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I. HIGHLY OSCILLATORY PROBLEMS
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Example 1: The pendulum

• A material point B is attached to one of the ends of a massless

rod, of length ℓ. The other end of the rod can rotate around a

point S (the pivot). The system is subjected to gravity.

• If q is the angle between the rod and the UPWARD vertical

through S, the equation of motion is

ℓ
d2q

dt2
= +g sin q,

or
dp

dt
= +

g

ℓ
sin q,

dq

dt
= p.
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Stabilizing effect of vibrations

• The unstable position q ≡ 0 (bob B above pivot S), becomes

stable if S receives fast, small-amplitude vertical vibrations.

• Many other physical systems may be stabilized by vibrations

(Paul’s trap, Nobel Prize 1989).

• If a(t) is the (upwards) acceleration of S wrt. laboratory, eqn.

of motion is

d2

dt2
q = ℓ−1(g + a(t)) sin q.
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• Assume that a(t) is sinusoidal

a(t) =
1

ϵ
vmax cos(

t

ϵ
+ θ0), vmax > 0.

• The (vertical) pivot velocity v(t) and pivot displacement s(t)
are given by

v(t) = vmax sin(
t

ϵ
+ θ0), s(t) = −ϵvmax cos(

t

ϵ
+ θ0).

• We are interested in the case where ϵ ≪ 1; with respect to this
small parameter, a, v and s are therefore of sizes O(1/ϵ), O(1)
and O(ϵ) respectively. Direct numerical solution very costly.

• Next slide shows stabilization for ϵ = 1/200. (Here and later
g = 9.8, ℓ = 0.2, vmax = 4, θ0 = 2, q(0) = 0.25, p(0) = 0.)
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Example 2: The double pendulum in cartesian coordinates

(x1, y1)

(x2, y2)

a(t)

• Here and later m1 = 0.01, m2 = 0.005, ℓ1 = 0.2, ℓ2 = 0.1,
x1(0) = ℓ1 sin(0.5), y1(0) = ℓ1 cos(0.5), x2(0) = x1(0), y2(0) =
y1(0) + ℓ2.
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m1ẋ1 = m1u1 − 2x1µ1 − 2(x1 − x2)µ2,

m1ẏ1 = m1v1 − 2y1µ1 − 2(y1 − y2)µ2,

m2ẋ2 = m2u2 − 2(x2 − x1)µ2,

m2ẏ2 = m2v2 − 2(y2 − y1)µ2,

m1u̇1 = − 2x1λ1 − 2(x1 − x2)λ2,

m1v̇1 = −m1(g + a(t)) − 2y1λ1 − 2(y1 − y2)λ2,

m2u̇2 = − 2(x2 − x1)λ2,

m2v̇2 = −m2(g + a(t)) − 2(y2 − y1)λ2,

with constraints

x21 + y21 − ℓ21 = 0, (x2 − x1)
2 + (y2 − y1)

2 − ℓ22 = 0,

x1u1 + y1v1 = 0, (x2 − x1)(u2 − u1) + (y2 − y1)(v2 − v1) = 0.
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II. STROBOSCOPIC AVERAGING

10



• Averaging: try to describe the ‘smooth’ evolution of the system

without tracking the fast, period O(ϵ), oscillations of true solut-

ion y(t).

• y(t) approximated by a ‘smooth’ Y (t). Usually Y is understood

as average of y over one period of the fast oscillations.

• Here we look at true solution y with a stroboscopic light that

flashes every 2πϵ units of time.

• In the pendulum case this yields (vector solution y has comp-

onents p and q) . . .
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• Values appear to come from a smooth function Y (t) that

interpolates the values y(0), y(2πϵ), y(4πϵ), . . .

• Note that the time-derivative of the smooth interpolant of q

does not coincide with the smooth interpolant of p = dq/dt.
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In general:

• Consider the oscillatory IVP

dy

dt
= f(y,

t

ϵ
; ϵ), 0 ≤ t ≤ T, y(0) = y0 ∈ Rd,

where ϵ ≪ 1, f(y, τ ; ϵ) is 2π-periodic in τ .

• To simplify the notation, the initial condition has been imposed

at t = 0. No loss of generality: other cases reduced to this by

considering the new independent variable t− t0.

• Denote by φt the solution operator y0 7→ y(t). This is not a

flow: if t1 ̸= 2πkϵ, then, in general, φty(t1) ̸= y(t1 + t).
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• Under suitable hypoths. φ2πϵ is a near identity map. Then:

• There exists an autonomous modified eqn. (d/dt)Y = Fϵ(Y ),

with t-flow Φ(ϵ)
t , such that φ2πϵ coincides (formally) with Φ(ϵ)

2πϵ .

