, while p is the signed distance to X.

The reason why this coordinate system is useful is that it allows us to define a
vector field w in the neighbourhood N that is key in the proof: simply, w is the
field dual to the closed 1-form

do — zdz.

From this expression and the definition of the coordinates it stems that w is an
analytic vector field tangent to the ribbon ¥ and that L is a stable hyperbolic
closed integral curve of the pullback of w to X.

Step 2: a robust local Beltrami field. The field w we constructed in Step 1
will now be used to define a local Beltrami field v. To this end we will consider the
Cauchy problem

(2) curlv = Ao, vy =w.

One cannot apply the Cauchy-Kowalewski theorem directly because the curl opera-
tor does not have any non-characteristic surfaces as its symbol is an skew-symmetric
matrix. In fact, a direct computation shows that there are some analytic Cauchy
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data w, tangent to the surface X, for which this Cauchy problem does not have any
solutions: a necessary condition for the existence of a solution, when the field w is
tangent to X, is that the pullback to the ribbon of the 1-form dual to the Cauchy
datum must be a closed 1-form.

Through a more elaborate argument that involves a Dirac-type operator, one
can prove that this condition is not only necessary but also sufficient. Therefore,
the properties of the field w constructed in Step 1 allow us to ensure that there is a
unique analytic field v in a neighbourhood of the knot L which solves the Cauchy
problem (2).

It is obvious that the knot L is a closed vortex line of the local Beltrami field v.
As a matter of fact, it is easy to check that this line is hyperbolic (and therefore
robust under small perturbations). The idea is that, by construction, the ribbon
¥ is an invariant manifold under the flow of v that contracts into L exponentially.
As the flow of v preserves volume because divwv = 0, there must exist an invariant
manifold that is exponentially expanding and intersects 3 transversally on L, which
guarantees its hyperbolicity.

Accordingly, L is a robust closed vortex line. More concretely, by the hyperbolic
permanence theorem any field « that is close enough to v in the C™(N) norm,
m > 1, has a closed integral curve diffeomorphic to L, and this diffeomorphism can
be chosen C™-close to the identity (and different from the identity only in N).

Step 3: a Runge-type global approximation theorem. The global Beltrami
field u is obtained through a Runge-type theorem for the operator curl —A. This
result allows us to approximate the local Beltrami field v by a global Beltrami field
u in the C™(N) norm. More precisely, for any positive ¢ and any positive integer
m there is a global Beltrami field u such that

[u—vllom@ny <4.
Besides, the field u falls off at infinity as

. C.
|D7u(z)| < =2 .
|z

Basically, the proof of our Runge-type theorem [6] consists of two steps. In
the first step we use functional-analytic methods and Green’s functions estimates
to approximate the field v by an auxiliary vector field v that satisfies the elliptic
equation A? = —\?% in a large ball of R? that contains the set N. To prove this
result it is crucially used that the complement R3\ N of the set N has no compact
components. In the second step, we define the approximating global Beltrami field
u in terms of a truncation of a Fourier-Bessel series representation of the field @
and a simple algebraic trick.

To conclude the proof of the theorem it is enough to take ¢ small enough so that
the hyperbolic permanence theorem ensures that if ||u — v||¢mn) < 0 then there is
a diffeomorphism @ of R3 such that ®(L) is a closed vortex line of u and ® — id is
supported in N with ||® — id| cm sy as small as wanted.
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5. A REALISATION THEOREM FOR KNOTTED VORTEX TUBES

In Theorem 4.1 we have used Beltrami fields to prove the existence of stationary
solutions to the Euler equations with vortex lines of any link type. Let us now show
that one can construct stationary solutions with knotted vortex tubes, as predicted
by Kelvin, using Beltrami fields as well. To state this result, let us denote by 7(L)
the e-thickening of a given link I in R?, that is, the set of points that are at distance
at most € from L. The realisation theorem for vortex tubes can then be stated as
follows [6]:

Theorem 5.1. Let L be a finite link in R3. For any small enough €, one can
transform the collection of pairwise disjoint thin tubes Tc(L) by a diffeomorphism
® of R®, arbitrarily close to the identity in the C™ norm, so that ®[T.(L)] is a
set of vortex tubes of a Beltrami field w, which satisfies the equation curlu = Au
in R? for some nonzero constant \. Moreover, the field v decays at infinity as
Diu(@)| < Cy/Jal.

