A stroboscopic numerical method for highly oscillatory problems

M. P. Calvo
Universidad de Valladolid, Spain

with Ph. Chartier, A. Murua, J. M. Sanz-Serna
I. HIGHLY OSCILLATORY PROBLEMS

Example 1: The pendulum

- A material point B is attached to one of the ends of a massless rod, of length ℓ. The other end of the rod can rotate around a point S (the pivot). The system is subjected to gravity.
- If q is the angle between the rod and the UPWARD vertical through S, the equation of motion is

$$
\ell \frac{d^{2} q}{d t^{2}}=+g \sin q
$$

or

$$
\frac{d p}{d t}=+\frac{g}{\ell} \sin q, \quad \frac{d q}{d t}=p
$$

Stabilizing effect of vibrations

- The unstable position $q \equiv 0$ (bob B above pivot S), becomes stable if S receives fast, small-amplitude vertical vibrations.
- Many other physical systems may be stabilized by vibrations (Paul's trap, Nobel Prize 1989).
- If $a(t)$ is the (upwards) acceleration of S wrt. laboratory, eqn. of motion is

$$
\frac{d^{2}}{d t^{2}} q=\ell^{-1}(g+a(t)) \sin q
$$

- Assume that $a(t)$ is sinusoidal

$$
a(t)=\frac{1}{\epsilon} v_{\max } \cos \left(\frac{t}{\epsilon}+\theta_{0}\right), \quad v_{\max }>0
$$

- The (vertical) pivot velocity $v(t)$ and pivot displacement $s(t)$ are given by

$$
v(t)=v_{\max } \sin \left(\frac{t}{\epsilon}+\theta_{0}\right), \quad s(t)=-\epsilon v_{\max } \cos \left(\frac{t}{\epsilon}+\theta_{0}\right)
$$

- We are interested in the case where $\epsilon \ll 1$; with respect to this small parameter, a, v and s are therefore of sizes $O(1 / \epsilon), O(1)$ and $O(\epsilon)$ respectively. Direct numerical solution very costly.
- Next slide shows stabilization for $\epsilon=1 / 200$. (Here and later $\left.g=9.8, \ell=0.2, v_{\max }=4, \theta_{0}=2, q(0)=0.25, p(0)=0.\right)$

Example 2: The double pendulum in cartesian coordinates

- Here and later $m_{1}=0.01, m_{2}=0.005, \ell_{1}=0.2, \ell_{2}=0.1$, $x_{1}(0)=\ell_{1} \sin (0.5), y_{1}(0)=\ell_{1} \cos (0.5), x_{2}(0)=x_{1}(0), y_{2}(0)=$ $y_{1}(0)+\ell_{2}$.

$$
\begin{array}{r|r}
m_{1} \dot{x}_{1}=m_{1} u_{1} \\
m_{1} \dot{y}_{1}=m_{1} v_{1} \\
m_{2} \dot{x}_{2}=m_{2} u_{2} \\
m_{2} \dot{y}_{2}=m_{2} v_{2} \\
m_{1} \dot{u}_{1}= \\
m_{1} \dot{v}_{1}=-m_{1}(g+a(t)) \\
m_{2} \dot{u}_{2}= & -2 x_{1} \mu_{1}-2\left(x_{1}-x_{2}\right) \mu_{2} \\
m_{2} \dot{v}_{2}=-m_{2}(g+a(t)) \\
-2 y_{1} \mu_{1}-2\left(y_{1}-y_{2}\right) \mu_{2} \\
-2\left(x_{2}-x_{1}\right) \mu_{2} \\
-2\left(y_{2}-y_{1}\right) \mu_{2} \\
-2 x_{1} \lambda_{1}-2\left(x_{1}-x_{2}\right) \lambda_{2} \\
-2 y_{1} \lambda_{1}-2\left(y_{1}-y_{2}\right) \lambda_{2} \\
-2\left(x_{2}-x_{1}\right) \lambda_{2} \\
-2\left(y_{2}-y_{1}\right) \lambda_{2}
\end{array}
$$

