
MALLORCA LECTURES

ANTHONY QUAS

1. Measure-preserving transformations

Throughout these notes, we will be talking about dynamical systems
on probability spaces. That is: there will be a space X, a σ-algebra, B
and a probability measure µ defined on B.

[In case this is unfamiliar, these objects behave very intuitively: a
typical example is µ is ‘length measure’ on [0, 1]. µ satisfies some
natural-sounding properties like µ(A ∪ B) = µ(A) + µ(B) provided A
and B are disjoint; the role of the σ-algebra is that one gets into trouble
if one tries to define the measure of every set. Instead, a measure is
defined on a large sub-collection of sets (the measurable sets). Unless
you are a descriptive set theorist, every set you can think of will be
measurable.]

Given a [measurable] map T , we say the measure µ is invariant under
T (or “T preserves µ”; or “µ is an invariant measure for T” or “µ is
T -invariant” or “T is a measure-preserving transformation of (X,µ)”)
if µ(T−1A) = µ(A) for all A ∈ B. On the face of it, this is hard to
check because there are lots of measurable sets. However it suffices
to check the invariance condition for nice sets A. Formally, one needs
to check the invariance condition for all A belonging to a generating
semi-algebra of B. (A semi-algebra is a non-empty collection S of sets
that is closed under finite intersections, and such that the complement
of an element of S is a finite union of elements of S. A semi-algebra is
generating if the smallest σ-algebra containing S is B. This condition
is often easy to check in the common case where B is the Borel σ-
algebra. An algebra is a semi-algebra that is also closed under taking
finite unions.)

The following Lemma is very useful for checking that a measure is
invariant:

Lemma 1. Let T be a measurable map from a probability space (X,B, µ)
to itself. If S is a generating semi-algebra and µ(T−1A) = µ(A) for
each A in S, then µ is invariant under T .

1.1. Examples and applications.
1
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(1) The doubling map is the map T of X = [0, 1) equipped with
Lebesgue measure Leb, defined by T (x) = 2x mod 1. Here one
may take the semi-algebra to be the collection of half open
intervals: S = {[a, b) : 0 ≤ a < b ≤ 1}. It is easy to check that
Leb is invariant under T . The same is true for x 7→ kx mod 1
for any k = 2, 3, . . ..

(2) (Doubling map again) Notice that 1
5
→ 2

5
→ 4

5
→ 3

5
→ 1

5
is a periodic orbit under T of period 4. The measure µ =
1
4
(δ 1

5
+ δ 2

5
+ δ 4

5
+ δ 3

5
) is T -invariant. So is ν = δ0 and so is

1
2
(µ+ ν).

The doubling map, not surprisingly, can be used to obtain information
about the base 2 expansion of a point, and similarly x 7→ kx mod 1
yields information about the base k expansion. Our next measure-
preserving transformation gives information about the continued frac-
tion expansion of a point. The continued fraction expansion of a point
gives important information about Diophantine approximation: how
closely can the point be approximated by rationals?

(3) (Gauss transformation): Let T be the map [0, 1) → [0, 1) de-
fined by T (x) = frac(1/x). Then T preserves the probability
measure µ given by µ(A) = 1

log 2

∫
A

1
1+x

dx.

(4) (Circle rotation): Let α ∈ [0, 1) and let T : [0, 1) → [0, 1) be
defined by T (x) = x + α mod 1. Then T preserves Lebesgue
measure.

If µpre is a set function defined on an algebra that is additive (µpre(A∪
B) = µpre(A) + µpre(B) for any two disjoint elements of A), and µpre

has the additional property that A1 ⊃ A2 ⊃ . . . and
⋂
An = ∅ imply

µpre(An) → 0, then µpre may be uniquely extended to a measure µ on
B. If µpre satisfies µpre(T

−1A) = µpre(A), then µ is T -invariant.

(5) (Coin tossing) The next measure-preserving transformation comes
from probability. Imagine a (possibly biased) coin with proba-
bility of heads given by p. The space, Ω, is the set of bi-infinite
sequences of 1’s and 0’s (with 1 representing heads and 0 repre-
senting tails). For ω ∈ Ω, we write ω = . . . ω−2ω−1 · ω0ω1ω2 . . ..
The coordinate ωi represents the outcome of the coin-toss at
time i.

A cylinder set is a set of the form [x]ba := {ω ∈ Ω: ωa =
xa, . . . , ωb = xb} (these sets are compact clopen sets forming a
basis for the product topology). We set A to be the algebra of
finite unions of cylinder sets. Setting p0 = 1 − p and p1 = p,
we define µpre([x]ba) = pxa · · · pxb . By the above, this may be
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extended to a measure µ on Ω. We then define a transformation
T by T (ω)n = ωn+1. That is: the sequence is moved to the left
by one place. This is the shift transformation. The measure
µpre is invariant: for each element of the generating algebra, it’s
easy to check that µpre(C) = µpre(T

−1C) for each C ∈ S, so
that µpre extends to a T -invariant measure.

(6) (Geodesic flow) If M is a smooth compact Riemannian manifold
and T1M is its unit tangent space, then there is a natural ‘time
one’ map on T1M , “following the geodesic in the given direction
for one unit of time”. This map preserves Liouville measure on
the unit tangent bundle.

(7) (Percolation) This one is a bit different. In the situation de-
scribed above, the semi-group N0 acts on X by n · x := T n(x);
or if T is invertible, Z acts on X. This can be generalized to
actions of other groups.

The space is Ω = {0, 1}Z2
. You should the think of this as

the space of configurations of 0’s and 1’s on the integer lattice.
Suppose that each site has a 1 with probability p independently
of all of the others as in Example (5). This gives a measure P on
Ω. The group Z2 naturally acts on ω by (T kω)n = ωn+k, that
is, T k shifts the configuration by the vector −k. Essentially
the same proof as previously shows that the group Z2 acts on
Ω in a measure-preserving way, that is: for each k ∈ Z2, P is
T k-invariant.

(8) (Continuous map on a compact space) If X is a compact Haus-
dorff space and T is a continuous transformation, it is known
that there is always at least one invariant measure on X. The
proof uses the compactness of M1(X), the set of Borel prob-
ability measures on X. Fix any x ∈ X, and define µn =
1
n
(δx + . . . + δTn−1x). Any weak∗-limit of this sequence is an

invariant measure.
(9) (Szemerédi’s theorem) This is a famous theorem in ‘additive

combinatorics’: if S is a subset of N, its (upper) density is
ρ̄(S) = lim supN→∞#(S∩{1, . . . , N})/N . Szemerédi’s theorem
states that if ρ̄(S) > 0, then for each k ∈ N, S contains an
arithmetic progression of length k. Furstenberg gave a second
proof of this theorem using ergodic theory.

Defining a point x in Ω = {0, 1}N by xn = 1 if n ∈ S and 0
otherwise. One can then use the shift map and the compact-
ness argument above to obtain a shift-invariant measure on Ω
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as above. Furstenberg’s proof is based on establishing general
properties of all shift-invariant measures on Ω.

(10) (Toral automorphisms) The map

(
x
y

)
7→
(

2 1
1 1

)(
x
y

)
mod 1 is

a diffeomorphism from the torus to itself. Since the determinant
is 1, it preserves Lebesgue measure on the torus.

(11) (Anosov diffeomorphisms) The map

(
x
y

)
7→
(

2 1
1 1

)(
x
y

)
+(

0.01 sin(2π(x+ y))
0

)
mod 1 also maps the torus to itself. By

(8), there is at least one invariant measure. (In fact there are
many such measures and it becomes important to pick a ‘good
one’). More on this later...

(12) (Skew product) If σ is a measure-preserving transformation of
(Ω,P) and for each ω, Tω is a map from a space X to itself,
then the skew product is the map

T(ω, x) = (σω, Tω(x)).

Iterating this, one can see that T2(ω, x) = (σ2ω, TσωTω(x)) and
more generally

Tn(ω, x) = (σnω, Tσn−1ω ◦ . . . ◦ Tω(x)).

Skew products can be used to model random dynamical sys-
tems. For example suppose Ω = {0, 1}Z and σ is the shift
transformation and T0 and T1 are two maps from a space X to
itself. Then define Tω = T1 if ω0 = 1 and T0 if ω0 = 0. Now the
sequence of 0’s and 1’s gives the sequence of T ’s to apply to x.