The parameter A in the theorem cannot be chosen freely: it must be of order
O(e?). In fact, if we allow a diffeomorphism @ that is not close to the identity, we
can get any nonzero constant A’ just by considering the rescaled field

, N
u'(z) = u( 3 ) )
which satisfies the Beltrami equation curlu’ = Nu/. However, the fact that the
vortex tubes are thin in the sense that their width is much smaller than their
length, is a crucial ingredient in the proof of the theorem.

The proof of Theorem 5.1 also yields information on the structure of the vortex
lines inside each vortex tube:

(i) There are infinitely many nested invariant tori (which bound vortex tubes).
On each of these tori, the vortex lines are ergodic.

(ii) In the region bounded by any pair of these invariant tori there are infinitely
many closed vortex lines, not necessarily of the same knot type as the
curves in the link L.

(iii) There is a set of elliptic * closed vortex lines diffeomorphic to the link L
near the core of the vortex tubes. Being elliptic, they are linearly stable.

(iv) The vortex tubes are both Lyapunov stable and structurally stable.

The proof of Theorem 5.1 also relies on the combination of a robust local con-
struction and a global approximation result, as in the case of Theorem 4.1. In
fact, this global approximation result was used in the statement of Theorem 4.1 to
ensure that our Beltrami fields fall off at infinity. However, the construction of the
robust local solution is much more sophisticated than in the case of vortex lines
and requires entirely different ideas.

Basically, the robustness of the tubes follows from a KAM-theoretic argument
with two small parameters: the thinness € of the tubes and the constant A\. The local
solution must now be defined in the whole tubes, not just on a neighbourhood of the
boundary. This makes it impossible to construct the local solution using a theorem

4We recall that a closed integral curve of a vector field is elliptic if its associated monodromy
matrix has all its eigenvalues of modulus 1.
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of Cauchy-Kowalewski type, as we did in Step 2 of Theorem 4.1. Instead, we need
to consider a boundary value problem for the curl operator in which the tangential
part of the field cannot be prescribed. As a consequence of this, one cannot directly
take local Beltrami fields which satisfy the non-degeneracy conditions of the KAM-
type theorem: these conditions must be extracted from the equation using fine PDE
estimates. This is in great contrast with the prescription of the Cauchy datum that
we made in Step 1 of Theorem 4.1, which readily ensures the hyperbolicity of the
closed vortex lines, and leads to very subtle problems with a deep interplay of PDE
and dynamical systems techniques.

As we did in the sketch of proof of Theorem 4.1, we will concentrate on con-
structing a solution for which we are prescribing just one vortex tube 7. = T.(L),
where L is a (possibly knotted) curve in R3.

Step 1: a local Beltrami field in a tube. We will obtain a local Beltrami field
v in T¢ as the unique solution to certain boundary value problem for the Beltrami
equation. To specify this problem, let us fix a (nonzero) harmonic field & in T,
which satisfies

divh=0 and curlh=0

in the tube and is tangent to the boundary. By Hodge theory, it is standard
that there is a unique harmonic field in 7 up to a multiplicative constant. For
concreteness, let us assume that ||| p2(7) = 1.

The boundary problem we will then consider is
curlv = Av

in 7¢, supplemented with the boundary condition v - v = 0 and a condition on the
harmonic part of v such as
/ v-hdr=1.

Notice that in this boundary problem we are specifying the normal component of
v on the boundary (which we set to zero, to ensure that 07¢ is an invariant torus)
but not the tangential component. This will be important later on.

Through a duality argument, it is not hard to prove that for any A outside some
discrete set, and in particular whenever |)A| is smaller than some e-independent
constant, there is a unique solution to this problem. An easy consequence of the
proof is that the field v becomes close to h for small A, in the sense that

(3) v =Bl ey < CkelAl

The problem now is that, when one tries to verify the conditions for the preser-
vation of the invariant torus 07 under small perturbations of v, one realizes that
the above existence result is far from enough: the robustness of the invariant torus
depends on KAM arguments, which require very fine information on the behavior
of v in a neighbourhood of 97.

