Abelian Integrals and Limit Cycles

Magdalena Caubergh
Universitat Autònoma de Barcelona

November 4, 2010

Contents

(1) Hilbert's Sixteenth Problem
(2) Weakened Hilbert's Sixteenth Problem
(3) Abelian integral
(4) Study of zeroes of the Abelian integral
(5) Transfer result on Z to $L C$

Formulation H16P

(1) Projective classification of the ovals of a real plane algebraic curve:

$$
\left\{(x, y) \in \mathbf{R}^{2}: H(x, y)=0\right\}
$$

where H is a polynomial of degree n
(2) Determine the maximum number $\mathcal{H}(n)$ of limit cycles of $X \leftrightarrow P_{n} d y-Q_{n} d x$,

$$
X \leftrightarrow\left\{\begin{array}{l}
\dot{x}=P_{n}(x, y)=\sum_{0 \leq i+j \leq n} a_{i j} x^{i} y^{j} \\
\dot{y}=Q_{n}(x, y)=\sum_{0 \leq i+j \leq n} b_{i j} x^{i} y^{j}
\end{array}, a_{i j}, b_{i j} \in \mathbb{R}, x, y \in \mathbb{R}\right.
$$

Formulation H16P

(1) Projective classification of the ovals of a real plane algebraic curve:

$$
\left\{(x, y) \in \mathbf{R}^{2}: H(x, y)=0\right\}
$$

where H is a polynomial of degree n
(2) Determine the maximum number $\mathcal{H}(n)$ of limit cycles of $X \leftrightarrow P_{n} d y-Q_{n} d x$,

$$
x \leftrightarrow\left\{\begin{array}{l}
\dot{x}=P_{n}(x, y)=\sum_{0 \leq i+j \leq n} a_{i j} x^{i} y^{j} \\
\dot{y}=Q_{n}(x, y)=\sum_{0 \leq i+j \leq n} b_{i j} x^{i} y^{j}
\end{array}, a_{i j}, b_{i j} \in \mathbb{R}, x, y \in \mathbb{R}\right.
$$

Analogy

- Method of continuous variation of the coefficients
- Algebraic Ovals - Theorem of Harnack
- Limit cycles (transcendental) - Finiteness of the Hilbert numbers $\mathcal{H}(n)$ far from complete

Some known results

- $\mathcal{H}(2) \geq 4$ [1979, Shi, Chen and Wang]
- $\mathcal{H}(3) \geq 12$ [2005, Yu and Han]
- $\mathcal{H}(4) \geq 22$ [2005, Christopher]
- $\mathcal{H}(n) \geq k n^{2} \ln n$ for some constant k [1995, Christopher and Lloyd]
- $\mathcal{H}(n) \geq \frac{1}{4}(n+1)^{2}\left(1.442695 \ln (n+1)-\frac{1}{6}\right)+n-\frac{2}{3}[2003, \mathrm{~J}$. Li]

Some known results

- $\mathcal{H}(2) \geq 4$ [1979, Shi, Chen and Wang]
- $\mathcal{H}(3) \geq 12$ [2005, Yu and Han]
- $\mathcal{H}(4) \geq 22$ [2005, Christopher]
- $\mathcal{H}(n) \geq k n^{2} \ln n$ for some constant k [1995, Christopher and Lloyd]
- $\mathcal{H}(n) \geq \frac{1}{4}(n+1)^{2}\left(1.442695 \ln (n+1)-\frac{1}{6}\right)+n-\frac{2}{3}[2003, \mathrm{~J}$. Li]
- Individual finiteness
- 1923 Dulac
- 1985 Bamon ($n=2$)
- 1990s Ilyashenko and Ecalle

Some known results

- $\mathcal{H}(2) \geq 4$ [1979, Shi, Chen and Wang]
- $\mathcal{H}(3) \geq 12$ [2005, Yu and Han]
- $\mathcal{H}(4) \geq 22$ [2005, Christopher]
- $\mathcal{H}(n) \geq k n^{2} \ln n$ for some constant k [1995, Christopher and Lloyd]
- $\mathcal{H}(n) \geq \frac{1}{4}(n+1)^{2}\left(1.442695 \ln (n+1)-\frac{1}{6}\right)+n-\frac{2}{3}[2003, \mathrm{~J}$. Li]
- Individual finiteness
- 1923 Dulac
- 1985 Bamon ($n=2$)
- 1990s Ilyashenko and Ecalle
- Uniform finiteness
- By compactification of phase and parameter space
- Roussarie reduction to prove local finite cyclicity of limit periodic sets
de Barcelona

Setting and notations

- $X_{H} \leftrightarrow\left\{\begin{array}{c}\dot{x}=\frac{\partial H}{\partial y}(x, y) \\ \dot{y}=-\frac{\partial H}{\partial x}(x, y)\end{array}\right.$, where H is polynomial of degree $n+1$

Setting and notations

- $X_{H} \leftrightarrow\left\{\begin{array}{c}\dot{x}=\frac{\partial H}{\partial y}(x, y) \\ \dot{y}=-\frac{\partial H}{\partial x}(x, y)\end{array}\right.$, where H is polynomial of degree $n+1$
- period annulus
- $\gamma(h) \equiv\left\{(x, y) \in \mathbf{R}^{2}: H(x, y)=h\right\}$

Formulation of weak H16P for limit cycles

- $X=X_{H}+$ 'polynomial perturbation'
- Weakened Hilbert's 16th Problem
- Tangential Hilbert's 16th Problem
- Infinitesimal Hilbert's 16th Problem

Formulation of weak H16P for limit cycles

- $X=X_{H}+$ 'polynomial perturbation'
- Weakened Hilbert's 16th Problem
(1) Determine $L C(n, H)=\sup \left\{\right.$ number of limit cycles of X_{λ} that bifurcate from the period annulus of $\left.X_{H}\right\}$, where the sup is taken over all polynomial vector fields X_{λ} of degree n for which $X_{\lambda_{0}}=X_{H}$.