Theorem 2 (Poincaré recurrence theorem). Let T be a measure-preserving
transformation of a probability space. Then for all A with µ(A) > 0,
and for µ-almost every x ∈ A, x visits A infinitely often.

Proof. Let Alast = A ∩
⋂
n≥1 T

−nAc, be the set of points that are in A,

but will never visit again. Now if m < n, we have T−mAlast∩T−nAlast =
T−m(Alast ∩T−(n−m)Alast), but by definition, Alast ∩T−(n−m)Alast is the
empty set. Hence the sets T−nAlast are pairwise disjoint, and of equal
measure (by the measure-preserving property). Since they sum to at
most 1, they must all have measure 0. Hence Alast is of measure 0 and
so (by countable additivity of measures) is Afinite =

⋃
n≥0 T

−nAlast, the
set of points that make finitely many visits to A. �

Corollary 3. Suppose that the differential equation ẋ = f(x) has
a Lyapunov function φ: φ(x0) = 0 and φ(x) > 0 for all x 6= x0;
d
dt
φ(x(t)) = 〈∇φ, f〉 < 0 whenever x(t) 6= x0.
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Then the only invariant probability measure is a δ-measure supported
at the attracting fixed point.

2. Ergodicity and Ergodic theorems

Notice that the Poincaré recurrence theorem says that the system
will return to near where it is now.

The Boltzmann ergodic hypothesis says that the system will hit every
possible state. This is fairly obviously false for discrete time dynamical
systems (and is equally false even for simple continuous time systems).
The Ehrenfests formulated a quasi-ergodic hypothesis, requiring that
almost every orbit should be dense in the phase space. The ergodic
theorem of von Neumann and subsequently Birkhoff were attempts to
correctly formalize and demonstrate this.

2.1. Ergodic Theorems.

Theorem 4 (von Neumann mean ergodic theorem). Let T be a measure-
preserving transformation of a probability space (X,µ). Then for f ∈
L2(µ), define Anf = 1

n
(f + f ◦ T + . . . + f ◦ T n−1). Then (Anf) is a

convergent sequence in L2(µ).

It is not hard to show that the limit of Anf is a T -invariant function
(that is a function satisfying g ◦ T = g).

Very shortly afterwards, Birkhoff established an extremely useful
pointwise ergodic theorem:

Theorem 5 (Birkhoff pointwise ergodic theorem). Let T be a measure-
preserving transformation of a probability space (X,µ). Then for f ∈
L1(µ), for µ-a.e. x, (Anf(x)) is a convergent sequence.

Again, one can show that if f̃(x) = limn→∞Anf(x), then f̃(x) is a
T -invariant function.

2.2. Ergodicity. Here is a critical definition: suppose T is a measur-
able transformation of X and µ is an invariant measure. Then µ is
ergodic if for each T -invariant subset A of X, (i.e. T−1A = A), µ(A)
is 0 or 1.

Lemma 6. Let T be a measure-preserving transformation of (X,µ).
Then the following are equivalent:

(a) T is ergodic;
(b) If f is an invariant measurable function (i.e. f ◦ T = f) then

f is constant on a set of full measure.
(c) If f is an invariant L2 function, then f is constant on a set of

full measure.



6 ANTHONY QUAS

This lemma allows us to show ergodicity of many examples (including
examples (1), (4) – provided α is irrational – and (10)). In fact, one
can show that in most natural cases that invariant measures can always
be described as a combination of ergodic invariant measures (“ergodic
decomposition”). In these cases, when proving theorems, it is often
sufficient to prove things only for ergodic measures. The measures
µ and ν in Example (2) are ergodic, but 1

2
(µ + ν) is not – see the

exercises for more on this; The measure µ in Example (3) is ergodic.
Under some geometric conditions on the manifold (such as negative
curvature), example (6) is also ergodic.

Corollary 7. Let T be an ergodic measure-preserving transformation
of (X,µ). Then for all f ∈ L1(X), for µ-a.e. x,

1

n

(
f(x) + . . .+ f(T n−1x)

)
→
∫
f dµ.

Or the slogan version:

For ergodic systems, time averages and space averages
coincide.

Corollary 8. Let T be an ergodic measure-preserving transformation
of (X,µ). Then for all A ∈ B, for µ-a.e. x,

1

n
#{j ∈ [0, n) : T j(x) ∈ A} → µ(A).

2.3. Example: Normal numbers. Recall that in Example (1), Lebesgue
measure is invariant and ergodic. Notice also that if x has binary ex-
pansion 0.x0x1x2 . . ., then T (x) has binary expansion 0.x1x2 . . .. In par-
ticular, the nth digit of the binary expansion of x is 1 if T n(x) ∈ [1

2
, 1)

and 0 if T n(x) ∈ [0, 1
2
).

Since T is ergodic, Corollary 8 implies that for Leb-a.e. x, the limiting
proportion of 1’s in the binary expansion of x is Leb([1

2
, 1)) = 1

2
and

hence the proportion of 0’s is 1
2

also. There is nothing special about
doubling here: analogous conclusions about base k expansions (for k >
1) follow from studying the multiplication by k map, x 7→ kx mod 1.
If Sk denotes the subset of [0, 1) whose base k expansion has each
possible digit occurring with equal frequency, we have Leb(Sk) = 1 for
each k > 1 and hence Leb(

⋂
k>1 Sk) = 1. These numbers have the

property that they have equal digit frequencies in all bases, and they
are called absolutely normal. We just established that the absolutely
normal numbers have Lebesgue measure 1, but not a single example of
a normal number is known!

Example (2) gave additional examples of invariant measures for the
doubling map. For example Corollary 8, we deduce that for ν-a.e.
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x, the proportion of 1’s in the binary expansion of x is 0. How can
this be squared with for Leb-a.e. x, the proportion of 1’s in the binary
expansion of x is 1

2
? (because Leb and ν ‘live on’ disjoint subsets of

[0,1]).

The conclusions of the ergodic theorem are only as good
as the invariant measure that one applies it to.

To get useful conclusions, one would like to have ergodic invariant
measures that are spread out as much as possible over [0,1] (like Leb).
If Leb is not invariant, all may not be lost: we can look for absolutely
continuous ergodic invariant measures (such as µ in Example (3)).

2.4. Example: Continued fractions. Recall that each irrational
number x ∈ [0, 1) has a unique continued fraction expansion:

x =
1

a0 +
1

a1 +
1

a2 + · · ·

where a0, a1, . . . are natural numbers. The map T in Example (3) may
be used to compute the a’s: Notice that

T (x) =
1

a1 +
1

a2 +
1

a3 + · · ·

.

From this, we see an = b1/T n(x)c. In particular, the nth term of the
continued fraction expansion of x is 1 if and only if T nx ∈ (1

2
, 1). Since

µ is ergodic, the proportion of 1’s in the continued fraction expansion
of a.e. x is 1

log 2

∫ 1

1/2
1

1+x
dx = log 4

3
/ log 2. The proportion of n such

that an = an+1 = 1 may also be found: this happens when T n(x) ∈
(1

2
, 1) and T n+1(x) ∈ (1

2
, 1), which happens when T n(x) ∈ (1

2
, 2

3
). The

measure of this set is log 10
9
/ log 2, so that for µ-a.e. x ∈ (0, 1), the

proportion of 1’s in its continued fraction expansion is log 4
3
/ log 2 and

the proportion of two consecutive 1’s in its continued fraction expansion
is log 10

9
/ log 2. Since the ratio between µ and Lebesgue measure is

bounded above and below, the same holds for Lebesgue-a.e. x in (0, 1).

Continued fraction digit sequences are not independent:
the probability of having two consecutive 1’s is not the
square of the probability of having a 1.
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2.5. Example: percolation. Consider X = {0, 1}Z2
equipped with

the measure µp where each coordinate is 1 with probability p and 0
with probability 1 − p. Here µp is invariant under the group of trans-
formations (Tk)k∈Z2 where Tk translates a configuration x through the
vector −k (so that the symbol at the origin of Tkx was the symbol at
k in x). By an argument similar to exercise (8), the measure µp is er-
godic under the group (Tk)k∈Z2 (that is, the only sets that are invariant
under the group of transformations are of measure 0 or 1). A version
of Lemma 6 still applies in this context.

If x ∈ X, let Bx be the set of coordinates with a 1. If m and n
are two elements of Bx, we say they are connected if there is a path
joining m to n staying in Bx moving by ±e1 and ±e2 at each step. The
clusters in Bx are the connected components. We define f(x) to be the
number of infinite clusters in x. Clearly f(Tkx) = f(x) as translating
the configuration does not alter the number of infinite clusters. Hence
f takes on a constant value for µp-almost x ∈ X. Important: the
values might differ for different p’s as the µp are supported on
different sets. Call the value N(p), so that f(x) = N(p) for µp-a.e.
x.