An important simplification is suggested by the estimate (3): if we take small
nonzero values of A, it should be enough to understand the behavior of the harmonic
field h, since the local solution v is going to look basically like this field (more refined
estimates are needed to fully exploit this fact, but this is the basic idea.)
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Therefore, our next goal is to estimate various analytic properties of the harmonic
field h. To simplify this task, we will introduce coordinates adapted to the tube 7,
which essentially correspond to an arc-length parametrization of the knot L and to
rectangular coordinates in a transverse section of the tube defined using a Frenet
frame. Thus we consider an angular coordinate «, taking values in S} = R/{Z
(with ¢ the length of the knot L), and rectangular coordinates y = (y1,y2) taking
values in the unit 2-disk D.

To extract information about h, we start with a good guess of what h should
look like: one can check that there is some function of the form 1+ O(¢) such that
the vector field

ho = [1 4+ O(€)] (0a + 7 5p)
is “almost harmonic”, in the sense that it is curl-free, tangent to the boundary and
satisfies
p:=—divhy = O(e).
Here 7 is the torsion of the curve L and 6 is the angular polar coordinate in the
2-disk. The actual form of hg and p is important, but we will not write these details
to keep the exposition simple.

From the above considerations we infer that the harmonic field is given by

h=hy+ Vv,
where v solves the Neumann boundary value problem
(4) AYp=p in T, OnYlor. =0, / vdr=0.
Te

When written in the natural coordinates («, y), we obtain a boundary value problem
in the domain S} xID, the coefficients of the Laplacian in these coordinates depending
on the geometry of the tube strongly through its thickness € and the curvature and
torsion of L.

In the derivation of the result on preservation of the invariant torus we will need
to solve approximately the boundary value problem (4), thus showing that v is of
the following form:

o ¥ =0(e),
e D,y = (certain explicit function) + O(e?),
o Jp1p = (certain explicit function) + O(e°).

The explicit expressions above are important, but we will omit them so as not to
obscure the main points of the proof.

To obtain these expression, we need estimates for the L? norm of 1 and its
derivatives that are optimal with respect to the parameter €. The reason for this is
that standard energy estimates of the form

[l rv2(ry < Cerllpllae(r)

are of little use to us because for the preservation of the torus we will need to
be very careful in dealing with powers of the small parameter e. In particular,
it is crucial to distinguish between estimates for derivatives of 1 with respect to
the “slow” variable o and the “fast” variable y, and even to trade some of the
gain of derivatives associated with the elliptic equation (4) (in some cases) for an
improvement of the dependence on € of the constants. Estimates optimal with
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respect to € are also derived for the equation curlv = Av in 7, to help us exploit
the connection between Beltrami fields with small A and harmonic fields.

Step 2: A KAM theorem for Beltrami fields. To analyse the robustness of the
invariant torus 97, of the local solution v, the natural tool is KAM theory. At first,
it may not be immediate to see why we can apply KAM-type arguments, as v is a
divergence-free vector field in a three-dimensional domain and KAM theory is usu-
ally discussed in the context of integrable Hamiltonian systems in even-dimensional
spaces.

The key here is to consider the Poincaré (or first return) map of v. To define
this map, we take a normal section of the tube T¢, say {& = 0}. Given a point z
in this section, the Poincaré map II associates to xy the point where the vortex line
x(7) with initial condition z(0) = xg cuts the section {o = 0} for the first positive
time. The analysis in Step 1 gives that the harmonic field h is of the form

(5) h=0a+7(a) (y102 — y2 01) + O(e) ,

so with a little work one can prove that the Poincaré map is well defined for small
enough € and A. Identifying this section with the disk D via the coordinates y, this
defines the Poincaré map as a diffeomorphism

II:D—D.

Since the vector field v is divergence-free, one can prove that the Poincaré map
preserves some measure on the disk.