Formulation of weak H16P for limit cycles

- $X=X_{H}+$ 'polynomial perturbation'
- Weakened Hilbert's 16th Problem
(1) Determine $L C(n, H)=\sup \left\{\right.$ number of limit cycles of X_{λ} that bifurcate from the period annulus of $\left.X_{H}\right\}$, where the sup is taken over all polynomial vector fields X_{λ} of degree n for which $X_{\lambda_{0}}=X_{H}$.
(2) Determine $L C(n)=\sup \{L C(n, H): H$ generic polynomial of degree $n+1\}$

Associated Abelian integral

- $X_{\varepsilon}=X_{H}+\varepsilon Y_{\varepsilon} \leftrightarrow \omega=d H+\varepsilon \omega_{\varepsilon}$

Associated Abelian integral

- $X_{\varepsilon}=X_{H}+\varepsilon Y_{\varepsilon} \leftrightarrow \omega=d H+\varepsilon \omega_{\varepsilon}$
- Define the Abelian integral

$$
I(h)=\int_{\gamma(h)} \omega_{0} .
$$

Associated Abelian integral

- $X_{\varepsilon}=X_{H}+\varepsilon Y_{\varepsilon} \leftrightarrow \omega=d H+\varepsilon \omega_{\varepsilon}$
- Define the Abelian integral

$$
I(h)=\int_{\gamma(h)} \omega_{0} .
$$

- Abelian integral is the integral of a rational 1-form along an algebraic oval

Formulation of weak H16P for zeroes of associated Abelian integral

(1) Determine
$Z(n, H)=\sup \left\{\right.$ number of zeroes of $I(h)$ where $\left.h \in\left[0, h_{0}\right]\right\}$, where the sup is taken over all polynomial 1-forms ω_{0} of degree $\leq n$

Formulation of weak H16P for zeroes of associated Abelian integral

(1) Determine
$Z(n, H)=\sup \left\{\right.$ number of zeroes of $I(h)$ where $\left.h \in\left[0, h_{0}\right]\right\}$, where the sup is taken over all polynomial 1 -forms ω_{0} of degree $\leq n$
(2) Determine
$Z(n)=\sup \{Z(n, H): H$ generic polynomial of degree $n+1\}$

Relation between \mathcal{H} and the weakened Hilbert's numbers $L C$ and Z

- $\mathcal{H}(n) \geq L C(n)$

Relation between \mathcal{H} and the weakened Hilbert's numbers $L C$ and Z

- $\mathcal{H}(n) \geq L C(n)$
- $L C(n, H) \geq Z(n, H)$.
- $\mathcal{H}(n) \geq L C(n) \geq Z(n)$.

Relation between \mathcal{H} and the weakened Hilbert's numbers $L C$ and Z

- $\mathcal{H}(n) \geq L C(n)$
- $L C(n, H) \geq Z(n, H)$.
- $\mathcal{H}(n) \geq L C(n) \geq Z(n)$.
- $\frac{n(n+1)}{2}-1 \leq Z(n)<\infty$ [llyashenko - Varchenko and Khovanskii]

Relation between \mathcal{H} and the weakened Hilbert's numbers $L C$ and Z

- $\mathcal{H}(n) \geq L C(n)$
- $L C(n, H) \geq Z(n, H)$.
- $\mathcal{H}(n) \geq L C(n) \geq Z(n)$.
- $\frac{n(n+1)}{2}-1 \leq Z(n)<\infty$ [Ilyashenko - Varchenko and Khovanskii]
- $Z(2)=2$ [Gavrilov]

Relation between \mathcal{H} and the weakened Hilbert's numbers $L C$ and Z

- $\mathcal{H}(n) \geq L C(n)$
- $L C(n, H) \geq Z(n, H)$.
- $\mathcal{H}(n) \geq L C(n) \geq Z(n)$.
- $\frac{n(n+1)}{2}-1 \leq Z(n)<\infty$ [llyashenko - Varchenko and Khovanskii]
- $Z(2)=2$ [Gavrilov]
- Conjecture: $Z(n)=\frac{n(n+1)}{2}-1$

Limit cycles and Abelian integral

- Displacement map:

$$
\delta(h, \varepsilon)=P(h, \varepsilon)-h=\int_{\gamma_{\varepsilon}(h)} \mathrm{d} H
$$

where h the value of the Hamiltonian and ε small

Limit cycles and Abelian integral

- Displacement map:

$$
\delta(h, \varepsilon)=P(h, \varepsilon)-h=\int_{\gamma_{\varepsilon}(h)} \mathrm{d} H
$$

where h the value of the Hamiltonian and ε small

- For h in the interior of a period annulus:

$$
\begin{aligned}
\delta(h, \varepsilon) & =\varepsilon[I(h)+\varepsilon \varphi(h, \varepsilon)] \\
\varphi(h, \varepsilon) & =O(\varepsilon), \varepsilon \rightarrow 0
\end{aligned}
$$

