Formal averaging of periodic and quasi-periodic vector fields

Ander Murua Joint work with P. Chartier and J.M. Sanz-Serna
Universidad del Pais Vasco
Calatayud, DDays 2010

Example (Fermi-Pasta-Ulam type problem)

Hamiltonian system with Hamiltonian function

$$
\begin{aligned}
H(p, \bar{p}, q, \bar{q})= & \frac{1}{2}\left(p^{T} p+\bar{p}^{T} \bar{p}\right)+\frac{1}{2 \epsilon^{2}} q^{T} q+U(q, \bar{q}), \\
U(q, \bar{q})= & \frac{1}{4}\left(\left(\bar{q}_{1}-q_{1}\right)^{4}+\left(\bar{q}_{m}+q_{m}\right)^{4}\right) \\
& +\frac{1}{4} \sum_{j=1}^{m-1}\left(\bar{q}_{j+1}-q_{j+1}-\bar{q}_{j}-q_{j}\right)^{4} .
\end{aligned}
$$

We consider $m=3, \epsilon=1 / 100$, and initial values

$$
\bar{p}(0)=p(0)=\bar{q}(0)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), q(0)=\left(\begin{array}{l}
\epsilon \\
0 \\
0
\end{array}\right) .
$$

Example (Fermi-Pasta-Ulam time problem (cont.))

Solution for the component $q_{2}(t)$,

\qquad

Example (Fermi-Pasta-Ulam time problem (cont.))

Solution for the component $q_{2}(t)$,

and for $n=0,1,2,3, \ldots$,

$$
q_{2}(2 \pi \epsilon n)
$$

Example (Fermi-Pasta-Ulam time problem (cont.))

Solution for the component $q_{2}(t)$,

and for $n=0,1,2,3, \ldots$,

$$
q_{2}(2 \pi \epsilon n)
$$

Example (Fermi-Pasta-Ulam time problem (cont.))

Solution for the component $q_{2}(t)$,

and for $n=0,1,2,3, \ldots$,

$$
q_{2}(2 \pi \epsilon n), \quad \text { and } \quad q_{2}\left(\frac{\pi \epsilon}{2}+2 \pi \epsilon n\right)
$$

Consider a Hamiltonian system

$$
\frac{d}{d t} y=J^{-1} \nabla H(y ; \epsilon), \quad H(y ; \epsilon):=\epsilon^{-1} H_{F}(y)+H_{S}(y),
$$

Let $\varphi_{\tau}^{\epsilon}: \mathbb{R}^{2 d} \rightarrow \mathbb{R}^{2 d}$ be such that $\varphi_{t / \epsilon}^{\epsilon}$ is the t-flow of that system. Assume that φ_{τ}^{0} is (2π)-periodic.

Stroboscopic averaging

There exists $\begin{aligned} \mathcal{H}(Y ; \epsilon) & =\mathcal{H}_{0}(Y)+\epsilon \mathcal{H}_{1}(Y) \\ \frac{d}{d t} Y & =J^{-1} \nabla \mathcal{H}(Y ; \epsilon),\end{aligned}$
such that, $V(2 \pi e n)=y^{(2 \pi e n)}$ if $Y(0)=y^{\prime}(0)=y_{0}$.

Consider a Hamiltonian system

$$
\frac{d}{d t} y=J^{-1} \nabla H(y ; \epsilon), \quad H(y ; \epsilon):=\epsilon^{-1} H_{F}(y)+H_{S}(y)
$$

Let $\varphi_{\tau}^{\epsilon}: \mathbb{R}^{2 d} \rightarrow \mathbb{R}^{2 d}$ be such that $\varphi_{t / \epsilon}^{\epsilon}$ is the t-flow of that system. Assume that φ_{τ}^{0} is (2π)-periodic.

Stroboscopic averaging

There exists $\mathcal{H}(Y ; \epsilon)=\mathcal{H}_{0}(Y)+\epsilon \mathcal{H}_{1}(Y)+\epsilon^{2} \mathcal{H}_{2}(y)+\cdots$,

$$
\frac{d}{d t} Y=J^{-1} \nabla \mathcal{H}(Y ; \epsilon)
$$

such that, $Y(2 \pi \epsilon n)=y(2 \pi \epsilon n)$ if $Y(0)=y(0)=y_{0}$.