A very nice argument (which applies much more generally than the
2-dimensional case here) shows that N(p) can only be 0, 1, or ∞; and
a really beautiful argument of Burton and Keane shows that N(p) can
only be 0 or 1. See the exercises for more on this.

3. Perron-Frobenius operators

In some dynamical systems, there are obvious invariant measures. In
others, such as the Gauss transformation, finding an invariant measure
is non-obvious. In fact, it is unclear how Gauss discovered the invariant
measure in Example (3).

3.1. Absolutely continuous invariant measures. In this section,
we will discuss a technique for finding and studying absolutely contin-
uous invariant measures. This generally refers to invariant measures
that are absolutely continuous with respect to Leb (possibly in higher
dimensions), that is measures µ such that µ(A) =

∫
A
h(x) dLeb(x). The

function h is called the density. It’s sometimes written dµ
dLeb

.
Given any measure (not necessarily invariant), one may build a new

measure, the push-forward of µ under T , T∗µ := µ ◦ T−1. Recall, a
measure is invariant if µ = µ ◦ T−1, so that it is fixed under the push-
forward operation.

We now find a formula for µ ◦ T−1 in the case that µ is absolutely
continuous with respect to Leb, and T is a differentiable (or piecewise
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monotone, piecewise differentiable) map of the interval or the circle
with T ′(x) 6= 0 for almost all x. Suppose that T has monotone intervals
I1, . . . , Ik and write Ti = T |Ii . Finally, let dµ(x) = h(x)dLeb(x).

If J is an interval, then

µ(T−1J) =

∫
T−1J

h(x) dµ(x)

=
k∑
i=1

∫
T−1J∩Ii

h(x) dx

=
k∑
i=1

∫
T (Ii)∩J

h(T−1
i y)

|T ′(T−1
i y)|

dy

=

∫
J

k∑
i=1

1T (Ii)(y)
h(T−1

i y)

|T ′(T−1
i y)|

dy

=

∫
J

∑
x∈T−1y

h(x)

|T ′(x)|
dy,

where we made the substitution y = T (x) in the third line. That is,
T∗µ is absolutely continuous with respect to Lebesgue measure with
density given by L(h) where

L(h)(y) =
∑

x∈T−1y

h(x)

|T ′(x)|
.

Notice that Lmaps positive functions to positive functions and
∫
L(h) dλ =

µ(T−1I) = µ(I) =
∫
h dλ, so that L maps L1(I) to itself and is an op-

erator of norm 1.

If µ = h · Leb, then µ ◦ T−1 = L(h) · Leb.

This is the Perron-Frobenius operator. In a picture, L acts like:

Txx

Above, we showed
∫

1J(T (x))h(x) dx =
∫

1J(x)L(h)(x) dx. It fol-
lows that for all f ∈ L1 and h ∈ L∞,∫

f(x)h ◦ T (x) dx =

∫
L(f)(x)(h)(x) dx.
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Notice that L(h) = h if and only if µ = h · Leb is an invariant mea-
sure. Since ‖L‖L1→L1 = 1 and we are looking for an eigenfunction with
eigenvalue 1, this suggests we might be able to use spectral methods.

We will use a crude argument of this type to show that Lebesgue
measure on [0, 1) is ergodic for the doubling map.

Theorem 9. Leb is an ergodic invariant measure for the doubling map.

Proof. We have already established that Leb is an invariant measure.
It remains to prove the ergodicity. Notice that for the doubling map
L(f)(x) = 1

2

(
f(x

2
)+f(x+1

2
)
)

We can then check Lnf(x) = 1
2n

∑2n−1
i=0 f(x+i

2n
).

Suppose, for a contradiction, that Leb is not ergodic. Then there is
an invariant set A of Lebesgue measure between 0 and 1. It follows
that h · Leb is an invariant measure, where h = 1A/Leb(A) (see the
exercises). Since h is the density of an absolutely continuous invariant
measure, L(h) = h. Now since continuous functions on [0,1) are dense
in L1, there exists, for any ε > 0, a continuous function f on the circle
such that ‖f −h‖1 < ε. Since f is continuous on a compact space, it is
uniformly continuous: there exists a function q(δ) such that q(δ) → 0
as δ → 0 and if |x− y| ≤ δ, |f(x)− f(y)| ≤ q(δ). Since L is of norm 1,
we have ‖Lnf − h‖1 = ‖Lnf − Lnh‖ ≤ ε for all n.

But on the other hand for any x, y,

|Lnf(x)− Lnf(y)| =

∣∣∣∣∣ 1

2n

2n−1∑
i=0

(
f(x+i

2n
)− f(y+i

2n
)
)∣∣∣∣∣ ≤ q(2−n),

so that Lnf is within q(2−n) of a constant function. It follows that
h may be arbitrarily closely approximated by a constant function, so
that h is a constant, providing the contradiction. �

3.2. Interlude: Markov Chain refresher. Recall: a (finite state
discrete time) Markov chain is defined by a set of states S (here la-
beled 1, . . . , k), an initial distribution p, and a stochastic (i.e. with
non-negative entries and each row summing to 1) transition matrix P
satisfying P(X0 = i) = pi for each i and

P(Xn = j|Xn−1 = i,Xn−2 = in−2, . . . , X0 = i0)

=P(Xn = j|Xn−1 = i) = Pij

The Markov chain is said to be irreducible if for each i and j, there
exists an n ≥ 0 such that P n

ij > 0. It is aperiodic if d := gcd({n : P n
ii >

0 for some i}) = 1. (If d > 1, then S can be partitioned into d subsets,
S1, S2,. . . , Sd such that from a state in Si, the only possible transitions
are to states in Si+1). If the Markov chain is aperiodic and irreducible,
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then the matrix P is primitive: that is there exists an n0 such that for
all n ≥ n0, P n has all strictly positive entries.

The matrix P governs the evolution of densities: if the probability
distribution of Xn is given by pn (that is P(Xn = i) = (pn)i), then
pn+1 = pnP . A stationary distribution for the Markov chain is a vector
π such that πP = π.

Theorem 10. Consider an aperiodic irreducible Markov chain. Then
there is a unique stationary distribution, π. Further, for any initial
distribution p, pP n → π.

This theorem has many proofs, but one nice way to see it is using the
Perron-Frobenius theorem for matrices: If P is a primitive non-negative
matrix, then there exists a simple positive real eigenvalue λ1 such that
all other eigenvalues have strictly smaller absolute value. Correspond-
ing to λ1, there is a a left eigenvector v with all positive entries. In
the Markov chain case, λ1 = 1 and one can show by expanding p with
respect to the (possibly generalized) eigenvectors that pP n − π decays
at an exponential rate of at worst polynomial times |λ2|n, where λ2 is
the eigenvalue with second largest absolute value.

We now suppose that the Markov chain is started in its stationary
distribution (that is p = π) and consider the correlation between the
state at time 0 and the state at time n.

More specifically, we will compute P(X0 = a0, . . . , Xr = ar and Xn =
b0, . . . , Xn+s = bs) − P(X0 = a0, . . . , Xr = ar)P(Xn = b0, . . . , Xn+s =
bs). This is given by

πa0Pa0a1 · · ·Par−1arP
n−r
arb0

Pb0b1 · · ·Pbs−1bs

− πa0Pa0a1 · · ·Par−1arπb0Pb0b1 · · ·Pbs−1bs

=πa0Pa0a1 · · ·Par−1ar(P
n−r
arb0
− πb0)Pb0b1 · · ·Pbs−1bs .

In particular, the correlation decays at worst at an exponential rate
|λ2|n (possibly multiplied by a polynomial factor).

3.3. Decay of correlation. The heart of Theorem 9 was to find a
Banach space that was a dense subspace of L1 where everything con-
verges nicely to the invariant density. By approximation, it follows
that for every f in L1, Lnf approaches a constant. Might we hope for
exponential convergence like for Markov chains?

Answer: not in L1 (or C([0, 1))). To see this, notice that h(x) =
cos(2πx) lies in the kernel of L and L(g ◦ T ) = g for any g. Now
for any summable sequence (ak), f = 1 +

∑
k akh ◦ T k lies in L1, but

Lnf = 1 +
∑

k≥n akh ◦ T k−n.
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In particular, by taking (ak) to be the sequence of powers of 1
2

inter-
spersed by large blocks of 0, then Lnf can be made to converge to the
limit, 1, arbitrarily slowly.