• φ2πϵ = Φ(ϵ)
2πϵ and φ2πnϵ = φn

2πϵ, n = 0,1, . . . , (periodicity) imply

φ2πnϵ = Φ(ϵ)
2πnϵ.
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• Conclusion: the values

y(0), y(2πϵ), . . . y(2πnϵ), . . .

of the highly oscillatory solution of (d/dt)y = f(y, t/ϵ; ϵ) coincide

(as formal power series in ϵ) with the values

Y (0), Y (2πϵ), . . . Y (2πnϵ), . . .

of the solution of (d/dt)Y = Fϵ(Y ) such that Y (0) = y(0).
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Red wiggly lines: solutions of ivp’s corresponding to two initial

conditions, y0 and y∗. Solid blue lines: solutions of (d/dt)Y =

Fϵ(Y ) with same initial data.
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Two remarks:

• If the initial condition was prescribed at t0 ̸= 0, then the

operator y0 7→ y(t0+t) is not φt. The process would have resulted

in a different Φ(ϵ)
t and therefore in a different Fϵ. (Broken lines

in preceding figure.)

• Truncating the formal series of the ‘exact’ Fϵ, one obtains

averaged systems with O(ϵ), O(ϵ2), . . . errors.
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In Chartier, Murua & Sanz-Serna, Higher-order averaging, formal

series and numerical integration I: B-series it is shown:

• Possible to find systematically the explicit analytic expression

for Fϵ in terms of f by using ideas from the modern analysis of

numerical methods —trees, B-series, . . .—.

• Such explicit expression is useful on its own right to obtain

averaged system of high order of accuracy.

• It may furthermore be used to analyze the multiscale method

we shall present next. (However such an analysis will not be

covered in this talk.)
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III. A MULTISCALE NUMERICAL METHOD
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• We shall compute the smooth interpolant Y (t) by integrating

the averaged equation dY/dt = Fϵ(Y ) with a numerical method

(macro-solver) with macro-step size H (much) larger than the

fast period 2πϵ.

• In the spirit of the Heterogeneous Multiscale Methods of E and

Engquist, our algorithm does not require the explicit knowledge

of the analytic form of Fϵ. Info. on Fϵ is gathered on the fly by

integrating [with micro-step size h] the original system dy/dt = f

in small time-windows of length O(ϵ).

• There is much freedom in the choice of the macro-solver and

micro-solver, including standard variable-step/order codes.
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• ¿How to compute Fϵ at a given value Y ∗ of its argument?

• Recall that Fϵ is, by definition, the vector field whose t-flow is

Φ(ϵ)
t . Hence

Fϵ(Y
∗) =

d

dt
Φ(ϵ)

t (Y ∗)
∣∣∣∣
t=0

.

• In algorithm, derivative approximated by differences, such as

Fϵ(Y
∗) =

1

2δ
[Φ(ϵ)

δ (Y ∗)−Φ(ϵ)
−δ(Y

∗)] +O(δ2).

• Choosing δ = 2πϵ, results in Φ(ϵ)
±δ = φ±δ (stroboscopic effect)

and

Fϵ(Y
∗) ≈ (1/(4πϵ))[φ2πϵ(Y

∗)− φ−2πϵ(Y
∗)].
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• φ±2πϵ(Y
∗) computed by solving the originally given dy/dt =

f(y, t/ϵ; ϵ), over −2πϵ ≤ t ≤ 2πϵ, with initial condition y(0) = Y ∗.

• Note lack of synchrony between macro and micro integrations.

Starting micro-integrations from current value of t in macro-

integration will not do: refer to preceding figure.

• Of course, one may use other finite-difference formulae such

as the fourth-order

1

12δ
[−Φ(ϵ)

2δ (Y
∗) + 8Φ(ϵ)

δ (Y ∗)− 8Φ(ϵ)
−δ(Y

∗) +Φ(ϵ)
−2δ(Y

∗)].

With δ = 2πϵ, this requires micro-integrating over −4πϵ ≤ t ≤
4πϵ. (Our current experience includes formulae of order ≤ 6.)
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Error analysis:

• Three sources of errors:

The approximation of the exact values of Fϵ by finite differences

The replacement in the finite-difference formula of the true
values of Φϵ by numerical approximations obtained via micro-
integrations.

The discretization error introduced by the macro-integrator.

• Basic error estimate:

O

(
ϵd +HP +

1

ϵ
(
h

ϵ
)p

)
,

if the error due to the micro-integration behaves as
(
h

ϵ

)p

.
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• Improved error estimate:

O

(
ϵd +HP + ϵν−1(

h

ϵ
)p

)
,

if the error due to the micro-integration behaves as ϵν
(
h

ϵ

)p

.
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• Algorithm presented evolved from our study of Heterogeneous

Multiscale Method (E, Engquist, Tsai, Sharp, Ariel, . . . )

• Basic underlying idea has appeared several times in the literature

over the last fifty years (in particular, in astronomy and circuit

theory): envelope-following methods, multirevolution methods,

. . . Taratynova, Mace and Thomas, Graff and Bettis, Gear/Petz-

old/Gallivan, Calvo/Jay/Montijano/Rández, . . . (outer integrator

has to be built on purpose).