Weak Hilbert's 16th Problem for Abelian integrals

Theorem (Pontryagin)

Suppose that I (h) is not identically zero for $h \in(a, b)$, then the following statements hold:

- If X_{ε} has a limit cycle bifurcating from $\gamma_{h^{*}}$, then I $\left(h^{*}\right)=0$

Weak Hilbert's 16th Problem for Abelian integrals

Theorem (Pontryagin)

Suppose that $I(h)$ is not identically zero for $h \in(a, b)$, then the following statements hold:

- If X_{ε} has a limit cycle bifurcating from $\gamma_{h^{*}}$, then I $\left(h^{*}\right)=0$
- If there exists an $h^{*} \in(a, b)$ such that $I\left(h^{*}\right)=0$ and $I^{\prime}\left(h^{*}\right) \neq 0$, then X_{ε} has a unique limit cycle bifurcating from $\gamma\left(h^{*}\right)$; moreover this limit cycle is hyperbolic.

Weak Hilbert's 16th Problem for Abelian integrals

Theorem (Pontryagin)

Suppose that I (h) is not identically zero for $h \in(a, b)$, then the following statements hold:

- If X_{ε} has a limit cycle bifurcating from $\gamma_{h^{*}}$, then I $\left(h^{*}\right)=0$
- If there exists an $h^{*} \in(a, b)$ such that $I\left(h^{*}\right)=0$ and $I^{\prime}\left(h^{*}\right) \neq 0$, then X_{ε} has a unique limit cycle bifurcating from $\gamma\left(h^{*}\right)$; moreover this limit cycle is hyperbolic.
- If there exists an $h^{*} \in(a, b)$ such that
$I\left(h^{*}\right)=I^{\prime}\left(h^{*}\right)=\ldots=I^{(k-1)}\left(h^{*}\right)=0$ and $I^{(k)}\left(h^{*}\right) \neq 0$, then X_{ε} has at most k limit cycles bifurcating from $\gamma\left(h^{*}\right)$, taking into account the multiplicity of the limit cycles.

Example

- Van der Pol equation $x^{\prime \prime}+\varepsilon\left(x^{2}-1\right) x^{\prime}+x=0$,

$$
x^{\prime}=y, y^{\prime}=-x+\varepsilon\left(1-x^{2}\right) y
$$

- For $\varepsilon=0$: Hamiltonian system with $\gamma(h)=\left\{x^{2}+y^{2}=h, h>0\right\}$

Example

- Van der Pol equation $x^{\prime \prime}+\varepsilon\left(x^{2}-1\right) x^{\prime}+x=0$,

$$
x^{\prime}=y, y^{\prime}=-x+\varepsilon\left(1-x^{2}\right) y
$$

- For $\varepsilon=0$: Hamiltonian system with $\gamma(h)=\left\{x^{2}+y^{2}=h, h>0\right\}$
- $I(h)=-\int_{\gamma(h)}\left(1-x^{2}\right) y d x=\int_{0}^{2 \pi}\left(1-h \cos ^{2} \theta\right) \sin ^{2} \theta \mathrm{~d} \theta=$ $\pi h\left(\frac{h}{4}-1\right)$

Example

- Van der Pol equation $x^{\prime \prime}+\varepsilon\left(x^{2}-1\right) x^{\prime}+x=0$,

$$
x^{\prime}=y, y^{\prime}=-x+\varepsilon\left(1-x^{2}\right) y
$$

- For $\varepsilon=0$: Hamiltonian system with $\gamma(h)=\left\{x^{2}+y^{2}=h, h>0\right\}$
- $I(h)=-\int_{\gamma(h)}\left(1-x^{2}\right) y d x=\int_{0}^{2 \pi}\left(1-h \cos ^{2} \theta\right) \sin ^{2} \theta \mathrm{~d} \theta=$ $\pi h\left(\frac{h}{4}-1\right)$
- $h=0$ corresponds to the singularity of X_{H}
- $h=4$ corresponds to the periodic orbit $x^{2}+y^{2}=4$; unique and hyperbolic

Melnikov functions

- I (h) is also called first order Melnikov function

Melnikov functions

- I (h) is also called first order Melnikov function
- If $\exists k \geq 1$ such that

$$
\delta(h, \varepsilon)=\varepsilon^{k} M_{k}(\varepsilon)+O\left(\varepsilon^{k+1}\right), \varepsilon \rightarrow 0 .
$$

- M_{k} is called the k th order Melnikov function (in general not Abelian integral)

Melnikov functions

- I (h) is also called first order Melnikov function
- If $\exists k \geq 1$ such that

$$
\delta(h, \varepsilon)=\varepsilon^{k} M_{k}(\varepsilon)+O\left(\varepsilon^{k+1}\right), \varepsilon \rightarrow 0 .
$$

- M_{k} is called the k th order Melnikov function (in general not Abelian integral)
- Theorem of Pontryagin holds when I is replaced by M_{k} in case analytic

Melnikov functions

- I (h) is also called first order Melnikov function
- If $\exists k \geq 1$ such that

$$
\delta(h, \varepsilon)=\varepsilon^{k} M_{k}(\varepsilon)+O\left(\varepsilon^{k+1}\right), \varepsilon \rightarrow 0 .
$$

- M_{k} is called the k th order Melnikov function (in general not Abelian integral)
- Theorem of Pontryagin holds when I is replaced by M_{k} in case analytic
- If δ and M_{k} analytic, then $M_{k} \equiv 0, \forall k \Longrightarrow X_{\varepsilon}$ integrable vector field