A beautiful idea due to Doeblin and Fortet, refined by Ionescu and
Marinescu-Tulcea; then Lasota and Yorke and many others gives us
this exponential convergence.

A bounded linear operator L on a Banach space is called quasi-
compact if its essential spectral radius is strictly smaller than its spec-
tral radius (its spectral radius is ρ(L) = limn→∞ ‖Ln‖1/n and its essen-

tial spectral radius is ρess(L) = limn→∞
(

infK ‖Ln−K‖
)1/n

, where the
infimum is taken over all of the compact operators).

This implies that for any r > ρess(L), L has finitely many eigenvalues
with absolute value greater than r, each with finite multiplicity.

Theorem 11. (Lasota–Yorke) Let T be a piecewise map from [0, 1] to
itself, with finitely many branches and each branch being monotonic,
expanding and C2. Then the restriction of LT to BV[0, 1] is quasi-
compact. Further if the branches of T map onto [0, 1], then 1 is a simple
eigenvalue; all other eigenvalues lie strictly inside the unit circle.

Although this theorem does not directly apply to example ?? (as
that example has infinitely many branches), there exist extensions of
that theorem that do cover this example.

Corollary 12 (Exponential decay of correlations). Let T be as in the
statement of Theorem 11 with onto branches and suppose that in ad-
dition Leb is T -invariant. Then there exists r < 1 such that for all
f ∈ BV and g ∈ L1,∫

f · g ◦ T n dLeb−
∫
f dLeb

∫
g dLeb = O(poly× λn2 ),

4. Sub-additive ergodic theorems

Kingman (in 1968, following earlier work of Hammersley and Welsh)
proved the Sub-Additive Ergodic Theorem.

If σ : Σ→ Σ is a measure-preserving transformation (of a probability
space), a sequence of functions (fn)n≥1 is sub-additive (with respect to
σ) if

fn+m(ω) ≤ fn(ω) + fm(σnω).

Examples of sequences of functions satisfying this condition?

(1) (Fekete’s lemma) Let (an) be a sequence of real numbers such
that an+m ≤ an + am. (Here the functions (fn) are constant
functions(!)). Then amk+r ≤ mak + ar, so that lim sup an/n ≤
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ak/k for each k. Now lim sup an/n ≤ infk ak/k ≤ lim inf an/n ≤
lim sup an/n. Hence an/n converges to a value a = inf ak/k ∈
[−∞,∞).

(2) (Birkhoff averages) If f is an L1 function on Ω, then fn(ω) =
f(ω) + . . .+ f(σn−1ω) is an additive sequence:

fn+m(ω) = fn(ω) + fm(σnω).

(3) (First passage percolation) Let E denote the collection of edges
in the Z2 lattice. Let ν be a probability measure on (0,∞)
(with

∫
x dν(x) <∞).

Let Ω = (0,∞)E be the collection of all weightings of E and
equip X with the probability measure νE (so that in a realiza-
tion ω ∈ Ω, each edge is assigned a weight from the distribution
ν independently of all other edges). Define a Z2 action, τv on
Ω that translates the pattern of edge weightings through −v.

Now for v ∈ Z2, define Fv(ω) to be the length of the shortest
path from 0 to v (where the length of a path is the sum of the
weights of the edges). Then

Fu+v(ω) ≤ Fu(ω) + Fv(τu(ω)).

In particular, if v is any non-zero integer vector, then defining
σ = τv and fn(ω) = Fnv(ω), (fn) is a sub-additive sequence for
the ergodic dynamical system σ : (0,∞)E → (0,∞)E .

Hammersley and Welsh interpreted this as a ‘wetting time’:
a rock is modelled by Z2. ‘Water’ is in contact with the rock
at 0. The edge label determines the time it takes water to pass
from one vertex to its neighbour. They were interested in the
geometry of {v : Fv(ω) < T}.

(image due to Jéremie Bettinelli)
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(4) (Matrix products) If σ : (Ω,P)→ (Ω,P) is a measure-preserving
transformation, and A : (Ω,P)→ Md×d(R) is measurable, then
one can form the matrix cocycle:

A(n)(ω) = A(σn−1ω) · · ·A(ω) for n ∈ N and ω ∈ Ω.

Notice that

A(n+m)(ω) = A(m)(σnω)A(n)(ω) (the cocycle relation).

defining fn(ω) = log ‖A(n)(ω)‖, you obtain

fn+m(ω) ≤ fn(ω) + fm(σnω)

(providing ‖ ·‖ satisfies ‖AB‖ ≤ ‖A‖‖B‖ (e.g. operator norm))

Theorem 13 (Kingman Sub-additive ergodic theorem, 1968). Let σ : (Ω,P)→
(Ω,P) be an ergodic measure-preserving transformation. Let (fn)n≥1 be
a sub-additive sequence of integrable functions. Then

(1) limn→∞
1
n

∫
fn(ω)P(ω) converges to a constant c ∈ [−∞,∞).

(2) For P-a.e. ω ∈ Ω, 1
n
fn(ω)→ c.

Theorem 14 (Furstenberg, Kesten, 1960). Let σ : (Ω,P) → (Ω,P) be
an ergodic measure-preserving transformation. Let A : Ω → Md×d(R)
be a matrix-valued function with

∫
log ‖A(ω)‖ dP(ω) <∞. Then

1
n

log ‖A(σn−1ω) · · ·A(ω)‖ → E for a.e. ω,

where E = limn→∞
1
n

∫
log ‖A(σn−1ω) · · ·A(ω)‖ dP(ω).

The Birkhoff and Furstenberg–Kesten theorems are immediate corol-
laries of Kingman’s theorem (but were both proved earlier).

5. Lyapunov Exponents and the Multiplicative ergodic
theorem

If T : I → I is a differentiable self-map of the interval, then the chain
rule gives (T n)′(x) = T ′(T n−1x) · T ′(T n−2x) · · ·T ′(x). The nth root of
(T n)′(x) is a ‘geometric average stretching rate’ per step.

The Lyapunov exponent for the one-dimensional map, T at x is the
logarithm of the limit of these rates: λ(T, x) = limn→∞

1
n

log |(T n)′(x)|
(if it exists). That is: the derivative of T n should be (logarithmically)
close to enλ (where ‘logarithmically close’ means between en(λ−ε) and
en(λ+ε) for large n.)

We have

λ(T, x) = lim
n→∞

1

n

n−1∑
i=0

log |T ′(T ix)|,
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the Birkhoff sum of log |T ′| along the orbit.
In the particular case, I = [0, 1] and T (x) = 4x(1 − x), |T ′|(x) =

4|1 − 2x|. T has an ergodic absolutely continuous invariant measure,

µ with density 1/(π
√
x(1− x)).

Now we can apply Birkhoff’s theorem (writing φ(x) = log |T ′(x)| =
log 4 + log |1− 2x|) to get

λ(T, x) = lim
n→∞

1

n

n−1∑
0

φ(T ix)

=

∫ 1

0

φ(t) dµ(t)

= log 4 +

∫ 1

0

log |1− 2t|
π
√
t(1− t)

dt

= log 2

for µ-a.e. x ∈ [0, 1].
We therefore expect |T 50(0.3 + 10−30)− T 50(0.3)| to be of the order

of e50λ · 10−30 = 25010−30 ≈ 1.13 × 10−15. In fact, |T 50(0.3 + 10−30) −
T 50(0.3)| ≈ 3.44× 10−16 (so the prediction was correct to one order of
magnitude).

A positive Lyapunov exponent is one of the (many and inequivalent)
definitions of ‘chaos’.

Now we’ll consider the case of a differentiable map, T , from a sub-
set of Rd to itself (or a differentiable map from a manifold to itself).
Writing DT (x) for the Jacobian matrix of T at x, the Chain rule gives

DT n(x) = DT (T n−1x) · · ·DT (T (x)) ·DT (x).

We’d like to make sense of how fast these matrices grow. We can
apply the Furstenberg-Kesten theorem as soon as we have an invariant
measure for T .

On the other hand, if A is a single matrix ‖Anv‖ grows at different
rates depending on the eigenvectors that make up v. This suggests we
might expect DT n(x)v to grow at different rates for different subspaces
of Rd.