with constraints

$$
\begin{aligned}
& x_{1}^{2}+y_{1}^{2}-\ell_{1}^{2}=0, \quad\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}-\ell_{2}^{2}=0 \\
& x_{1} u_{1}+y_{1} v_{1}=0, \quad\left(x_{2}-x_{1}\right)\left(u_{2}-u_{1}\right)+\left(y_{2}-y_{1}\right)\left(v_{2}-v_{1}\right)=0
\end{aligned}
$$

II. STROBOSCOPIC AVERAGING

- Averaging: try to describe the 'smooth' evolution of the system without tracking the fast, period $O(\epsilon)$, oscillations of true solution $y(t)$.
- $y(t)$ approximated by a 'smooth' $Y(t)$. Usually Y is understood as average of y over one period of the fast oscillations.
- Here we look at true solution y with a stroboscopic light that flashes every $2 \pi \epsilon$ units of time.
- In the pendulum case this yields (vector solution y has components p and q)...

- Values appear to come from a smooth function $Y(t)$ that interpolates the values $y(0), y(2 \pi \epsilon), y(4 \pi \epsilon), \ldots$
- Note that the time-derivative of the smooth interpolant of q does not coincide with the smooth interpolant of $p=d q / d t$.

In general:

- Consider the oscillatory IVP

$$
\frac{d y}{d t}=f\left(y, \frac{t}{\epsilon} ; \epsilon\right), \quad 0 \leq t \leq T, \quad y(0)=y_{0} \in \mathcal{R}^{d}
$$

where $\epsilon \ll 1, f(y, \tau ; \epsilon)$ is 2π-periodic in τ.

- To simplify the notation, the initial condition has been imposed at $t=0$. No loss of generality: other cases reduced to this by considering the new independent variable $t-t_{0}$.
- Denote by φ_{t} the solution operator $y_{0} \mapsto y(t)$. This is not a flow: if $t_{1} \neq 2 \pi k \epsilon$, then, in general, $\varphi_{t} y\left(t_{1}\right) \neq y\left(t_{1}+t\right)$.
- Under suitable hypoths. $\varphi_{2 \pi \epsilon}$ is a near identity map. Then:
- There exists an autonomous modified eqn. ($d / d t) Y=F_{\epsilon}(Y)$, with t-flow $\Phi_{t}^{(\epsilon)}$, such that $\varphi_{2 \pi \epsilon}$ coincides (formally) with $\Phi_{2 \pi \epsilon}^{(\epsilon)}$.
- $\varphi_{2 \pi \epsilon}=\Phi_{2 \pi \epsilon}^{(\epsilon)}$ and $\varphi_{2 \pi n \epsilon}=\varphi_{2 \pi \epsilon}^{n}, n=0,1, \ldots$, (periodicity) imply

$$
\varphi_{2 \pi n \epsilon}=\Phi_{2 \pi n \epsilon}^{(\epsilon)}
$$

- Conclusion: the values

$$
y(0), \quad y(2 \pi \epsilon), \quad \ldots \quad y(2 \pi n \epsilon), \quad \ldots
$$

of the highly oscillatory solution of $(d / d t) y=f(y, t / \epsilon ; \epsilon)$ coincide (as formal power series in ϵ) with the values

$$
Y(0), \quad Y(2 \pi \epsilon), \quad \ldots \quad Y(2 \pi n \epsilon), \quad \ldots
$$

of the solution of $(d / d t) Y=F_{\epsilon}(Y)$ such that $Y(0)=y(0)$.

Red wiggly lines: solutions of ivp's corresponding to two initial conditions, y_{0} and $y *$. Solid blue lines: solutions of $(d / d t) Y=$ $F_{\epsilon}(Y)$ with same initial data.