Algorithm to compute Melnikov functions

Definition

H satisfies the condition (*) if for any analytic 1-form ω holds the following:

$$
\int_{\gamma(h)} \omega \equiv 0, h \in \sigma
$$

if and only if $\omega=\mathrm{d} R+g \mathrm{~d} H$, for some analytic functions g, R

Algorithm to compute Melnikov functions

Definition

H satisfies the condition $(*)$ if for any analytic 1-form ω holds the following:

$$
\int_{\gamma(h)} \omega \equiv 0, h \in \sigma
$$

if and only if $\omega=\mathrm{d} R+g \mathrm{~d} H$, for some analytic functions g, R

Lemma

If H satisfies the condition $(*): M_{j} \equiv 0, \forall 1 \leq j \leq k-1$, then there exist $q_{1}, \ldots, q_{k}, R_{1}, \ldots, R_{k}$ such that
$\omega=q_{1} d H+d R_{1}, q_{1}=q_{2} d H+d R_{2}, \ldots, q_{k-1} \omega=q_{k} d H+d R_{k}$ and

$$
M_{k}(h)=\int_{\gamma(h)} q_{k} \omega
$$

where ω_{i} is defined by $\omega_{\varepsilon}=d H+\varepsilon \omega_{1}+\varepsilon^{2} \omega_{2}+\ldots+\varepsilon^{k} w_{k}+o\left(\varepsilon^{k}\right), \varepsilon \rightarrow 0$.

Condition (*)

- [Ilyashenko, 1969] $H(x, y)=y^{2} / 2+P(x)$ has $(\operatorname{deg}(P)-1)^{2}$ distinct critical points

Condition (*)

- [Ilyashenko, 1969] $H(x, y)=y^{2} / 2+P(x)$ has $(\operatorname{deg}(P)-1)^{2}$ distinct critical points
- [Françoise, 1996] $H(x, y)=x^{2}+y^{2}$

Condition (*)

- [Ilyashenko, 1969] $H(x, y)=y^{2} / 2+P(x)$ has $(\operatorname{deg}(P)-1)^{2}$ distinct critical points
- [Françoise, 1996] $H(x, y)=x^{2}+y^{2}$
- [Gavrilov, 1998] $H(x, y)=y^{2} / 2+P(x)$ has $(\operatorname{deg}(P)-1)^{2}$ distinct critical points H semi-weighted Morse polynomial

Condition (*)

- [Ilyashenko, 1969] $H(x, y)=y^{2} / 2+P(x)$ has $(\operatorname{deg}(P)-1)^{2}$ distinct critical points
- [Françoise, 1996] $H(x, y)=x^{2}+y^{2}$
- [Gavrilov, 1998] $H(x, y)=y^{2} / 2+P(x)$ has $(\operatorname{deg}(P)-1)^{2}$ distinct critical points H semi-weighted Morse polynomial
- [Gavrilov, 1998] H semi-weighted Morse polynomial, family $(\gamma(h))$ surrounds only 1 critical point of H

Study AI related to Harmonic oscillator

Elliptic Hamiltonian $H(x, y)=y^{2} / 2+P_{2}(x, y)$ [lliev]

Study AI related to Harmonic oscillator

Elliptic Hamiltonian $H(x, y)=y^{2} / 2+P_{2}(x, y)$ [lliev]

Lemma

If ω is a polynomial 1 -form of degree n, then

$$
\int_{\gamma\left(h^{2}\right)} \omega=h^{2} Q_{n-1}(h),
$$

for a polynomial $Q_{n-1}(h)$ of degree $n-1$ with $Q_{n-1}(h)=Q_{n-1}(-h)$

Study AI related to Harmonic oscillator

Elliptic Hamiltonian $H(x, y)=y^{2} / 2+P_{2}(x, y)$ [lliev]

Lemma

If ω is a polynomial 1-form of degree n, then

$$
\int_{\gamma\left(h^{2}\right)} \omega=h^{2} Q_{n-1}(h),
$$

for a polynomial $Q_{n-1}(h)$ of degree $n-1$ with $Q_{n-1}(h)=Q_{n-1}(-h)$

Corollary

$I(h)$ has at most $(n-1) / 2$ zeroes except the trivial zero $h=0$

Study AI related to Bogdanov-Takens codimension 2

Elliptic Hamiltonian $H(x, y)=y^{2} / 2-x^{3} / 3+x$ [Petrov]

Study AI related to Bogdanov-Takens codimension 2

Elliptic Hamiltonian $H(x, y)=y^{2} / 2-x^{3} / 3+x$ [Petrov]

- $\int_{\gamma(h)} \omega=\int_{\gamma(h)} p_{k}(x, h) y d x$

Study AI related to Bogdanov-Takens codimension 2

Elliptic Hamiltonian $H(x, y)=y^{2} / 2-x^{3} / 3+x$ [Petrov]

- $\int_{\gamma(h)} \omega=\int_{\gamma(h)} p_{k}(x, h) y d x$
- Define $I_{j}(h)=\int_{\gamma(h)} x^{k} y d x$
- $0 \equiv d H=\left(1-x^{2}\right) d x+y d y \Longrightarrow\left(1-x^{2}\right) y d x+y^{2} d y \equiv 0 \Longrightarrow$ $I_{0}(h) \equiv I_{2}(h)$
- $(2 k+9) I_{k+2}(h)-3(2 k+3) I_{k}(h)+6 k h I_{k-1}(h)=0$, where $k \geq 1$