Example (Fermi-Pasta-Ulam type problem)

We consider

$$
\begin{aligned}
\tilde{\mathcal{H}}(Y, \epsilon) & :=\mathcal{H}_{0}(Y)+\epsilon^{2} \mathcal{H}_{2}(Y)+\epsilon^{4} \mathcal{H}_{4}(Y) \\
& =\mathcal{H}(Y ; \epsilon)+\mathcal{O}\left(\epsilon^{6}\right),
\end{aligned}
$$

and plot the variation $\tilde{\mathcal{H}}(y(t) ; \epsilon)-\tilde{\mathcal{H}}(y(0) ; \epsilon)$

Smooth invariant

Under the previous assumtions for

$$
\frac{d}{d t} y=J^{-1} \nabla H(y ; \epsilon), \quad H(y ; \epsilon):=\epsilon^{-1} H_{F}(y)+H_{S}(y),
$$

consider $\mathcal{H}(Y ; \epsilon)=\mathcal{H}_{0}(Y)+\epsilon \mathcal{H}_{1}(Y)+\epsilon^{2} \mathcal{H}_{2}(y)+\cdots$ as before, then $\mathcal{H}(y ; \epsilon)$ is a first integral of the original system.

Indeed, for $t_{n}=2 \pi \epsilon n, n=1,2, \ldots$

$$
H\left(Y\left(t_{n}\right) ; \epsilon\right)=H\left(y\left(t_{n}\right) ; \epsilon\right)=\text { Const }
$$

and by a interpolating argument, $H(Y(t) ; \epsilon)=$ Const, and thus

$$
\{H, \mathcal{H}\} \equiv 0 .
$$

Smooth invariant

Under the previous assumtions for

$$
\frac{d}{d t} y=J^{-1} \nabla H(y ; \epsilon), \quad H(y ; \epsilon):=\epsilon^{-1} H_{F}(y)+H_{S}(y)
$$

consider $\mathcal{H}(Y ; \epsilon)=\mathcal{H}_{0}(Y)+\epsilon \mathcal{H}_{1}(Y)+\epsilon^{2} \mathcal{H}_{2}(y)+\cdots$ as before, then $\mathcal{H}(y ; \epsilon)$ is a first integral of the original system.

Indeed, for $t_{n}=2 \pi \epsilon n, n=1,2, \ldots$

$$
H\left(Y\left(t_{n}\right) ; \epsilon\right)=H\left(y\left(t_{n}\right) ; \epsilon\right)=\text { Const }
$$

and by a interpolating argument, $H(Y(t) ; \epsilon)=$ Const, and thus

$$
\{H, \mathcal{H}\} \equiv 0 .
$$

Can this be generalized to the multi-frequency case?

Numerical integration of HOS with ϵ-independent time-steps

Integrate the smooth system

$$
\frac{d}{d t} Y=J^{-1} \nabla \mathcal{H}(Y ; \epsilon), \quad Y(0)=y_{0}
$$

instead of the highly oscillatory one. Different options

- Symbolic-numeric algorithms using explicit knowledge of \mathcal{H}
- Purely numerical schemes that try to approximate $Y(t)$ by using H as input (HMSM, SAM, ...).

Motivated by that, we aim at

- Obtaining formulae for $\mathcal{H}(Y ; \epsilon)$ and its solutions $Y(t)$
- Such formulae should be as explicit as possible and of universal character
- Knowledge about possible (formal) invariants of the original system.

Standard high order averaging [Bogoliubov and Mitropolski 1958,
 Perko 1969, Sanders, Verhulst, Murdock 2007]

Under suitable assumptions on the HOS

$$
\frac{d}{d t} y=f(y, t / \epsilon)
$$

there exists a formal $(2 \pi \epsilon)$-periodic change of variables $y=K(Y, t / \epsilon)$ that transforms the original HOS into the (averaged) autonomous equations

$$
\frac{d}{d t} Y=F(Y ; \epsilon):=F_{0}(Y)+\epsilon F_{1}(Y)+\epsilon^{2} F_{2}(Y)+\cdots
$$

The change of variables $y=K(Y, \tau)$ is not unique:

- Stroboscopic averaging: $K(Y, 0)=Y$, which implies

$$
Y(2 \pi \epsilon n)=y(2 \pi \epsilon n) \text { for all } n \in \mathbb{Z}
$$

- $\int_{0}^{2 \pi} K(Y, \tau) d \tau=Y$,

Autonomous form for stroboscopic averaging

Consider an autonomous system (in terms of slow time $\tau=t / \epsilon$),

$$
\frac{d}{d \tau} y=f_{F}(y)+\epsilon f_{S}(y)
$$

and denote $\varphi_{\tau}^{\epsilon}$ its τ-flow. Assume that $\varphi_{\tau}^{0}(y)$ is (2π)-periodic in τ.
The periodic change of variables $y=\varphi_{\tau}^{0}(x)$ leads to a system in standard form for periodic averaging

$$
\frac{d}{d \tau} x=\epsilon f(x, \tau), \quad f(x, \tau)=\frac{\partial}{\partial x} \varphi_{-\tau}^{0}(x) f_{S}\left(\varphi_{\tau}^{0}(x)\right)
$$

where $f(y, \tau)$ is (2π)-periodic in τ. In turn, a system in standard form can be written in autonomous form, with $y=(x, \theta) \in \mathbb{R} \times \mathbb{T}$, and

$$
\frac{d}{d \tau}\binom{x}{\theta}=\binom{0}{1}+\epsilon\binom{f(x, \theta)}{0}
$$

Recall that we consider an autonomous system

$$
\begin{equation*}
\frac{d}{d \tau} y=f_{F}(y)+\epsilon f_{S}(y) \tag{1}
\end{equation*}
$$

and denote $\varphi_{\tau}^{\epsilon}$ its τ-flow. $\left(\varphi_{\tau}^{0}(y)\right.$ is (2π)-periodic in τ.)

General idea for formal averaging

- Obtain a formal representation of the τ-flow $\varphi_{\tau}^{\epsilon}$ in the form $\varphi_{\tau}^{\epsilon}(y)=\Phi_{\tau, \tau}(y)$, where

$$
\Phi_{\tau, \theta}(y)=\varphi_{\theta}^{0}\left(y+\epsilon G_{1}(y, \tau, \theta)+\epsilon^{2} G_{2}(y, \tau, \theta)+\cdots\right)
$$

and each $G_{j}(y, \tau, \theta)$ is polynomial in τ and (2π)-periodic in θ.

- Under general assumptions, it holds $\forall(\tau, \theta),\left(\tau^{\prime}, \theta^{\prime}\right) \in \mathbb{R} \times \mathbb{T}$,

$$
\Phi_{\tau, \theta} \circ \Phi_{\tau^{\prime}, \theta^{\prime}}=\Phi_{\tau+\tau^{\prime}, \theta+\theta^{\prime}}(y)
$$

- In particular, both $\Phi_{\tau, 0}$ and $\Phi_{0, \tau}$ are flows of autonomous vector fields, the former a smooth near-to-identity map, and the later a periodic map.
- If both $f_{F}(y)$ and $f_{S}(y)$ are Hamiltonian, then $\Phi_{\tau, 0}$ and $\Phi_{0, \tau}$ are Hamiltonian flows (with Hamiltonian functions $\epsilon \mathcal{H}(y)$ and $\left.H_{F}(y)+\epsilon\left(H_{S}(y)-\mathcal{H}(y)\right)\right)$, and since they commute with the flow $\varphi_{\tau}^{\epsilon}=\Phi_{\tau, \tau}$, we have that $\left\{\mathcal{H}, H_{F}+\epsilon H_{S}\right\}=0$ (i.e., \mathcal{H} is a formal invariant of the system).
- The (stroboscopically) averaged ODE is

$$
\frac{d}{d \tau} Y=F(Y):=\left.\frac{d}{d \tau} \Phi_{\tau, 0}(Y)\right|_{\tau=0}, \quad Y(\tau)=\Phi_{\tau, 0}(Y(0))
$$

and the (2π)-periodic change of variables is

$$
\begin{aligned}
& y=K(Y, \tau):=\Phi_{0, \tau}(Y), \text { so that, if } Y(0)=y(0)=y_{0} \\
& y(\tau)=\varphi_{\tau}^{\epsilon}\left(y_{0}\right)=\Phi_{\tau, \tau}\left(y_{0}\right)=\Phi_{0, \tau}\left(\Phi_{\tau, 0}\left(y_{0}\right)\right)=K(Y(\tau), \tau)
\end{aligned}
$$

- The idea generalizes nicely to the quasiperiodic case!

Multifrequency case

Given $\omega \in \mathbb{R}^{d}$ non-resonant $\left(k \cdot \omega \neq 0\right.$ for all $\left.k \in \mathbb{Z}^{d} \backslash\{0\}\right)$,

$$
\frac{d}{d t} y=f(y, \omega t), \quad y(0)=y_{0}
$$

where $f(y, \theta)$ is

- smooth in y
- 2π-periodic in each component of $\theta \in \mathbb{R}^{d}$, with Fourier expansion

$$
f(y, \theta)=\sum_{k \in \mathbb{Z}^{d}} e^{i(k \cdot \theta)} f_{k}(y) .
$$

- The map f itself may depend on the frequencies ω but we do not reflect that in the notation.