In the case of Example (10), DT (x) = A := ( 2 1
1 1 ) for every x. The

eigenvalues of A are λ1 := φ2 and λ2 := φ−2 where φ is the golden mean,
with eigenvectors v1 :=

(
φ
1

)
and v2 :=

(
1
−φ
)

respectively. Vectors in
the space over x spanned by v1 are mapped to vectors in the space over
Tx also spanned by v1, scaled by λ1. Similarly vectors in the subspace
spanned by v2 are scaled by λ2 and mapped to vectors spanned by v2.
The collection of subspaces in either direction (sub-vector bundles of
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the tangent space of T2) are called equivariant families of subspaces (or
the whole collection is an invariant sub-bundle). Note that any vector
that is not in the v2 direction has asymptotic expansion at rate λ1.

In general, the matrix DT n(x) depends on x, so we might expect the
subspaces to depend on the point x.

Theorem 15 (Oseledets – non-invertible, 1965). Let σ be an ergodic
measure-preserving transformation of (Ω,P). Let A : Ω→ Md×d(R) be
a matrix-valued function with

∫
log ‖A(ω)‖ dP(ω) < ∞. Then there

exist Lyapunov exponents ∞ > λ1 > . . . > λk ≥ −∞; multiplicities
m1, . . . ,mk ∈ N satisfying m1 + . . .+mk = d and a measurable family
of subspaces F1(ω), F2(ω), . . .Fk(ω) such that

(1) filtration: Rd = F1(ω) ⊃ F2(ω) ⊃ . . . ⊃ Fk(ω) ⊃ Fk+1(ω) =
{0};

(2) dimension: dimFi(ω) = mi + . . .+mk; for a.e. ω
(3) equivariance: A(ω)Fi(ω) ⊂ Fi(σ(ω)) for a.e. ω

(4) growth: If v ∈ Fi(ω) \ Fi+1(ω) then 1
n

log ‖A(n)
ω v‖ → λi for a.e.

ω, where A
(n)
ω = A(σn−1ω) · · ·A(ω).

The quantities λi are called Lyapunov exponents and the subspaces
Fi(ω) are the collection of vectors expanding at rate λi or less.

The sequence of subspaces F1(ω) ⊃ F2(ω) ⊃ . . . ⊃ Fk(ω) is called a
flag.

Theorem 16 (Oseledets – invertible, 1965). Let σ be an invertible er-
godic measure-preserving transformation of (Ω,P). Let A : Ω→ GL(d,R)
be a matrix-valued function with

∫
log ‖A(ω)‖ dP(ω) <∞ and

∫
‖(A(ω))−1‖ dP(ω) <
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ω

σ(ω)

A(ω)

V (ω)

V (σ(ω))

Figure 1. The Multiplicative Ergodic Theorem gives
“A dynamical Jordan normal form decomposition.”

∞. Then there exist Lyapunov exponents ∞ > λ1 > . . . > λk > −∞;
multiplicities m1, . . . ,mk ∈ N satisfying m1 + . . . + mk = d and mea-
surable families of subspaces V1(ω), V2(ω), . . . , Vk(ω) such that

(1) decomposition: Rd = V1(ω)⊕ V2(ω)⊕ · · · ⊕ Vk(ω);
(2) dimension: dimVi(ω) = mi for a.e. ω;
(3) equivariance: A(ω)Vi(ω) = Vi(σ(ω)) for a.e. ω
(4) growth: If v ∈ Vi(ω) \ {0} then

1
n

log ‖A(n)
ω v‖ → λi and 1

n
log ‖A(−n)

ω v‖ → −λi as n→∞ for a.e. ω,

where

A(n)
ω = A(σn−1ω) · · ·A(ω) for n ≥ 0; and

A(−n)
ω = A(σ−nω)−1 · · ·A(σ−1ω)−1 for n > 0.

The Vi(ω) are the vectors expanding at rate λi. These are the
Oseledets subspaces.

6. Deducing Oseledets from Kingman: Preliminaries

In the next section, we’ll sketch an argument of Raghunathan, giving
a proof of the non-invertible form of Oseledets’ theorem from the sub-
additive ergodic theorem.

As a warm-up, we need some reminders about the singular value
decomposition of a matrix; and definition of the Grassmannian of a
vector space; and the exterior algebra of a vector space.

6.1. Singular Value Decomposition.

Theorem 17 (Singular Value Decomposition). Let A ∈ Md×d(R).
Then there exist orthogonal matrices O1 and O2 and a diagonal matrix
D with non-negative entries such that A = O1DO2.
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Proof. The matrix ATA is symmetric, and so there is an orthonor-
mal basis of Rd consisting of eigenvectors. If ATAv = cv, then c =
〈ATAv, v〉 = 〈Av,Av〉 ≥ 0, so that all eigenvalues are non-negative. Let
the eigenvalues be λ2

1 ≥ λ2
2 ≥ . . . ≥ λ2

d with corresponding orthonormal
eigenvectors v1, . . . , vd. Let O2 be the matrix with rows consisting of
v1, . . . , vd; D be the diagonal matrix with entries λ1, . . . , λd. Let k be
the largest index such that λk > 0. For i ≤ k, let ui = Avi/λi. If
k < d, let uk+1, . . . ud be an orthonormal basis for A(Rd)⊥. Let O1 be
the matrix whose columns are u1, . . . , ud.

Since the rows of O2 are orthonormal, we see that (O2O
T
2 )ij =

〈vi, vj〉 = δij, so that O2 is orthogonal. We have O1DO2vi = O1Dei =
O1λiei = λiui = Avi, so that O1DO2 = A. Finally, notice that for
i < j ≤ k, λiλj〈ui, uj〉 = 〈Avi, Avj〉 = 〈vi, AAvj〉 = λ2

j〈vi, vj〉 = 0 for
i 6= j, so that the first k columns of O1 are orthonormal (and so are
the rest by construction), so OT

1 O1 = I as required. �

The singular values of A, σ1(A) ≥ . . . ≥ σd(A), are the entries of D.
The singular vectors are the rows of O2 and their images are multiples
of the columns of O1, so that Avi = σi(A)ui.

Remark. Singular value decomposition (SVD) also makes sense for non-
square matrices.

Lemma 18. Let the singular values of A be σ1 ≥ . . . ≥ σd. Then for
1 ≤ k ≤ d,

σk = max
dimV=k

(
min

x∈V :‖x‖=1
‖Ax‖

)
; and

σk = min
codimV=k−1

(
max

x∈V : ‖x‖=1
‖Ax‖

)
.

Proof. (Exercise) �

In particular, from this characterization, you can see that σ1(A) is
max‖x‖=1 ‖Ax‖, the norm of A and the first singular vector is a vector
that is expanded most by A. By continuity, any vector close to v1 is
also expanded a lot by A, but v2 is a vector in lin(v1)⊥ that is expanded
the most by A. etc.:

Lemma 19. vk is a vector in lin(v1, . . . vk−1)⊥ that is expanded the
most by A.

Proof. (Exercise) �
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6.2. Grassmannian of a vector space. The k-dimensional Grass-
mannian of Rd, Gr(d, k) is the collection of all k-dimensional subspaces
of Rd. This is a very nice space: a compact metric space, a smooth
manifold etc.

To define a metric, we’ll go with the most intuitive one: dGr(V, V
′) =

dH(V ∩S, V ′∩S), where S is the unit ball and dH is the Hausdorff dis-
tance: for two non-empty compact sets, their Hausdorff distance is de-
fined by dH(K,K ′) = max

(
maxx∈K miny∈K′ d(x, y),maxy∈K′ minx∈K d(x, y)

)
.

6.3. Exterior power of a vector space. A very useful construction
in multiplicative ergodic theory is that of an exterior power of a vector
space. For the formal construction of the kth exterior power, if V is a
vector space, you form the free vector space F with basis consisting of
all elements of the form ev1,...,vk for (v1, . . . , vk) ∈ V k (so that a typical
element is 17ev1,...,vk + 2e24v1,v2,...,vk + 12e0,v2,...,vk). We then let Z be a
subspace of elements of F that we want to identify with 0: Z is the
subspace of F spanned by elements of the form

ev1,...,cv+c′v′,...,vk − cev1,...,v,...,vk − c′ev1,...,v′,...,vk (multilinearity)

ev1,...,vi,...,vj ,...,vk + ev1,...,vj ,...,vi,...,vk (antisymmetry)

The kth exterior power of V ,
∧k V is then F/Z. We write v1∧· · ·∧vk

for ev1,...,vk + Z.
In fact, if e1, . . . , ed is a basis for V then {ei1 ∧ · · · ∧ eik : i1 < . . . <

ik} forms a basis for
∧k V , but proving this goes through a universal

algebraic property of
∧k V .