Universitar Autonom
de Barcelona

Study AI related to Bogdanov-Takens codimension 2

Elliptic Hamiltonian $H(x, y)=y^{2} / 2-x^{3} / 3+x$ [Petrov]

- $\int_{\gamma(h)} \omega=\int_{\gamma(h)} p_{k}(x, h) y d x$
- Define $I_{j}(h)=\int_{\gamma(h)} x^{k} y d x$
- $0 \equiv d H=\left(1-x^{2}\right) d x+y d y \Longrightarrow\left(1-x^{2}\right) y d x+y^{2} d y \equiv 0 \Longrightarrow$ $I_{0}(h) \equiv I_{2}(h)$
- $(2 k+9) I_{k+2}(h)-3(2 k+3) I_{k}(h)+6 k h I_{k-1}(h)=0$, where $k \geq 1$
- $I(h)=Q_{0}(h) I_{0}(h)+Q_{1}(h) I_{1}(h)$, where $Q_{0}(h)$ and Q_{1} are polynomials of degree $\leq n_{0} \equiv[(n-1) / 2]$ resp. $n_{1} \equiv([n / 2]-1)$.

Study AI related to Bogdanov-Takens codimension 2

Elliptic Hamiltonian $H(x, y)=y^{2} / 2-x^{3} / 3+x$ [Petrov]

- $\int_{\gamma(h)} \omega=\int_{\gamma(h)} p_{k}(x, h) y d x$
- Define $I_{j}(h)=\int_{\gamma(h)} x^{k} y d x$
- $0 \equiv d H=\left(1-x^{2}\right) d x+y d y \Longrightarrow\left(1-x^{2}\right) y d x+y^{2} d y \equiv 0 \Longrightarrow$ $I_{0}(h) \equiv I_{2}(h)$
- $(2 k+9) I_{k+2}(h)-3(2 k+3) I_{k}(h)+6 k h I_{k-1}(h)=0$, where $k \geq 1$
- $I(h)=Q_{0}(h) I_{0}(h)+Q_{1}(h) I_{1}(h)$, where $Q_{0}(h)$ and Q_{1} are polynomials of degree $\leq n_{0} \equiv[(n-1) / 2]$ resp. $n_{1} \equiv([n / 2]-1)$.
- $I(h)$ can be expressed as linear combination of the $n=n_{0}+n_{1}+2$ independent functions

$$
\begin{aligned}
& I_{0}(h), h I_{0}(h), h^{2} I_{0}(h), \ldots, h^{n_{0}} I_{0}(h), \\
& I_{1}(h), h I_{1}(h), h^{2} I_{1}(h), \ldots, h^{n_{1}} I_{1}(h),
\end{aligned}
$$

Study AI related to Bogdanov-Takens codimension 2

Elliptic Hamiltonian $H(x, y)=y^{2} / 2-x^{3} / 3+x$ [Petrov]

- $\int_{\gamma(h)} \omega=\int_{\gamma(h)} p_{k}(x, h) y d x$
- Define $I_{j}(h)=\int_{\gamma(h)} x^{k} y d x$
- $0 \equiv d H=\left(1-x^{2}\right) d x+y d y \Longrightarrow\left(1-x^{2}\right) y d x+y^{2} d y \equiv 0 \Longrightarrow$ $I_{0}(h) \equiv I_{2}(h)$
- $(2 k+9) I_{k+2}(h)-3(2 k+3) I_{k}(h)+6 k h I_{k-1}(h)=0$, where $k \geq 1$
- $I(h)=Q_{0}(h) I_{0}(h)+Q_{1}(h) I_{1}(h)$, where $Q_{0}(h)$ and Q_{1} are polynomials of degree $\leq n_{0} \equiv[(n-1) / 2]$ resp. $n_{1} \equiv([n / 2]-1)$.
- $I(h)$ can be expressed as linear combination of the $n=n_{0}+n_{1}+2$ independent functions

$$
\begin{aligned}
& I_{0}(h), h I_{0}(h), h^{2} I_{0}(h), \ldots, h^{n_{0}} I_{0}(h), \\
& I_{1}(h), h I_{1}(h), h^{2} I_{1}(h), \ldots, h^{n_{1}} I_{1}(h),
\end{aligned}
$$

- Any non-trivial I_{h} has at most n zeroes; moreover there exists a 1 -form ω such that $I(h)$ has exactly $(n-1)$ zeroes

Chebychev systems

Definition

An n-tuple of smooth functions $J_{0}, J_{1}, \ldots, J_{n-1}$ defined on a closed interval $\left(h_{0}, h_{1}\right)$ is said to be a Chebychev system if every non-linear combination of the n functions has at most $n-1$ zeroes in $\left(h_{0}, h_{1}\right)$ counting their multiplicity.

Chebychev systems

Definition

An n-tuple of smooth functions $J_{0}, J_{1}, \ldots, J_{n-1}$ defined on a closed interval $\left(h_{0}, h_{1}\right)$ is said to be a Chebychev system if every non-linear combination of the n functions has at most $n-1$ zeroes in $\left(h_{0}, h_{1}\right)$ counting their multiplicity.

Lemma

The bifurcation diagram of zeroes of a linear combination

$$
\sum_{i=0}^{n-1} \alpha_{i} J_{i}
$$

with respect to $\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)$ is topologically equivalent to the one of a polynomial of degree $n-1$.