High order averaging of quasi-periodic vector fields (Perko 1969)

Given the quasi-periodic vector field

$$
\frac{d}{d t} y=\epsilon f(y, \omega t)=\epsilon \sum_{k \in \mathbb{Z}^{d}} e^{i(k \cdot \omega) t} f_{k}(y)
$$

there exists a formal quasi-periodic change of variables $y=K(Y, \omega t)$ that transforms the QP system into

$$
\frac{d}{d t} Y=\epsilon F_{1}(Y)+\epsilon^{2} F_{2}(Y)+\cdots
$$

- The first term $F_{1}(y)$ is uniquely determined as

$$
F_{1}(y)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}} f(y, \theta) d \theta=f_{0}(y)
$$

- $K(Y, \theta)$ is not unique. Classical choice:

$$
\frac{1}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}} K(y, \theta) d \theta=y
$$

B-series expansion of solution of the QP system

For the solutions of $\dot{y}=\sum_{k} e^{i(k \cdot \omega) t} f_{k}(y)$,

$$
y(t)=y(0)+\sum_{u \in \mathbb{T}} \frac{\alpha_{u}(t)}{\sigma_{u}} \mathcal{F}_{u}(y(0))
$$

\mathbb{T} is the set of rooted trees labelled by $k \in \mathbb{Z}^{d}$, and for each $u \in \mathbb{T}$,

- the coefficients $\alpha_{u}(t)$ are linear combinations of $t^{j} e^{i(k \cdot \omega) t}$,
- the elementary differentials $\mathcal{F}_{u}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ are smooth maps,

B-series expansion of solution of the QP system

For the solutions of $\dot{y}=\sum_{k} e^{i(k \cdot \omega) t} f_{k}(y)$,

$$
y(t)=y(0)+\sum_{u \in \mathbb{T}} \frac{\alpha_{u}(t)}{\sigma_{u}} \mathcal{F}_{u}(y(0))
$$

\mathbb{T} is the set of rooted trees labelled by $k \in \mathbb{Z}^{d}$, and for each $u \in \mathbb{T}$,

- the coefficients $\alpha_{u}(t)$ are linear combinations of $t^{j} e^{i(k \cdot \omega) t}$,
- the elementary differentials $\mathcal{F}_{u}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ are smooth maps, ($\sigma_{u} \in \mathbb{Z}$ is a normalization factor.)

Elementary coefficients

B-series expansion of solution of the QP system

For the solutions of $\dot{y}=\sum_{k} e^{i(k \cdot \omega) t} f_{k}(y)$,

$$
y(t)=y(0)+\sum_{u \in \mathbb{T}} \frac{\alpha_{u}(t)}{\sigma_{u}} \mathcal{F}_{u}(y(0))
$$

\mathbb{T} is the set of rooted trees labelled by $k \in \mathbb{Z}^{d}$, and for each $u \in \mathbb{T}$,

- the coefficients $\alpha_{u}(t)$ are linear combinations of $t^{j} e^{i(k \cdot \omega) t}$,
- the elementary differentials $\mathcal{F}_{u}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ are smooth maps, ($\sigma_{u} \in \mathbb{Z}$ is a normalization factor.)

Elementary coefficients

$$
\alpha_{u}(t)=\int_{0}^{t} e^{i(k \cdot \omega) t^{\prime}} \alpha_{u_{1}}\left(t^{\prime}\right) \cdots \alpha_{u_{m}}\left(t^{\prime}\right) d t^{\prime}, \quad u=\left[u_{1} \cdots u_{m}\right]_{k}
$$

Examples for rooted trees with less than 4 vertices

u	$\mathcal{F}_{u}(y)$	$\alpha_{u}(t)$
(k)	$f_{k}(y)$	$\int_{0}^{t} e^{i(k \cdot \omega) t_{1}} d t_{1}$
$\begin{aligned} & \hline k \\ & 1 \\ & (m) \end{aligned}$	$f_{m}^{\prime}(y) f_{k}(y)$	$\int_{0}^{t} \int_{0}^{t_{2}} e^{i\left(k t_{1}+m t_{2}\right) \cdot \omega} d t_{1} d t_{2}$
	$f_{\ell}^{\prime}(y) f_{m}^{\prime}(y) f_{k}(y)$	$\int_{0}^{t} \int_{0}^{t_{3}} \int_{0}^{t_{2}} e^{i\left(k t_{1}+m t_{2}+\ell t_{3}\right) \cdot \omega} d t_{1} d t_{2} d t_{3}$
	$f_{\ell}^{\prime \prime}(y)\left(f_{m}(y), f_{k}(y)\right)$	$\int_{0}^{t} \int_{0}^{t_{2}} e^{i\left(k t_{1}+m t_{1}+\ell t_{2}\right) \cdot \omega} d t_{1} d t_{2}$