Two remarks:

- If the initial condition was prescribed at $t_{0} \neq 0$, then the operator $y_{0} \mapsto y\left(t_{0}+t\right)$ is not φ_{t}. The process would have resulted in a different $\Phi_{t}^{(\epsilon)}$ and therefore in a different F_{ϵ}. (Broken lines in preceding figure.)
- Truncating the formal series of the 'exact' F_{ϵ}, one obtains averaged systems with $O(\epsilon), O\left(\epsilon^{2}\right), \ldots$ errors.

In Chartier, Murua \& Sanz-Serna, Higher-order averaging, formal series and numerical integration I: B-series it is shown:

- Possible to find systematically the explicit analytic expression for F_{ϵ} in terms of f by using ideas from the modern analysis of numerical methods -trees, B-series, ...-.
- Such explicit expression is useful on its own right to obtain averaged system of high order of accuracy.
- It may furthermore be used to analyze the multiscale method we shall present next. (However such an analysis will not be covered in this talk.)

III. A MULTISCALE NUMERICAL METHOD

- We shall compute the smooth interpolant $Y(t)$ by integrating the averaged equation $d Y / d t=F_{\epsilon}(Y)$ with a numerical method (macro-solver) with macro-step size H (much) larger than the fast period $2 \pi \epsilon$.
- In the spirit of the Heterogeneous Multiscale Methods of E and Engquist, our algorithm does not require the explicit knowledge of the analytic form of F_{ϵ}. Info. on F_{ϵ} is gathered on the fly by integrating [with micro-step size h] the original system $d y / d t=f$ in small time-windows of length $O(\epsilon)$.
- There is much freedom in the choice of the macro-solver and micro-solver, including standard variable-step/order codes.

- ¿How to compute F_{ϵ} at a given value Y^{*} of its argument?
- Recall that F_{ϵ} is, by definition, the vector field whose t-flow is $\Phi_{t}^{(\epsilon)}$. Hence

$$
F_{\epsilon}\left(Y^{*}\right)=\left.\frac{d}{d t} \Phi_{t}^{(\epsilon)}\left(Y^{*}\right)\right|_{t=0}
$$

- In algorithm, derivative approximated by differences, such as

$$
F_{\epsilon}\left(Y^{*}\right)=\frac{1}{2 \delta}\left[\Phi_{\delta}^{(\epsilon)}\left(Y^{*}\right)-\Phi_{-\delta}^{(\epsilon)}\left(Y^{*}\right)\right]+O\left(\delta^{2}\right)
$$

- Choosing $\delta=2 \pi \epsilon$, results in $\Phi_{ \pm \delta}^{(\epsilon)}=\varphi_{ \pm \delta}$ (stroboscopic effect) and

$$
F_{\epsilon}\left(Y^{*}\right) \approx(1 /(4 \pi \epsilon))\left[\varphi_{2 \pi \epsilon}\left(Y^{*}\right)-\varphi_{-2 \pi \epsilon}\left(Y^{*}\right)\right]
$$

- $\varphi_{ \pm 2 \pi \epsilon}\left(Y^{*}\right)$ computed by solving the originally given $d y / d t=$ $f(y, t / \epsilon ; \epsilon)$, over $-2 \pi \epsilon \leq t \leq 2 \pi \epsilon$, with initial condition $y(0)=Y^{*}$.
- Note lack of synchrony between macro and micro integrations. Starting micro-integrations from current value of t in macrointegration will not do: refer to preceding figure.
- Of course, one may use other finite-difference formulae such as the fourth-order

$$
\frac{1}{12 \delta}\left[-\Phi_{2 \delta}^{(\epsilon)}\left(Y^{*}\right)+8 \Phi_{\delta}^{(\epsilon)}\left(Y^{*}\right)-8 \Phi_{-\delta}^{(\epsilon)}\left(Y^{*}\right)+\Phi_{-2 \delta}^{(\epsilon)}\left(Y^{*}\right)\right]
$$

With $\delta=2 \pi \epsilon$, this requires micro-integrating over $-4 \pi \epsilon \leq t \leq$ $4 \pi \epsilon$. (Our current experience includes formulae of order ≤ 6.)