Notice that the invariant torus 97 manifests itself as an invariant circle (namely,
0D) of the Poincaré map. To establish the robustness of the invariant torus 97,
we will resort to a KAM theorem [13] to prove that the invariant circle of II is
preserved under small area-preserving perturbations. After taking care of several
technicalities that will be disregarded here, thanks to this theorem we can conclude
that the invariant torus 07, is robust provided two conditions are met: that the
rotation number of II on the invariant circle is Diophantine and that II satisfies a
nondegeneracy twist condition.

We would like to emphasize that computing the rotation number wy; and the
twist N of the Poincaré map amounts to obtaining quantitative information about
the vortex lines of v. This is a hard, messy, lengthy calculation that we carry out
by combining an iterative approach to control the integral curves of the associated
dynamical system (i.e., the vortex lines) with small parameter ¢ and the PDE
estimates, optimal with respect to ¢, that we obtained for v in Step 1. The final
formulas are

Wi

/013 T(a) da + 0(62) ,

5re?

‘
(6) No=— /0 K(a)? 7(a) da + O(e%),

8

where x and 7 respectively denote the curvature and torsion of the knot L. The
leading term of wyy is the total torsion of the curve L, while the leading term of
the twist A7 is proportional to the helicity of the velocity field associated with the
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vortex filament motion under LIA [21]. These quantities are the first and the third
constants of the motion for the LIA equation °.

These expressions allow us to prove that for a “generic” curve L the rotation
number is Diophantine and the twist is nonzero, so the hypotheses of the KAM
theorem are satisfied. Hence the invariant torus 97, of the local Beltrami field v is
robust: if u is a divergence-free vector field in a neighbourhood of the tubes that
is close enough to v in a suitable sense (e.g., in the C"™ norm with m > 4), then
u also has an invariant tube diffeomorphic to 7, and moreover the corresponding
diffeomorphism can be taken close to the identity.

It is worth mentioning that the formula (6) provides some intuition about the
question of why one needs to be so careful with the dependence on € of the various
estimates: the twist, which must be nonzero, is of order O(e?). Another way of
understanding this is by looking at the expression (5) for the harmonic field, which
implies that our local solution v is an e-small perturbation of the most degenerate
kind of vector field from the point of view of KAM theory: a field with constant
rotation number.

Step 3: a Runge-type global approximation theorem. To complete the proof
of the theorem, we use the same Runge-type theorem as in Step 3 of the outline of
the proof of Theorem 4.1, to show that there is a Beltrami field u in R? close to
the local solution:

lu—vllom(r) <9,
falling off at infinity as
Gj
||
Putting all three steps together, this gives the outline of the proof of Theorem 5.1.

|D7u(z)| <

6. KNOTTED VORTEX STRUCTURES ON THE TORUS AND THE SPHERE

The stationary solutions in R? we constructed in Sections 4 and 5 fall off at
infinity as || =1, this decay not being fast enough for the velocity field to be in the
energy space L2(R?). In fact, there are no Beltrami fields in R? with finite energy
even if the proportionality factor f (see Eq. (1)) is allowed to be nonconstant,
as has been recently shown in [19]. On the contrary, Beltrami fields in a compact
Riemannian 3-manifold are stationary solutions to the Euler equations that do have
finite energy.

Unfortunately, the strategy we used to prove the realisation theorems presented
in Sections 4 and 5 does not work for compact manifolds. The reason is that the
proof of the aforementioned theorems is based on the construction of a local Bel-
trami field in a certain domain U (that is, the neighborhood N of the knot L in
the case of Theorem 4.1 and the tube 7¢ in the case of Theorem 5.1), which is then
approximated by a global Beltrami field in R? using a Runge-type global approx-
imation theorem. For compact manifolds the complement of U is compact, so we
cannot apply the global approximation theorem. This is not just a technical issue,
but a fundamental obstruction in any approximation theorem of this sort. Indeed,

5This connection between the quantities measuring the nondegeneracy of the KAM argument
for the vortex tubes and the LIA equation is quite surprising, and we do not see any obvious
explanation for it.
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for compact manifolds (with appropriate boundary conditions) the spectrum of the
curl operator is discrete, so not any value of A is allowed for global solutions, while
locally the equation curl u = Au admits a non-trivial solution for any A.