For each $u \in \mathbb{T}$,

Examples for rooted trees with less than 4 vertices

u	$\mathcal{F}_{u}(y)$	$\alpha_{u}(t)$
(k)	$f_{k}(y)$	$\int_{0}^{t} e^{i(k \cdot \omega) t_{1}} d t_{1}$
$\begin{aligned} & \text { (k } \\ & 1 \\ & m \end{aligned}$	$f_{m}^{\prime}(y) f_{k}(y)$	$\int_{0}^{t} \int_{0}^{t_{2}} e^{i\left(k t_{1}+m t_{2}\right) \cdot \omega} d t_{1} d t_{2}$
	$f_{\ell}^{\prime}(y) f_{m}^{\prime}(y) f_{k}(y)$	$\int_{0}^{t} \int_{0}^{t_{3}} \int_{0}^{t_{2}} e^{i\left(k t_{1}+m t_{2}+\ell t_{3}\right) \cdot \omega} d t_{1} d t_{2} d t_{3}$
	$f_{\ell}^{\prime \prime}(y)\left(f_{m}(y), f_{k}(y)\right)$	$\int_{0}^{t} \int_{0}^{t_{2}} e^{i\left(k t_{1}+m t_{1}+\ell t_{2}\right) \cdot \omega} d t_{1} d t_{2}$

For each $u \in \mathbb{T}$,

$$
\alpha_{u}(t)=\sum_{k \in \mathbb{Z}^{d}} \alpha_{u}^{k}(t) e^{i(k \cdot \omega) t}
$$

where each $\alpha_{u}^{k}(t)$ is a polynomial in t.

Averaging with B-series

There exist $\bar{\beta}_{u}, \bar{\alpha}_{u}(t), \kappa_{u}(\theta), u \in \mathbb{T},\left(\bar{\alpha}_{u}(t)\right.$ polynomial, $\kappa_{u}(\theta)$ (2π)-periodic) such that for any solution $y(t)$ of the QP system

$$
y(t)=K(Y(t), \omega t), \quad \frac{d}{d t} Y(t)=F(Y(t))
$$

where

$$
\begin{aligned}
F(Y) & =\sum_{u \in \mathbb{T}} \frac{\bar{\beta}_{u}}{\sigma_{u}} \mathcal{F}_{u}(Y), \\
Y(t) & =Y(0)+\sum_{u \in \mathbb{T}} \frac{\bar{\alpha}_{u}(t)}{\sigma_{u}} \mathcal{F}_{u}(Y(0)), \\
K(Y, \theta) & =Y+\sum_{u \in \mathbb{T}} \frac{\kappa_{u}(\theta)}{\sigma_{u}} \mathcal{F}_{u}(Y),
\end{aligned}
$$

That is, $\alpha(t)=\bar{\alpha}(t) * \kappa(t \omega)$ with $\frac{d}{d t} \bar{\alpha}(t)=\bar{\alpha}(t) * \bar{\beta}$.

Averaging with B-series

There exist $\bar{\beta}_{u}, \bar{\alpha}_{u}(t), \kappa_{u}(\theta), u \in \mathbb{T},\left(\bar{\alpha}_{u}(t)\right.$ polynomial, $\kappa_{u}(\theta)$ (2π)-periodic) such that for any solution $y(t)$ of the QP system

$$
y(t)=K(Y(t), \omega t), \quad \frac{d}{d t} Y(t)=F(Y(t))
$$

where

$$
\begin{aligned}
F(Y) & =\sum_{u \in \mathbb{T}} \frac{\bar{\beta}_{u}}{\sigma_{u}} \mathcal{F}_{u}(Y), \\
Y(t) & =Y(0)+\sum_{u \in \mathbb{T}} \frac{\bar{\alpha}_{u}(t)}{\sigma_{u}} \mathcal{F}_{u}(Y(0)), \\
K(Y, \theta) & =Y+\sum_{u \in \mathbb{T}} \frac{\kappa_{u}(\theta)}{\sigma_{u}} \mathcal{F}_{u}(Y),
\end{aligned}
$$

That is, $\alpha(t)=\bar{\alpha}(t) * \kappa(t \omega)$ with $\frac{d}{d t} \bar{\alpha}(t)=\bar{\alpha}(t) * \bar{\beta}$.