Some elements of
∧k V may be expressed in the form v1 ∧ · · · ∧ vk.

Others can only be expressed as a sum of elements of this form (cf
matrices expressed as sums of rank 1 matrices). A ‘pure’ vector v1 ∧
· · · ∧ vk can be roughly thought of as defining an element of Gr(d, k)
(i.e. lin(v1, . . . , vk)) and a magnitude.

If A is a linear self-map of V , then
∧k A is a self-map of

∧k V

satisfying
(∧k A

)
(v1∧· · ·∧vk) = (Av1)∧· · · (Avk) for each v1∧· · ·∧vk.

The space
∧k Rd can be turned into a Euclidean space by letting

{ei1 ∧· · ·∧eik : i1 < . . . < ik} be an orthonormal basis, where e1, . . . , ed
is the standard basis.

It’s completely non-obvious that if f1, . . . , fd is any orthonormal ba-
sis, then {fi1∧· · ·∧fik : i1 < i2 < . . . < ik} is orthonormal with respect
to this inner product. But it’s true!
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6.4. SVD of Exterior powers. Singular value decomposition and
exterior powers play extremely nicely together. Let A be a d×d matrix
with singular values σ1 ≥ σ2 ≥ . . . ≥ σd and singular vectors v1, . . . , vd.
Recall that these are orthonormal. By what we just said, {vi1 ∧ · · · ∧
vik : i1 < . . . < ik} forms an orthonormal basis of

∧k Rd.
Recall also that Avi = σiui, where the ui’s are also orthonormal.

This means that∧kA(vi1 ∧ · · · ∧ vik) = (σi1 · · ·σik)ui1 ∧ · · · ∧ uik .

The {ui1 ∧ · · · ∧ uik} are orthonormal also, so that we obtain

Lemma 20. The singular values of
∧k A are {σi1 · · ·σik : i1 < . . . < ik}

and the singular vectors are {vi1 ∧ · · · ∧ vik : i1 < . . . < ik}.
In particular,

(1)
∥∥∥∧k A

∥∥∥ = σ1 · · ·σk.

7. Deducing non-invertible Oseledets from Kingman

7.1. The Raghunathan trick. Recall the notationA
(n)
ω = A(σn−1ω) · · ·A(ω).

For each 1 ≤ k ≤ d, define f∧kn (ω) = log ‖
∧k A

(n)
ω ‖. Since A

(n+m)
ω =

A
(m)
σnωA

(n)
ω and

∧k(AB) =
∧k A

∧k B, we see that

f∧kn+m(ω) ≤ f∧km (σnω) + f∧kn (ω).

Hence the Kingman sub-additive ergodic theorem (or Furstenberg-
Kesten theorem) applies. There exist L1, . . . , Ld such that f∧kn (ω)/n→
Lk for each k and a.e. ω.

Notice also that by (1), f∧kn (ω) = log ‖
∧k A

(n)
ω ‖ =

∑k
i=1 log σi(A

(n)
ω ).

Hence f∧kn (ω) − f∧(k−1)
n (ω) = log σk(A

(n)
ω ). Dividing by n and taking

the limit, we obtain

lim
n→∞

1

n
log σk(A

(n)
ω ) = Lk − Lk−1.

Define µk = Lk − Lk−1. By the above, we have

∞ >

∫
‖ logA(ω)‖ dP(ω) > µ1 ≥ µ2 ≥ . . . ≥ µd ≥ −∞.

These are the Lyapunov exponents. It is useful to group them by mul-
tiplicity:

{λ1, . . . , λk} = {µ1, . . . , µd}
∞ > λ1 > λ2 > . . . > λk ≥ −∞
µm1+...+mi−1+j = λi for 1 ≤ j ≤ mi.
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7.2. Equivariant subspaces. That was the easy part! Now we need
the subspaces... We’re trying to find equivariant spaces Fj(ω) of di-
mension mj + . . . + mk consisting of vectors expanding at rate λj or
lower, “the jth slow space”. We’ll get at these using the slow singular

vectors of A
(n)
ω .

Let Mj−1 = m1 + . . . + mj−1 for 1 ≤ j ≤ k. This is the dimension
of the “(j − 1)st fast space”, the number of exponents larger than
λj. The jth slow space should be spanned by singular vectors with
exponents λj and below: by the (Mj−1 + 1)st to dth singular vectors.
Let Oj = mj + . . .+mk.

The idea is to define F
(n)
j (ω) to be the space spanned by the (Mj−1 +

1)st to dth singular vectors of A
(n)
ω , and prove:

(1) these subspaces converge to a limit, Fj(ω), as n→∞;
(2) Fj(ω) is equivariant: A(ω)Fj(ω) ⊂ Fj(σ(ω));

(3) if v 6∈ Fj(ω), then lim infn→∞
1
n

log ‖A(n)
ω v‖ ≥ λj−1;

(4) if v ∈ Fj(ω), then lim supn→∞
1
n

log ‖A(n)
ω v‖ ≤ λj.

Of these, (1), (2) and (3) are relatively straightforward, while (4) is
the trickiest.

7.3. A sketch of (1). Remember that Gr(d,Oj) is compact metric

(hence complete). The idea is to show that the distance from F
(n)
j (ω)

to F
(n+1)
j (ω) is O(e−n(λj−1−λj−ε)). Then the subspaces form a ‘fast

Cauchy sequence’.

How to do this? Take a unit vector, v, in F
(n)
j (ω) and write it as an

orthogonal sum u + w of a part u in F
(n+1)
j (ω) (the span of the slow

singular vectors for n+ 1 step evolution) and w in F
(n+1)
j (ω)⊥ (the fast

singular vectors). Since we know that ‖A(n)v‖ . enλj , 1 it follows that

‖A(n+1)v‖ . enλj . But ‖A(n+1)
ω v‖ is the sum of the orthogonal vectors

A
(n+1)
ω u and A

(n+1)
ω w. Hence ‖A(n+1)

ω w‖ . enλj . Since w is in the fast
space (so grows at rate λj−1 or faster), this implies ‖w‖ . e−n(λj−1−λj).

That is: every unit vector in F
(n)
j (ω) is e−n(λj−1−λj−ε)-close to something

in F
(n+1)
j (ω).

7.4. A sketch of (2). We show that elements of A(ω)(F
(n+1)
j (ω)) are

exponentially close to F
(n)
j (σ(ω)) and take the limit as n → ∞ using

claim (1).

1I’ll write xn . ean to mean for any ε, xn ≤ e(a+ε)n for large n. That is, the
exponential growth rate is at most a.
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Take v = A(ω)z in the unit ball of A(ω)(F
(n+1)
j (ω)); express it as

u + w with u ∈ F
(n)
j (σ(ω)) and w ∈ F

(n)
j (σ(ω))⊥. The rest of the

argument is like the previous step.

7.5. A sketch of (3). If v is a unit vector not in Fj(ω), it is some
positive distance, δ, from Fj(ω). By the triangle inequality, it is at least
δ
2

from F
(n)
j (ω) for all large n. That means that if v is decomposed into

components in the slow space, F
(n)
j (ω) and the fast space, F

(n)
j (ω)⊥,

there is a vector of length at least δ
2

in the fast space. When you apply

A
(n)
ω , you get a vector of length δ

2
en(λj−1−ε), as required.

7.6. Sketch of a sketch of (4). Write V
(n)
i (ω) for the space spanned

by the (Mi−1 + 1)st to Mith singular vectors of A
(n)
ω . The idea is to

Show that if v is a unit vector in Fj(ω), then the com-

ponent of v in V
(n)
i is of size at most e(λj−λi+ε)n for each

i < j.

Now when you apply A
(n)
ω to v, the vector obtained is of size at most

e(λj+ε)n (as seen working component by component and using the tri-
angle inequality).

Raghunathan shows the above by clever estimates on the inverse of
a matrix.

As an alternative, step (1) already gives the desired estimate in the
case of F2(ω). This is enough to show that elements of F2(ω) grow at
rate λ2 or less. Now, one can look at the restriction of A(ω) to F2(ω)
and deduce that F3(ω) grows at rate λ3 or less and obtain the result
inductively. (This argument is carried out in a Banach space setting
in papers of Alex Blumenthal, and of Cecilia González-Tokman and
myself).