Chebychev systems

Definition

An n-tuple of smooth functions $J_{0}, J_{1}, \ldots, J_{n-1}$ defined on a closed interval $\left(h_{0}, h_{1}\right)$ is said to be a Chebychev system if every non-linear combination of the n functions has at most $n-1$ zeroes in $\left(h_{0}, h_{1}\right)$ counting their multiplicity.

Lemma

The bifurcation diagram of zeroes of a linear combination

$$
\sum_{i=0}^{n-1} \alpha_{i} J_{i}
$$

with respect to $\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)$ is topologically equivalent to the one of a polynomial of degree $n-1$.

- Petrov used the argument principle on the complexification of I to UAB prove Chebychev property

Transfer result on Z to $L C$

Suppose $I(h) \neq 0$ and generic

- endpoints of finite period annulus

Transfer result on Z to $L C$

Suppose $I(h) \neq 0$ and generic

- endpoints of finite period annulus
- center point or periodic orbit: 1-1 transfer

Transfer result on Z to $L C$

Suppose $I(h) \neq 0$ and generic

- endpoints of finite period annulus
- center point or periodic orbit: 1-1 transfer
- saddle loop: 1-1 transfer

Transfer result on Z to $L C$

Suppose $I(h) \neq 0$ and generic

- endpoints of finite period annulus
- center point or periodic orbit: 1-1 transfer
- saddle loop: 1-1 transfer
- heteroclinic saddle loop: more limit cycles than zeroes of the Abelian integral
* No 1-1 transfer zeroes of AI and limit cycles
* Some transfer is possible [C, Dumortier, Roussarie and Luca, 2005, 2007, 2009; Gavrilov, 2010]

Transfer result on Z to $L C$

Suppose $I(h) \neq 0$ and generic

- endpoints of finite period annulus
- center point or periodic orbit: 1-1 transfer
- saddle loop: 1-1 transfer
- heteroclinic saddle loop: more limit cycles than zeroes of the Abelian integral
\star No 1-1 transfer zeroes of Al and limit cycles
* Some transfer is possible [C, Dumortier, Roussarie and Luca, 2005, 2007, 2009; Gavrilov, 2010]
- unbounded period annulus: phenomenon of limit cycles that bifurcate from infinity

Transfer result on Z to $L C$

Suppose $I(h) \neq 0$ and generic

- endpoints of finite period annulus
- center point or periodic orbit: 1-1 transfer
- saddle loop: 1-1 transfer
- heteroclinic saddle loop: more limit cycles than zeroes of the Abelian integral
\star No 1-1 transfer zeroes of Al and limit cycles
* Some transfer is possible [C, Dumortier, Roussarie and Luca, 2005, 2007, 2009; Gavrilov, 2010]
- unbounded period annulus: phenomenon of limit cycles that bifurcate from infinity
- Conclusion 1-1 transfer compact annulus for which the boundary exists of singular point, periodic orbit or saddle loop

Limit cycle bifurcating from infinity

- Unfolding X_{ε} of the Harmonic oscillator [lliev]

$$
\begin{aligned}
& x^{\prime}=y+\varepsilon y^{2}+\varepsilon^{3}\left(-a x+(x+1 / 3 y)^{3}\right) \\
& y^{\prime}=-x+3 \varepsilon x^{2}, a>0, \varepsilon \rightarrow 0
\end{aligned}
$$

Limit cycle bifurcating from infinity

- Unfolding X_{ε} of the Harmonic oscillator [lliev]

$$
\begin{aligned}
& x^{\prime}=y+\varepsilon y^{2}+\varepsilon^{3}\left(-a x+(x+1 / 3 y)^{3}\right) \\
& y^{\prime}=-x+3 \varepsilon x^{2}, a>0, \varepsilon \rightarrow 0
\end{aligned}
$$

- Coordinate change $x=X+1 /(3 \varepsilon), y=Y+1 /(\varepsilon)$:

$$
X^{\prime}=Y+\varepsilon(\ldots), Y^{\prime}=-X-3 \varepsilon X^{2}
$$

Limit cycle bifurcating from infinity

- Unfolding X_{ε} of the Harmonic oscillator [lliev]

$$
\begin{aligned}
& x^{\prime}=y+\varepsilon y^{2}+\varepsilon^{3}\left(-a x+(x+1 / 3 y)^{3}\right) \\
& y^{\prime}=-x+3 \varepsilon x^{2}, a>0, \varepsilon \rightarrow 0
\end{aligned}
$$

- Coordinate change $x=X+1 /(3 \varepsilon), y=Y+1 /(\varepsilon)$:

$$
X^{\prime}=Y+\varepsilon(\ldots), Y^{\prime}=-X-3 \varepsilon X^{2}
$$

- $M_{1}=M_{2} \equiv 0$

Limit cycle bifurcating from infinity

- Unfolding X_{ε} of the Harmonic oscillator [lliev]

$$
\begin{aligned}
& x^{\prime}=y+\varepsilon y^{2}+\varepsilon^{3}\left(-a x+(x+1 / 3 y)^{3}\right) \\
& y^{\prime}=-x+3 \varepsilon x^{2}, a>0, \varepsilon \rightarrow 0
\end{aligned}
$$