Observe that $\alpha(t)$ is such that

$$
\frac{d}{d t} \alpha(t)=\alpha(t) * \beta(\omega t), \quad \alpha(0)=\mathbb{1}
$$

where $\beta_{k}(\theta)=e^{i k \cdot \theta}$ and $\beta_{u}(\theta)=0$ if u has more than one vertices. Recall that, for each $u \in \mathbb{T}$,

$$
\alpha_{u}(t)=\sum_{k \in \mathbb{Z}^{d}} \alpha_{u}^{k}(t) e^{i(k \cdot \omega) t}
$$

where each $\alpha_{u}^{k}(t)$ is a polynomial in t. Consider now

$$
\gamma_{u}(t, \theta)=\sum_{k \in \mathbb{Z}^{d}} \alpha_{u}^{k}(t) e^{i(k \cdot \theta)}
$$

so that $\alpha(t)=\gamma(t, t \omega)$. It is not difficult to see that

$$
\left(\frac{\partial}{\partial t}+\omega \cdot \nabla_{\theta}\right) \gamma(t, \theta)=\gamma(t, \theta) * \beta(\theta), \quad \gamma(0,0)=\mathbb{1}
$$

The multifrequency case

Consider non-resonant $\omega \in \mathbb{R}^{d}\left(k \cdot \omega \neq 0\right.$ if $\left.0 \neq k \in \mathbb{Z}^{d}\right)$ and

$$
\frac{d}{d \tau} y=f_{F}(y)+\epsilon f_{S}(y)
$$

where its τ-flow $\varphi_{\tau}^{\epsilon}$ is such that $\varphi_{\tau}^{0}=\Psi_{\tau \omega}$, where $\forall \theta, \theta^{\prime} \in \mathbb{T}^{d}$

$$
\Psi_{\theta} \circ \Psi_{\theta^{\prime}}=\Psi_{\theta+\theta^{\prime}}
$$

The change of variables $y=\varphi_{\tau}^{0}(x)=\Psi_{\tau \omega}(x)$ transforms the autonomous system into

$$
\frac{d}{d \tau} x=\epsilon f(x, \tau), \quad f(x, \tau)=\frac{\partial}{\partial x} \Psi_{-\tau \omega}(x) f_{S}\left(\Psi_{\tau \omega}(x)\right)
$$

We want to expand the solutions $x(\tau)$ of the later in the form

$$
x(\tau)=x(0)+\epsilon G_{1}(x(0), \tau, \tau \omega)+\epsilon^{2} G_{2}(x(0), \tau, \tau \omega)+\cdots
$$

Where each $G_{j}(x, \tau, \theta)$ is (2π)-periodic in each component of θ, it is polynomial in τ, and $G_{j}(x, 0,0)=0$.

This will give an expansion of the solutions of the original autonomous system of the form

$$
y(\tau)=\Phi_{\tau, \tau \omega}(y(0))
$$

$$
\Phi_{\tau, \theta}(y)=\Psi_{\theta}\left(y+\epsilon G_{1}(y, \tau, \theta)+\epsilon^{2} G_{2}(y, \tau, \theta)+\cdots\right)
$$

There are many options of write such expansion. Among then, we choose first Fourier expanding

$$
f(x, \theta)=\frac{\partial}{\partial x} \Psi_{-\theta}(x) f_{S}\left(\Psi_{\theta}(x)\right)=\sum_{k \in \mathbb{Z}^{d}} e^{i k \cdot \theta} f_{k}(x)
$$

and then, either using series indexed by rooted trees (B-series), or series indexed by words.

Given $\omega \in \mathbb{R}^{d}$ non-resonant $\left(k \cdot \omega \neq 0\right.$ if $\left.0 \neq k \in \mathbb{Z}^{d}\right)$

$$
\frac{d}{d \tau} x:=\epsilon f(x, \tau \omega)=\epsilon \sum_{k \in \mathbb{Z}^{d}} e^{i \tau(k \cdot \omega)} f_{k}(x)
$$

Expansion of solutions of quasi-periodic system

where \mathcal{W} is the set of 'words' $w=k_{1} \cdots k_{r}$ on the alphabet \mathbb{Z}^{d}, and for each word w,