8. Deducing invertible Oseledets from non-invertible
Oseledets

For this section, we’re assuming that the base dynamics, σ, is invert-
ible, and also that the matrices A(ω) are invertible (and ‖(A(ω))−1‖ is
log-integrable). It turns out that the first condition is crucial, whereas
the second condition is not.

Recall the definition of the stable and unstable manifolds of a fixed
point of an invertible map T

Ws(p) = {x : d(T nx, p)→ 0 as n→∞};
Wu(p) = {x : d(T nx, p)→ 0 as n→ −∞}.
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At first sight, the definition of the unstable manifold may be surpris-
ing:

Exercise. Why is the unstable manifold defined this way? (Think

about the map T (x) =

(
2 0
0 1

2

)
x for a concrete example).

Like this, we will obtain fast spaces as the slow spaces of the inverse
system.

8.1. Non-invertible result implies invertible result using the
Inverse system. The map σ−1 is another ergodic measure-preserving
transformation of (Ω,P). Define the matrix B(ω) = A(σ−1ω) and

build the matrix cocycle B
(n)
ω = B(σ−(n−1)ω) · · ·B(ω). Notice that

B
(n)
ω = (A

(n)

σ−nω)−1.
Applying the one-sided Oseledets theorem to the inverse system, we

obtain a family of subspaces Rd = Ek(ω) ⊃ Ek−1(ω) ⊃ · · ·E1(ω) such
that:

• (dimension): dimEj(ω) = m1 + . . .+mj;
• (equivariance): B(ω)Ej(ω) ⊂ Ej(σ

−1ω);

• (growth): v ∈ Ej(ω) \ Ej+1(ω) implies 1
n

log ‖B(n)
ω v‖ → −λj;

SinceB(ω) = A(σ−1(ω))−1, the equivariance condition can be rephrased
as Ej(ω) ⊂ A(σ−1(ω))Ej(σ

−1ω), or Ej(σ(ω)) ⊂ A(ω)Ej(ω). Since
A(ω) is invertible, and dimEj(ω) = m1 + . . . + mj for a.e. ω, we
deduce Ej(ω) is an equivariant family.

If v ∈ Ej(ω), then ‖B(n)
ω v‖ . e−(λj−ε)n‖v‖. Since B

(n)
ω = (A

(n)

σ−nω)−1,

it follows that for w ∈ Ej(σ
−nω) (writing w as (A

(n)

σ−nω)−1v), ‖w‖ .
e−(λj−ε)n‖A(n)

σ−nωw‖ or ‖A(n)

σ−nωw‖ & e(λj−ε)n‖w‖.
This (plus a little more work) shows that Ej(ω) is the jth fast space:

the vectors expanding at rate λj or faster.
Now: Vj(ω) = Ej(ω) ∩ Fj(ω) is an equivariant space consisting of

vectors expanding at exactly rate λj. The last thing to check is that it
has the correct dimension, mj. Since dimEj(ω) = m1 + . . . + mj and
dimFj(ω) = mj+ . . .+mk = (d−dimEj(ω))+mj, we see from the for-
mula dim(U ∩V ) = dimU+dimV −dim(U+V ) that dimVj(ω) ≥ mj.
It is not hard to see that the (Vj(ω)) are mutually linearly indepen-
dent: Suppose that that v1 + . . . + vk = 0, where vi ∈ Vi(ω). Sup-
pose for a contradiction that the vi are not all 0. Then let ` be the

smallest index such that v` 6= 0. Now A
(n)
ω v` grows at rate λ`, while

A
(n)
ω (v`+1 + . . . + vk) grows at rate at most λ`+1, so that they cannot

cancel for large n, contradicting the assumption that v1 + . . .+ vk = 0

(hence A
(n)
ω (v1 + . . .+ vk) = 0).
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A key observation: The Ej(ω) were the slow spaces for the inverse
system – that is these are determined by (A(σnω))n<0, while the Fj(ω)
are governed by (A(σnω))n≥0.

8.2. Non-invertible result implies invertible result using dual-
ity. In this sub-section, we’ll prove the same result using duality. It is
still important that σ is invertible, but we never take inverses of the
matrices.

Define C(ω) = A(σ−1ω)∗ and build a cocycle over σ−1: C
(n)
ω =

C(σ−(n−1)ω) · · ·C(ω) = (A
(n)

σ−nω)∗.

Theorem 21. Let σ be an ergodic invertible measure-preserving trans-
formation. Let A : Ω→Md×d(R) be such that ‖A(·)‖ is log-integrable.

Let C
(n)
ω be the dual cocycle over σ−1 as above. Then the Lyapunov

exponents of the dual cocycle are the same as those of A
(n)
ω .

Let the slow spaces for the dual cocycle be G1(ω), . . . Gk(ω). Then:

(1) A(ω)Gj(ω)⊥ = Gj(σ(ω))⊥ for a.e. ω;
(2) Gj(ω)⊥ ∩ Fj−1(ω) = Vj−1(ω) for a.e. ω.

Proof. To prove (1), let v ∈ Gj(ω)⊥ and y ∈ Gj(σ(ω)). Then we have

〈A(ω)v, y〉 = 〈v, A(ω)∗y〉 = 〈v, C(σ(ω))y〉.
Since C(σ(ω))Gj(σ(ω)) ⊂ Gj(ω), we have C(σ(ω))y ∈ Gj(ω), so that
〈A(ω)v, y〉 = 0 and A(ω)v ∈ Gj(σ(ω))⊥, as required.

We’ll just sketch the proof of (2). The main idea is to show that
Gj(ω)⊥ has a trivial intersection with Fj(ω). Assuming this for now,
since they have complementary dimensions (Fj(ω) and Gj(ω) have the
same dimension as the A and C cocycles have the same Lyapunov ex-
ponents), it will then follow that Rd = Fj(ω) ⊕ Gj(ω)⊥. From here
(and (3) of section 7.2), it follows that everything in Gj(ω)⊥ expands
at rate λj−1 or faster. Now we have Gj(ω)⊥∩Fj−1 is an equivariant sub-
space consisting of vectors expanding at rate λj−1. From the formula
dim(U ∩V ) = dimU +dimV −dim(U +V ), we see that Gj(ω)⊥∩Fj−1

is of dimension mj−1.
To prove the trivial intersection, let Z = Fj(ω)⊥. By section 7.2

(3), we have ‖A(n)
ω z‖ & eλj−1n for all z ∈ Z ∩ S. On the other hand,

we have d(A
(n)
ω z,Gj(σ

nω)⊥) = maxy∈Gj(σnω)∩S〈A(n)
ω z, y〉. For any y ∈

Gj(σ
nω) ∩ S, we have 〈A(n)

ω z, y〉 = 〈z, B(n)
σnωy〉 . eλjn. Hence for any

z ∈ Z ∩ S, the component of A
(n)
ω z in the direction perpendicular to

G⊥(σnω) is . eλjn. We deduce ∠(A
(n)
ω Z,G⊥(σnω)) . e−n(λj−1−λj).

To finish, we show that elements of A
(n)
ω Z are forced to lie far from

Fj(σ
nω). One can show (with a little determinant magic) ‖

∧k A
(n)
ω ‖ ≈
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‖
∧k A

(n)
ω |∧k Z‖ for all large n and so ‖

∧k A
(n)
ω |∧k Z‖ ≈ en(m1λ1+...+mj−1λj−1).

If an element z of Z had the property that A
(n)
ω z was e−an close (in

angle) to Fj(σ
nω), then the above growth condition is contradicted.

In particular, we deduce A
(n)
ω Z is far (at an exponential scale) in ev-

ery direction from Fj(σ
nω); but A

(n)
ω Z is close to Gj(σ

nω). Hence
Fj(σ

nω) ∩Gj(σ
nω) = {0} for large n. Hence Fj(ω) ∩Gj(ω) = {0} a.e.

by the Poincaré recurrence theorem.
�

Corollary 22 (Oseledets theorem: semi-invertible case). Let σ be
an invertible ergodic measure-preserving transformation of (Ω,P). Let
A : Ω → Md×d be a matrix-valued function with

∫
log ‖A(ω)‖ dP(ω) <

∞. Then there exist ∞ > λ1 > . . . > λk ≥ −∞; m1, . . . ,mk ∈ N sat-
isfying m1 + . . .+mk = d and measurable families of subspaces V1(ω),
V2(ω), . . . , Vk(ω) such that

(1) decomposition: Rd = V1(ω)⊕ V2(ω)⊕ · · · ⊕ Vk(ω);
(2) dimension: dimVi(ω) = mi for a.e. ω;
(3) equivariance: A(ω)Vi(ω) = Vi(σ(ω)) for a.e. ω

(4) growth: If v ∈ Vi(ω) \ {0} then 1
n

log ‖A(n)
ω v‖ → λi as n → ∞

for a.e. ω, where A
(n)
ω = A(σn−1ω) · · ·A(ω).