Nevertheless, for the flat torus T3 := R3/(27Z)? and the round sphere S? (and
quotients of S? with a finite subgroup of isometries), a realisation theorem for
knotted vortex lines and knotted vortex tubes that is analogous to Theorems 4.1
and 5.1 can be proved [8] using Beltrami fields with high frequency A. A key point
is that, in these manifolds, the multiplicity of A tends to infinity as A — oo (the
spectrum of curl is very degenerate), which provides a large set of solutions for
each large enough \. In the realisation theorem we proved in [8], the set S of closed
curves and tubes is assumed to be contained in a contractible subset (this is always
the case in S?, but not in T?), and the diffeomorphism @ transforming S into a
union of vortex lines and tubes of a Beltrami field contracts S into a ball of radius
A~L. More precisely, the theorem we proved is the following. In the statement, we
write M® to denote either T3 or S3. Notice that the spectrum of the curl operator
in M? contains all the integers.

Theorem 6.1. Let S be a finite union of (pairwise disjoint, but possibly knotted
and linked) closed curves and tubes in M3. In the case of the torus, we also assume
that S is contained in a contractible subset of T2. Then for any large enough odd
integer X\ there exists a Beltrami field u satisfying the equation curlu = Au and a
diffeomorphism ® : M®> — M? connected with the identity such that ®(L) is a union
of vortex lines and tubes of u.

As mentioned above, the effect of the diffeomorphism & is to uniformly rescale
a contractible subset of the manifold that contains S to have a diameter of order
AL, Furthermore, the set ®(S) of vortex structures of u is structurally stable in
the sense that any divergence-free vector field on M? which is sufficiently close to
u in the C%® norm will also have this collection of vortex lines and tubes, up to a
diffeomorphism.

The proof of Theorem 6.1 involves an interplay between rigid and flexible prop-
erties of high-frequency Beltrami fields. Indeed, rigidity appears because high-
frequency Beltrami fields in any 3-manifold behave, locally in sets of diameter A~ !,
as Beltrami fields in R?® with parameter A = 1 do in balls of diameter 1. The
catch here is that, in general, one cannot check whether a given Beltrami field in
R3 actually corresponds to a high-frequency Beltrami field on the compact mani-
fold. To prove a partial converse implication in this direction, it is key to exploit
some flexibility that arises in the problem as a consequence of the fact that large
eigenvalues of the curl operator in the torus or in the sphere have increasingly high
multiplicities. More precisely, the key to prove Theorem 6.1 is the following lemma.
In the statement, ¥ : B — B is a patch of normal geodesic coordinates centered at
a fixed point py € M3, with B C M3 the geodesic ball of radius 1 centered at pg
and B the unit ball in R3.

Lemma 6.2. Let v be a Beltrami field in R3, satisfying curlv = v. Let us fix
any positive numbers € and m. Then for any large enough odd integer A there is a
Beltrami field v, satisfying curlu = Au in M3, such that

o)

< €.
c™(B)
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Assuming this key lemma, the proof of Theorem 6.1 is essentially as follows.
First, we shrink the set S into the ball B. The realisation theorems 4.1 and 5.1
imply that there is a Beltrami field v in R? with a set of vortex lines and tubes
diffeomorphic to ¥(S). Then, Lemma 6.2 implies the existence of a Beltrami field

uw in M® whose “localization” \Il*u(x) is C™-close to v. Since the set of vortex
structures of v is structurally stable, the theorem follows.

Lemma 6.2 does not hold for generic Riemannian 3-manifolds. Indeed, for each
compact and without boundary 3-manifold there is a residual set of metrics for
which the spectrum of the curl operator is simple [4], i.e. for each X in the spec-
trum of curl the equation curlu = Au has a unique solution up to a multiplicative
constant factor. Therefore, the idea used to prove Theorem 6.1 cannot work for
general manifolds, and hence the following important question remains open:

Open problem: Let (M, g) be a compact Riemannian 3-manifold without bound-
ary. For each set S C M of closed lines and tubes, does there exist a Beltrami field
u satisfying curlu = Au that realises S as a set of vortex lines and tubes, up to a
diffeomorphism?
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