- $|w|$ is the number of letters in the word $w, \gamma_{w}(\tau, \theta)$ depends polynomially in τ and it is a Laurent polynomial on each $e^{i \theta_{j}}$,
- and $f_{m k}=f_{k}^{\prime} f_{m}, \quad f_{\ell m k}=f_{k}^{\prime \prime}\left(f_{m}, f_{\ell}\right)+f_{k}^{\prime} f_{m}^{\prime} f_{\ell}$, and in general,

$$
f_{k_{1} \cdots k_{r}}(x)=\frac{\partial}{\partial x} f_{k_{2} \cdots k_{r}}(x) f_{k_{1}}(x)
$$

Given $\omega \in \mathbb{R}^{d}$ non-resonant $\left(k \cdot \omega \neq 0\right.$ if $\left.0 \neq k \in \mathbb{Z}^{d}\right)$

$$
\frac{d}{d \tau} x:=\epsilon f(x, \tau \omega)=\epsilon \sum_{k \in \mathbb{Z}^{d}} e^{i \tau(k \cdot \omega)} f_{k}(x)
$$

Expansion of solutions of quasi-periodic system

$$
x(t)=x(0)+\sum_{w \in \mathcal{W}} \epsilon^{|w|} \gamma_{w}(\tau, \omega \tau) f_{w}(x(0))
$$

where \mathcal{W} is the set of 'words' $w=k_{1} \cdots k_{r}$ on the alphabet \mathbb{Z}^{d}, and for each word w,

- $|w|$ is the number of letters in the word $w, \gamma_{w}(\tau, \theta)$ depends polynomially in τ and it is a Laurent polynomial on each $e^{i \theta_{j}}$,
- and $f_{m k}=f_{k}^{\prime} f_{m}, \quad f_{\ell m k}=f_{k}^{\prime \prime}\left(f_{m}, f_{\ell}\right)+f_{k}^{\prime} f_{m}^{\prime} f_{\ell}$, and in general,

$$
f_{k_{1} \cdots k_{r}}(x)=\frac{\partial}{\partial x} f_{k_{2} \cdots k_{r}}(x) f_{k_{1}}(x)
$$

Each $\gamma_{w}(\tau, \theta)$ is a linear combination of terms of the form $\tau^{j} e^{i(k \cdot \theta)}$. The coefficients $\gamma_{w}(\tau, \theta)$ are a solution of
$\frac{\partial}{\partial \tau} \gamma_{w k}(\tau, \theta)+\omega \cdot \nabla_{\theta} \gamma_{w k}(\tau, \theta)=e^{i k \cdot \theta} \gamma_{w}(\tau, \theta)$, $\gamma_{w}(0,0)=0$,
which is unique if we require that for each word $w, \gamma_{w}(\tau, \theta)$ depends polynomially on τ.

Recursive formulae for

Each $\gamma_{w}(\tau, \theta)$ is a linear combination of terms of the form $\tau^{j} e^{i(k \cdot \theta)}$. The coefficients $\gamma_{w}(\tau, \theta)$ are a solution of
$\frac{\partial}{\partial \tau} \gamma_{w k}(\tau, \theta)+\omega \cdot \nabla_{\theta} \gamma_{w k}(\tau, \theta)=e^{i k \cdot \theta} \gamma_{w}(\tau, \theta), \quad \gamma_{w}(0,0)=0$, which is unique if we require that for each word $w, \gamma_{w}(\tau, \theta)$ depends polynomially on τ.

Each $\gamma_{w}(\tau, \theta)$ is a linear combination of terms of the form $\tau^{j} e^{i(k \cdot \theta)}$. The coefficients $\gamma_{w}(\tau, \theta)$ are a solution of
$\frac{\partial}{\partial \tau} \gamma_{w k}(\tau, \theta)+\omega \cdot \nabla_{\theta} \gamma_{w k}(\tau, \theta)=e^{i k \cdot \theta} \gamma_{w}(\tau, \theta), \quad \gamma_{w}(0,0)=0$,
which is unique if we require that for each word $w, \gamma_{w}(\tau, \theta)$ depends polynomially on τ.
Recursive formulae for $\gamma_{w}(\tau, \theta)$

$$
\text { If } \begin{aligned}
r \in \mathbb{Z}^{+}, k \in \mathbb{Z}^{d} & -\{0\}, l \in \mathbb{Z}^{d} \text {, and } w \in \mathcal{W} \cup\{\emptyset\}, \\
\gamma_{k}(\tau, \theta) & =\frac{i}{k \cdot \omega}\left(1-e^{i(k \cdot \theta)}\right), \\
\gamma_{0^{r}}(\tau, \theta) & =\frac{\tau^{r}}{r!}, \\
\gamma_{0^{r} k}(\tau, \theta) & =\frac{i}{k \cdot \omega}\left(\gamma_{0^{r-1} k}(\tau, \theta)-\gamma_{0^{r}}(\tau, \theta) e^{i(k \cdot \theta)}\right), \\
\gamma_{k l w}(\tau, \theta) & =\frac{i}{k \cdot \omega}\left(\gamma_{l w}(t, \theta)-\gamma_{(k+l) w}(\tau, \theta)\right), \\
\gamma_{0^{r} k l w}(\tau, \theta) & =\frac{i}{k \cdot \omega}\left(\gamma_{0^{r-1} k l w}(\tau, \theta)-\gamma_{0^{r}(k+l) w}(\tau, \theta)\right) .
\end{aligned}
$$