- Coordinate change $x=X+1 /(3 \varepsilon), y=Y+1 /(\varepsilon)$:

$$
X^{\prime}=Y+\varepsilon(\ldots), Y^{\prime}=-X-3 \varepsilon X^{2}
$$

- $M_{1}=M_{2} \equiv 0$
- $M_{3}(h)=5 \pi h / 18(h-18 a / 5)$
de Barcelona

Limit cycle bifurcating from infinity

- Unfolding X_{ε} of the Harmonic oscillator [lliev]

$$
\begin{aligned}
& x^{\prime}=y+\varepsilon y^{2}+\varepsilon^{3}\left(-a x+(x+1 / 3 y)^{3}\right) \\
& y^{\prime}=-x+3 \varepsilon x^{2}, a>0, \varepsilon \rightarrow 0
\end{aligned}
$$

- Coordinate change $x=X+1 /(3 \varepsilon), y=Y+1 /(\varepsilon)$:

$$
X^{\prime}=Y+\varepsilon(\ldots), Y^{\prime}=-X-3 \varepsilon X^{2}
$$

- $M_{1}=M_{2} \equiv 0$
- $M_{3}(h)=5 \pi h / 18(h-18 a / 5)$
- $M_{3}(h)=0$ and $\frac{d M_{3}}{d h}(18 a / 5)=\pi a>0$
de Barcelona

Limit cycle bifurcating from infinity

- Unfolding X_{ε} of the Harmonic oscillator [lliev]

$$
\begin{aligned}
& x^{\prime}=y+\varepsilon y^{2}+\varepsilon^{3}\left(-a x+(x+1 / 3 y)^{3}\right) \\
& y^{\prime}=-x+3 \varepsilon x^{2}, a>0, \varepsilon \rightarrow 0
\end{aligned}
$$

- Coordinate change $x=X+1 /(3 \varepsilon), y=Y+1 /(\varepsilon)$:

$$
X^{\prime}=Y+\varepsilon(\ldots), Y^{\prime}=-X-3 \varepsilon X^{2}
$$

- $M_{1}=M_{2} \equiv 0$
- $M_{3}(h)=5 \pi h / 18(h-18 a / 5)$
- $M_{3}(h)=0$ and $\frac{d M_{3}}{d h}(18 a / 5)=\pi a>0$
- In original coordinates: for all $\varepsilon>0$ there exists a unique limit cycle of X_{ε} approaching the circle

$$
(x-1 /(3 \varepsilon))^{2}+(y+1 / \varepsilon)^{2}=18 a / 5
$$

de Barcelona

Upper bound for limit cycles

Theorem (Upper bound - Dumortier, Roussarie)
Under extra genericity conditions (AI) and (C)

$$
\begin{aligned}
\operatorname{CycI}\left(X_{\lambda},\left(\Gamma,\left(\nu_{0}, 0\right)\right)\right) & \leq 2 k-1+\frac{k(k-1)}{2} \text { if } \operatorname{codimI}_{\nu}=2 k-1, \text { and } \\
& \leq 2 k+\frac{k(k-1)}{2} \text { if } \operatorname{codimI}_{\nu}=2 k .
\end{aligned}
$$

I_{ν}	1	2	3	4	5	6	7	8	9	10	11	12	$13 \cdots$
$X_{(\nu, \varepsilon)}$	1	2	4	5	8	9	13	14	19	20	26	27	$34 \cdots$

Theorem (Dumortier, Roussarie)

Swallowtail bifurcation of limit cycles in such a generic codim 4 unfolding

Upper bound for limit cycles

Theorem (Upper bound - Dumortier, Roussarie)
Under extra genericity conditions (AI) and (C)

$$
\begin{aligned}
\operatorname{Cycl}\left(X_{\lambda},\left(\Gamma,\left(\nu_{0}, 0\right)\right)\right) & \leq 2 k-1+\frac{k(k-1)}{2} \text { if } \operatorname{codimI}_{\nu}=2 k-1, \text { and } \\
& \leq 2 k+\frac{k(k-1)}{2} \text { if } \operatorname{codimI}_{\nu}=2 k .
\end{aligned}
$$

I_{ν}	1	2	3	4	5	6	7	8	9	10	11	12	$13 \cdots$
$X_{(\nu, \varepsilon)}$	1	2	4	5	8	9	13	14	19	20	26	27	$34 \cdots$

Theorem (Dumortier, Roussarie)

Swallowtail bifurcation of limit cycles in such a generic codim 4 unfolding

Corollary

\exists an alien limit cycle in such a generic codim 4 unfolding

Upper bound for limit cycles

Theorem (Upper bound - Dumortier, Roussarie)
Under extra genericity conditions (AI) and (C)

$$
\begin{aligned}
\operatorname{Cycl}\left(X_{\lambda},\left(\Gamma,\left(\nu_{0}, 0\right)\right)\right) & \leq 2 k-1+\frac{k(k-1)}{2} \text { if } \operatorname{codimI}_{\nu}=2 k-1, \text { and } \\
& \leq 2 k+\frac{k(k-1)}{2} \text { if } \operatorname{codimI}_{\nu}=2 k .
\end{aligned}
$$

I_{ν}	1	2	3	4	5	6	7	8	9	10	11	12	$13 \cdots$
$X_{(\nu, \varepsilon)}$	1	2	4	5	8	9	13	14	19	20	26	27	$34 \cdots$

Theorem (Dumortier, Roussarie)