Error analysis:

- Three sources of errors:

The approximation of the exact values of F_{ϵ} by finite differences
The replacement in the finite-difference formula of the true values of Φ^{ϵ} by numerical approximations obtained via microintegrations.

The discretization error introduced by the macro-integrator.

- Basic error estimate:

$$
O\left(\epsilon^{d}+H^{P}+\frac{1}{\epsilon}\left(\frac{h}{\epsilon}\right)^{p}\right)
$$

if the error due to the micro-integration behaves as $\left(\frac{h}{\epsilon}\right)^{p}$.

- Improved error estimate:

$$
O\left(\epsilon^{d}+H^{P}+\epsilon^{\nu-1}\left(\frac{h}{\epsilon}\right)^{p}\right)
$$

if the error due to the micro-integration behaves as $\epsilon^{\nu}\left(\frac{h}{\epsilon}\right)^{p}$.

- Algorithm presented evolved from our study of Heterogeneous Multiscale Method (E, Engquist, Tsai, Sharp, Ariel, ...)
- Basic underlying idea has appeared several times in the literature over the last fifty years (in particular, in astronomy and circuit theory): envelope-following methods, multirevolution methods, ...Taratynova, Mace and Thomas, Graff and Bettis, Gear/Petzold/Gallivan, Calvo/Jay/Montijano/Rández, . . . (outer integrator has to be built on purpose).
- Kirchgraber 1982, 1988 uses high-order RKs. Recovery of macro-field not from numerical differentiation.
IV. NUMERICAL EXPERIMENTS

IV (A) 'THE’ RUNGE-KUTTA METHOD

- 1st block of experiments reported here correspond to 'the' Runge-Kutta method, with constant step-sizes H and h, as macro and micro-integrator.
- H from sequence $2 \pi / 50 \approx 0.12,2 \pi / 100, \ldots, 2 \pi / 50 / 2^{\nu}, \ldots$
- h from sequence $2 \pi \epsilon / 10,2 \pi \epsilon / 20, \ldots, 2 \pi \epsilon / 10 / 2^{\nu}, \ldots$
- Increasing ν by one unit doubles the number of macro-steps and the work per macro-step, hence multiplies by four the computational effort, which is independent of ϵ, as h and the width of the micro-integration windows are both proportional to ϵ.

Inverted pendulum: Maximum error in q over $0 \leq t \leq 1$, fourth order differencing.

H	Mcrstps	ϵ			
		$1 / 400$	$1 / 800$	$1 / 1600$	$1 / 3200$
	$1.10(-1)$	$1.09(-1)$	$1.08(-1)$	$1.08(-1)$	
$\pi / 50$	1,120	4,800	$8.12(-3)$	$7.85(-3)$	$7.79(-3)$
$\pi / 100$	19,840	$7.06(-4)$	$5.16(-4)$	$5.01(-4)$	$4.99(-4)$
$\pi / 200$	80,640	$2.35(-4)$	$4.71(-5)$	$3.53(-5)$	$3.45(-5)$
$\pi / 400$	325,120	$* * *$	$1.47(-5)$	$3.06(-6)$	$2.32(-6)$
$\pi / 800$	$1,300,480$	$* * *$	$* * *$	$9.20(-7)$	$1.92(-7)$
$\pi / 1600$	$5,212,160$	$* * *$	$* * *$	$* * *$	$6.08(-8)$

- For large H, error $O\left(H^{4}\right)$ (from RK4) uniformly in ϵ. (Much smaller values of ϵ, say $\epsilon=10^{-9}$, cause no difficulty.)
- For small H, error is clearly $O\left(\epsilon^{4}\right)$ (approximating F_{ϵ}).

Inverted pendulum: As before, but error in p.