Definition

For each $(\tau, \theta) \in \mathbb{R} \times \mathbb{T}^{d}$ and each $y \in \mathbb{R}^{n}$,

$$
\Phi_{\tau, \theta}(y)=\Psi_{\theta}\left(y+\sum_{w \in \mathcal{W}} \epsilon^{|w|} \gamma_{w}(\tau, \omega \tau) f_{w}(y)\right) .
$$

Main result

$$
\begin{aligned}
& \forall(\tau, \theta),\left(\tau^{\prime}, \theta^{\prime}\right) \in \mathbb{R} \times \mathbb{T}^{d} \\
& \qquad \Phi_{\tau, \theta} \circ \Phi_{\tau^{\prime}, \theta^{\prime}}=\Phi_{\tau+\tau^{\prime}, \theta+\theta^{\prime}}
\end{aligned}
$$

In particular, high-order averaging decomposition:

$$
\varphi_{\tau}^{\epsilon}=\Phi_{\tau, \omega \tau}=\Phi_{\tau, 0} \circ \Phi_{0, \omega \tau},
$$

where $\Phi_{0, \omega \tau}$ is a quasiperiodic flow, and $\Phi_{\tau, 0}$ is a smooth near-to-identity flow.
Furthermore,

$$
\Phi_{0, \omega \tau}=\Phi_{\tau}^{[1]} \circ \cdots \Phi_{\tau}^{[d]}
$$

where each $\Phi_{\tau}^{[j]}$ is a $\left(2 \pi / \omega_{j}\right)$-periodic flow of a periodic vector field. In the Hamiltonian case, this gives d oscillatory formal invariants $I^{j}(y)$ of the original system (in addition to a smooth formal invariant $I^{S}(y)$ such that $\left.H_{F}(y)+\epsilon H_{S}(y)=I^{S}(y)+\sum_{j}{ }^{[j]}(y)\right)$.

Explict expression of the formal invariants (Hamiltonian case)

Let us denote $\omega^{[j]}=\left(0, \ldots, 0, \omega_{j}, 0, \ldots, 0\right)$. Then

$$
\left.\right|^{[j]}(y)=\left.\frac{d}{d \tau} \Psi_{\tau \omega^{[j]}}(Y)\right|_{\tau=0}+\sum_{w \in \mathcal{W}} \epsilon^{|w|} \beta_{w}^{[j]} H_{w}(y)
$$

where

$$
\begin{aligned}
H_{k_{1} \cdots k_{m}} & =\frac{1}{m}\left\{H_{k_{1}},\left\{H_{k_{2}}, \ldots\left\{H_{k_{m-1}}, H_{k_{m}}\right\} \cdots\right\}\right. \\
\beta_{w}^{[j]} & =\left.\frac{d}{d \tau} \gamma_{w}\left(0, \omega^{[j]} \tau\right)\right|_{\tau=0}
\end{aligned}
$$

Simple recursions from the recursions of $\gamma_{w}(\tau, \theta)$.

Recursion for coefficients of averaged equation

$$
\begin{aligned}
\beta_{k}^{[j]} & =-\frac{k \cdot \omega^{[j]}}{k \cdot \omega}, \\
\beta_{0^{r}}^{[j]} & =0, \\
\beta_{0^{r} k}^{[j]} & =\frac{i}{k \cdot \omega}\left(\beta_{0^{r-1} k}^{[j]}-\beta_{0^{r}}^{[j]}\right), \\
\beta_{k / w}^{[j]} & =\frac{i}{k \cdot \omega}\left(\beta_{l w}^{[j]}-\beta_{(k+l) w}^{[j]}\right), \\
\beta_{0^{r} k / w}^{[j]} & =\frac{i}{k \cdot \omega}\left(\beta_{0^{r-1} k / w}^{[j]}-\beta_{0^{r}(k+l) w}^{[j]}\right),
\end{aligned}
$$