Swallowtail bifurcation of limit cycles in such a generic codim 4 unfolding

Corollary

\exists an alien limit cycle in such a generic codim 4 unfolding

Generic codimension 4 example

- Hamiltonian $H(x, y)=y\left(x^{2}+\frac{1}{12} y^{2}-1\right)$
- $X_{(\nu, \varepsilon)} \leftrightarrow$

$$
\left\{\begin{aligned}
\dot{x}= & 1-\frac{1}{4} y^{2}-x^{2} \\
& +\varepsilon\left(\nu_{3} x y+\nu_{4} x y^{2}+y\left(x^{2}+\frac{1}{12} y^{2}-1\right)\left(x-\frac{\sqrt{3} \pi}{8} x y\right)\right) \\
\dot{y}= & 2 x y+\varepsilon y\left(\nu_{1}+\nu_{2} x\right)
\end{aligned}\right.
$$

Genericity conditions (AI)- Abelian integral

- Abelian integral
$I(h, \nu)=p(\nu)+q(\nu) h \log h+r(\nu) h+s(\nu) h^{2} \log h+O\left(h^{2}\right), h \downarrow 0$,
where

$$
\begin{aligned}
& p(\nu)=-\sqrt{3} \pi \nu_{1}+8 \nu_{3}-3 \sqrt{3} \pi \nu_{4} \\
& q(\nu)=-\nu_{1} \\
& r(\nu)=a_{1} \nu_{1}-\sqrt{3} \pi \nu_{3}+12 \nu_{4} \\
& s(\nu)=a_{4} \nu_{1}+b_{4} \nu_{3}+c_{3} \nu_{4}-1
\end{aligned}
$$

for some $a_{1}, a_{4}, b_{4}, c_{4} \in \mathbb{R}$

Genericity conditions (AI)- Abelian integral

- Abelian integral
$I(h, \nu)=p(\nu)+q(\nu) h \log h+r(\nu) h+s(\nu) h^{2} \log h+O\left(h^{2}\right), h \downarrow 0$,
where

$$
\begin{aligned}
p(\nu) & =-\sqrt{3} \pi \nu_{1}+8 \nu_{3}-3 \sqrt{3} \pi \nu_{4} \\
q(\nu) & =-\nu_{1} \\
r(\nu) & =a_{1} \nu_{1}-\sqrt{3} \pi \nu_{3}+12 \nu_{4} \\
s(\nu) & =a_{4} \nu_{1}+b_{4} \nu_{3}+c_{3} \nu_{4}-1
\end{aligned}
$$

for some $a_{1}, a_{4}, b_{4}, c_{4} \in \mathbb{R}$

- $\alpha_{1}(\nu)=\frac{1}{2}\left(\nu_{1}-\nu_{2}\right)$.
- (AI) $\nu \mapsto\left(p(\nu), q(\nu), r(\nu), \alpha_{1}(\nu, 0)\right)$ is a local submersion at $\nu=\nu_{0}$

Codimension 4 extra genericity condition (C)

$\Delta=D_{2} \circ R_{2}-R_{1} \circ D_{1}=\varepsilon I_{\nu}+" O\left(\varepsilon^{2}\right) ", \varepsilon \rightarrow 0$
Expressed in apropriate normal form coordinates locally:

- (u, v) near s_{1}
- (z, w) near s_{2}
$R_{1}(v)=v+\varepsilon\left(-\beta_{1}(\nu, \varepsilon)+\gamma_{1} v+\eta_{1}(\nu, \varepsilon) v^{2}+O\left(v^{3}\right)\right), v \downarrow 0$.
$R_{2}(u)=u+\varepsilon\left(\eta_{2}(\nu, \varepsilon) u^{2}+O\left(u^{3}\right)\right), u \downarrow 0$
(C): $\eta_{2}(0) \neq 2 \eta_{1}(0)$

Limit cycle bifurcating from 2-saddle cycle

Theorem (Caubergh, Dumortier, Roussarie)

- C^{∞} Unfolding leaving 1 connection unbroken
- codimI ${ }_{\nu}=2 k-1$ and extra genericity condition

Limit cycle bifurcating from 2-saddle cycle

Theorem (Caubergh, Dumortier, Roussarie)

- C^{∞} Unfolding leaving 1 connection unbroken
- $\operatorname{codiml}_{\nu}=2 k-1$ and extra genericity condition
- normal forms near the saddle points s_{1} and s_{2} are linear and $r_{1} r_{2}=1$, for their ratios r_{1}, r_{2} of hyperbolicity; near s_{2},

$$
X_{(\nu, \varepsilon)} \leftrightarrow \begin{cases}\dot{z} & =-z \\ \dot{w} & =w(1+\varepsilon \alpha)\end{cases}
$$

Near s_{1},

$$
X_{(\nu, \varepsilon)} \leftrightarrow \begin{cases}\dot{x} & =x \\ \dot{y} & =-y(1+\varepsilon \alpha)\end{cases}
$$

Limit cycle bifurcating from 2-saddle cycle

Theorem (Caubergh, Dumortier, Roussarie)

- C^{∞} Unfolding leaving 1 connection unbroken
- codiml $\nu_{\nu}=2 k-1$ and extra genericity condition
- normal forms near the saddle points s_{1} and s_{2} are linear and $r_{1} r_{2}=1$, for their ratios r_{1}, r_{2} of hyperbolicity; near s_{2},

$$
X_{(\nu, \varepsilon)} \leftrightarrow \begin{cases}\dot{z} & =-z \\ \dot{w} & =w(1+\varepsilon \alpha)\end{cases}
$$

Near s_{1},

$$
X_{(\nu, \varepsilon)} \leftrightarrow \begin{cases}\dot{x} & =x \\ \dot{y} & =-y(1+\varepsilon \alpha)\end{cases}
$$

$\Rightarrow \exists(k-2)$ alien limit cycles.