H	Mcrstps	ϵ			
		$1 / 400$	$1 / 800$	$1 / 1600$	$1 / 3200$
$\pi / 25$	1,120	$1.66(0)$	$1.66(0)$	$1.66(0)$	$1.66(0)$
$\pi / 50$	4,800	$1.60(-1)$	$1.59(-1)$	$1.58(-1)$	$1.58(-1)$
$\pi / 100$	19,840	$1.33(-2)$	$9.80(-3)$	$9.57(-3)$	$9.55(-3)$
$\pi / 200$	80,640	$4.45(-3)$	$9.07(-4)$	$6.96(-4)$	$6.83(-4)$
$\pi / 400$	325,120	$* * *$	$2.79(-4)$	$5.96(-5)$	$4.66(-5)$
$\pi / 800$	$1,300,480$	$* * *$	$* * *$	$1.76(-5)$	$3.78(-6)$
$\pi / 1600$	$5,212,160$	$* * *$	$* * *$	$* * *$	$1.29(-6)$

- Relative errors are similar to those in q, as p takes larger values.

Inverted pendulum: Maximum error in q over $0 \leq t \leq 1$, second order differencing.

H	Mcrstps	ϵ			
		$1 / 400$	$1 / 800$	$1 / 1600$	$1 / 3200$
$\pi / 25$	560	$1.05(-1)$	$1.08(-1)$	$1.08(-1)$	$1.08(-1)$
$\pi / 50$	2,400	$3.00(-2)$	$1.25(-2)$	$8.94(-3)$	$8.05(-3)$
$\pi / 100$	9,920	$2.71(-2)$	$7.01(-3)$	$2.07(-3)$	$8.78(-4)$
$\pi / 200$	40,320	$2.67(-2)$	$6.61(-3)$	$1.67(-3)$	$4.41(-4)$
$\pi / 400$	162,560	$* * *$	$6.58(-3)$	$1.64(-3)$	$4.10(-4)$

- For H small, error clearly behaves as $O\left(\epsilon^{2}\right)$.
- For $H=\pi / 50$ and ϵ small, accuracy of 1%, even if number of RK steps is smaller than number of cycles of vibration.

IV (B) ode45 AS MACRO INTEGRATOR

- Micro-problem integrated in the non-dimensional time $\tau=t / \epsilon$.
- Step-points chosen by code in macro-integrator may be totally arbitrary.
- Results for ode45 as macro-integrator combined with splitting as micro-integrator for van der Pol oscillator can be found in Calvo, Chartier, Murua \& Sanz-Serna, Numerical stroboscopic averaging for ODEs and DAEs

> http://hermite.mac.cie.uva.es/sanzserna

IV (C) Differential Algebraic Equations

- Approach applies to DAEs, in particular to constrained dynamical systems.
- Index 2 DAEs, if Gear-Gupta-Leimkuhler (GGL) approach used

$$
\dot{y}=\mathcal{F}(y, z), \quad \mathcal{G}(y)=0,
$$

- Half-explicit RK method of order 3 (Brasey/Hairer (1993)) successfully implemented.

0			
$1 / 3$	$1 / 3$		
1	-1	2	
	0	$3 / 4$	$1 / 4$

- Error in first angle vs. number of micro-steps, $\epsilon=10^{-4}$ (blue), 10^{-6} (red), circles correspond to standard integration ($h=2 \pi \epsilon / n$, $\left.n=2^{j}, j=2,3,4,5\right)$ and stars to the stroboscopic method with macro-step-size $H=\pi / 2500$.

- Error in first angle vs. number of micro-steps, $\epsilon=10^{-6}$, circles correspond to standard integration ($h=2 \pi \epsilon / n, n=2^{j}, j=$ $2,3,4,5)$ and stars to the stroboscopic method with macro-stepsizes $H=\pi / 625, H=\pi / 1250, H=\pi / 2500, H=\pi / 5000$.