• Kirchgraber 1982, 1988 uses high-order RKs. Recovery of

macro-field not from numerical differentiation.
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IV. NUMERICAL EXPERIMENTS
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IV (A) ‘THE’ RUNGE-KUTTA METHOD

• 1st block of experiments reported here correspond to ‘the’

Runge-Kutta method, with constant step-sizes H and h, as

macro and micro-integrator.

• H from sequence 2π/50 ≈ 0.12, 2π/100, . . . , 2π/50/2ν, . . .

• h from sequence 2πϵ/10, 2πϵ/20, . . . , 2πϵ/10/2ν,. . .

• Increasing ν by one unit doubles the number of macro-steps and

the work per macro-step, hence multiplies by four the computat-

ional effort, which is independent of ϵ, as h and the width of the

micro-integration windows are both proportional to ϵ.
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Inverted pendulum: Maximum error in q over 0 ≤ t ≤ 1, fourth
order differencing.

H Mcrstps ϵ

1/400 1/800 1/1600 1/3200
π/25 1,120 1.10(-1) 1.09(-1) 1.08(-1) 1.08(-1)
π/50 4,800 8.12(-3) 7.85(-3) 7.79(-3) 7.76(-3)

π/100 19,840 7.06(-4) 5.16(-4) 5.01(-4) 4.99(-4)
π/200 80,640 2.35(-4) 4.71(-5) 3.53(-5) 3.45(-5)
π/400 325,120 *** 1.47(-5) 3.06(-6) 2.32(-6)
π/800 1,300,480 *** *** 9.20(-7) 1.92(-7)

π/1600 5,212,160 *** *** *** 6.08(-8)

• For large H, error O(H4) (from RK4) uniformly in ϵ. (Much
smaller values of ϵ, say ϵ = 10−9, cause no difficulty.)

• For small H, error is clearly O(ϵ4) (approximating Fϵ).
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Inverted pendulum: As before, but error in p.

H Mcrstps ϵ

1/400 1/800 1/1600 1/3200
π/25 1,120 1.66(0) 1.66(0) 1.66(0) 1.66(0)
π/50 4,800 1.60(-1) 1.59(-1) 1.58(-1) 1.58(-1)

π/100 19,840 1.33(-2) 9.80(-3) 9.57(-3) 9.55(-3)
π/200 80,640 4.45(-3) 9.07(-4) 6.96(-4) 6.83(-4)
π/400 325,120 *** 2.79(-4) 5.96(-5) 4.66(-5)
π/800 1,300,480 *** *** 1.76(-5) 3.78(-6)

π/1600 5,212,160 *** *** *** 1.29(-6)

• Relative errors are similar to those in q, as p takes larger values.
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Inverted pendulum: Maximum error in q over 0 ≤ t ≤ 1, second

order differencing.

H Mcrstps ϵ

1/400 1/800 1/1600 1/3200
π/25 560 1.05(-1) 1.08(-1) 1.08(-1) 1.08(-1)
π/50 2,400 3.00(-2) 1.25(-2) 8.94(-3) 8.05(-3)

π/100 9,920 2.71(-2) 7.01(-3) 2.07(-3) 8.78(-4)
π/200 40,320 2.67(-2) 6.61(-3) 1.67(-3) 4.41(-4)
π/400 162,560 *** 6.58(-3) 1.64(-3) 4.10(-4)

• For H small, error clearly behaves as O(ϵ2).

• For H = π/50 and ϵ small, accuracy of 1%, even if number of

RK steps is smaller than number of cycles of vibration.
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IV (B) ode45 AS MACRO INTEGRATOR

• Micro-problem integrated in the non-dimensional time τ = t/ϵ.

• Step-points chosen by code in macro-integrator may be totally

arbitrary.

• Results for ode45 as macro-integrator combined with splitting

as micro-integrator for van der Pol oscillator can be found in

Calvo, Chartier, Murua & Sanz-Serna, Numerical stroboscopic

averaging for ODEs and DAEs

http://hermite.mac.cie.uva.es/sanzserna
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IV (C) Differential Algebraic Equations

• Approach applies to DAEs, in particular to constrained dynamical
systems.

• Index 2 DAEs, if Gear-Gupta-Leimkuhler (GGL) approach used

ẏ = F(y, z), G(y) = 0,

• Half-explicit RK method of order 3 (Brasey/Hairer (1993))
successfully implemented.

0
1/3 1/3
1 −1 2

0 3/4 1/4

.
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• Error in first angle vs. number of micro-steps, ϵ = 10−4 (blue),

10−6 (red), circles correspond to standard integration (h = 2πϵ/n,

n = 2j, j = 2,3,4,5) and stars to the stroboscopic method with

macro-step-size H = π/2500.
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• Error in first angle vs. number of micro-steps, ϵ = 10−6,

circles correspond to standard integration (h = 2πϵ/n, n = 2j, j =

2,3,4,5) and stars to the stroboscopic method with macro-step-

sizes H = π/625, H = π/1250, H = π/2500, H = π/5000.
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