The hypotheses are a hybrid of the two original Oseledets theorems:
the underlying system must be invertible; there is no invertibility re-
quirement for the matrices. The good news: we can still get a decompo-
sition: Rd = V1⊕ . . .⊕Vk rather than a filtration (Rd = F1 ⊃ . . . ⊃ Fk).
We did lose something though: we have no backwards growth bounds

on ‖A(−n)
ω v‖ – the inverse matrices needn’t even exist.

Theorem 23 (Oseledets theorem: Banach space version). Let σ be
an invertible ergodic measure-preserving transformation of (Ω,P). Let
B be a separable Banach space. Let L : Ω → L(B,B) be an operator-
valued function with

∫
log ‖Lω‖ dP(ω) <∞.

Suppose that 1
n

∫
log ‖L(n)

ω ‖ dP(ω) → λ and 1
n

∫
log κ(L(n)

ω ) dP(ω) →
α < λ, where κ(L) = inf{r : L(B) can be covered by balls of radius r}
and B is the unit ball.

Then there exist 1 ≤ k ≤ ∞, λ1 > λ2 > . . . > λk and equivari-
ant subspaces V1(ω), . . . , Vk(ω) and R(ω) such that B = V1(ω)⊕ . . .⊕
Vk(ω)⊕R(ω) and the growth conditions of the matrix Oseledets theorem
hold.

The proofs are based on defining suitable notions of singular values
(or volume growth) for maps of linear maps on Banach spaces. There
are many possibilities – all giving the same growth rates.
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9. Exercises

(1) Show that Lebesgue measure is invariant under the doubling
map. Also the measures µ, ν and 1

2
(µ+ ν) from Example (2)

(2) Show that for the Gauss map from Example (3), T−1[0, a) =⋃
n≥1( 1

n+a
, 1
n
]. Writing the µ-measure of the set on the right as

1
log 2

∑
n≥1[(log(n+ a)− log(n))− (log(n+ a+ 1)− log(n+ 1))],

show that µ is invariant.
(3) Consider the circle rotation, example (4) with α = 1

3
. How

many invariant probability measures can you find? Can you
give a description of all invariant probability measures? What
if α = 1/

√
2?

(4) Let T be a measurable map from a space X to itself. Can you
give a complete description of all atomic T -invariant probability
measures? (A probability measure is atomic if there exists a
countable set S such that µ(S) = 1 and µ(Sc) = 0).

(5) Suppose that T is a measure-preserving transformation of a
probability space (X,µ) and f is a measurable function such
that f(Tx) ≤ f(x) for all x. Prove that for almost every x,
f(T nx) = f(x) for all n.

[Hint: is it possible for the set {x : f(Tx) < f(x) − ε} ∩
{x : f(x) > a} to have positive measure for some ε > 0 and
some a ∈ R? Is it possible for {x : f(Tx) < f(x) − ε} to have
positive measure for some ε > 0?]

Hence, taking T to be the time one map of the differential
equation, prove Corollary 3.

(6) Suppose that T is a continuous map from a compact metric
space X to itself and that µ is a T -invariant probability mea-
sure. Show that for all ε > 0, and for µ-almost every x, there
exists n > 0 such that d(x, T nx) < ε.

[Hint: it may be helpful to consider the support of the mea-
sure, that is supp(µ) := {x : µ(Br(x)) > 0 for all r > 0}. It
follows from the definition that this is closed, and from second
countability of X together with countable additivity of µ that
µ(supp(µ)) = 1.]

(7) Suppose T is a measurable transformation of X preserving a
probability measure µ, and that A is a measurable subset of X
satisfying T−1A = A and µ(A) > 0. Show that the measure ν
defined by ν(B) = µ(A ∩B)/µ(A) is also T -invariant.

(8) Let Ω = {0, 1}Z and let µp be the coin-tossing measure with
probability of 1’s given by p as in example (5).

There is a standard theorem as follows:
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Theorem. If A is an algebra that generates a σ-algebra B, then
for each element B of B and each ε > 0, there exists an A ∈ A
such that µ

(
(A \B) ∪ (B \ A)

)
< ε.

(a) Use this to show that any T -invariant set is of µp-measure
0 or 1. (Hint: B = T−nB for any invariant set);

(b) Show that for µp-almost every x, the frequency of 1’s is p;
(c) Deduce that there exists an uncountable collection of dis-

joint measurable sets Bp (one for each p ∈ (0, 1)) such that
µp(Bp) = 1 and µp(

⋃
q 6=pBq) = 0 for each p.

(9) Consider site percolation on Z2 (for example) where the prob-
ability that a site is occupied is p (and the measure is µp). By
ergodicity, µp-a.e. configuration has exactly N(p) infinite clus-
ters. This exercise is about showing that N(p) can only take
values 0, 1 or ∞. Suppose for a contradiction that N(p) = `
with 1 < ` <∞.
(a) Use continuity of measure (ifA1 ⊂ A2 ⊂ . . ., then µp(

⋃
An) =

limµp(An)) to prove that there exists an k such that with
positive probability at least two infinite clusters enter the
(2k + 1)× (2k + 1) square centred at the origin.

Let Φk be the map that modifies a configuration by replacing
all coordinates in the (2k + 1) × (2k + 1) square around the
origin by 1’s:

Φk(x)n =

{
1 if n ∈ [−k, k]2

xn otherwise.

(b) Show that if a set S has positive measure, then Φk(S) has
positive measure. [Hint: it may be useful to partition S
into pieces according to the configuration seen on [−k, k]2.]

(c) Deduce that N(p) cannot take any finite value bigger than
1.

(10) Prove that Gr(d, 2) is sequentially compact.
(11) For a fixed k-codimensional subspace, W , of Rd, let U denote

those elements of Gr(d, k) that have a trivial intersection with
W .

Prove that U is an open subset of Gr(d, k).
Fix an element V0 ∈ U , a basis e1, . . . , ek for V0 and a basis

f1, . . . , fd−k for W . For an element V ∈ U , since V ⊕ W =
Rd, each ei may be expressed uniquely as vi + wi with vi ∈ V
and wi ∈ W . Form a matrix, Φ(V ) whose ith column is the
coefficients of wi in the (fj) basis.

Prove that Φ is a bijection from U to R(d−k)×k.
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Prove that the collection of (U ,Φ) (as W varies over Gr(d, d−
k), V0 varies over U and the bases vary over bases for W and
V0) forms a smooth manifold structure on Gr(d, k).

(12) Verify that:
• v1∧· · ·∧vi∧· · ·∧vj∧· · ·∧vk = −v1∧· · ·∧vj∧· · ·∧vi∧· · ·∧vk;

and
• v1 ∧ · · · ∧ (cv + c′v′) ∧ · · · ∧ vk = v1 ∧ · · · ∧ v ∧ · · · ∧ vk +
c′v1 ∧ · · · ∧ v′ ∧ · · · ∧ vk
• If e1, . . . , ed is a basis for V , then {ei1 ∧· · ·∧eik : i1 < . . . <

ik} spans
∧k V .

(13) Let V be a k-dimensional subspace of Rd. Let two bases for V
be e1, . . . , ek and f1, . . . , fk.

Prove that f1 ∧ · · · ∧ fk = c e1 ∧ · · · ∧ ek, where c is the
determinant of the matrix of coefficients of the f vectors in
terms of the e vectors.

(14) Prove that there is a linear map,
∧k A satisfying

(∧k A
)

(v1 ∧
· · · ∧ vk) = (Av1) ∧ · · · (Avk) for each v1 ∧ · · · ∧ vk..

(15) Show that if the invertible matrix A has singular values σ1 >
. . . > σd, then A−1 has singular values σ−1

d > . . . > σ−1
1 .

(16) Check from the previous exercise and the Kingman sub-additive
ergodic theorem that the Lyapunov exponents for this cocycle
are −λk, . . . ,−λ1, with multiplicities mk, . . . ,m1.


