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Example (Fermi-Pasta-Ulam type problem)

Hamiltonian system with Hamiltonian function

H(p, p̄, q, q̄) =
1

2
(pTp + p̄T p̄) +

1

2ε2
qTq + U(q, q̄),

U(q, q̄) =
1

4

(
(q̄1 − q1)4 + (q̄m + qm)4

)
+

1

4

m−1∑
j=1

(q̄j+1 − qj+1 − q̄j − qj)
4.

We consider m = 3, ε = 1/100, and initial values

p̄(0) = p(0) = q̄(0) =

(
1
0
0

)
, q(0) =

(
ε
0
0

)
.



Example (Fermi-Pasta-Ulam time problem (cont.))

Solution for the component q2(t),
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Example (Fermi-Pasta-Ulam time problem (cont.))

Solution for the component q2(t),
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q2(2πεn), and q2(
πε

2
+ 2πεn).



Consider a Hamiltonian system

d

dt
y = J−1∇H(y ; ε), H(y ; ε) := ε−1HF (y) + HS(y),

Let ϕετ : R 2d → R 2d be such that ϕεt/ε is the t-flow of that

system. Assume that ϕ0
τ is (2π)-periodic.

Stroboscopic averaging

There exists H(Y ; ε) = H0(Y ) + εH1(Y ) + ε2H2(y) + · · · ,

d

dt
Y = J−1∇H(Y ; ε),

such that, Y (2πεn) = y(2πεn) if Y (0) = y(0) = y0.
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Example (Fermi-Pasta-Ulam type problem)

We consider

H̃(Y , ε) := H0(Y ) + ε2H2(Y ) + ε4H4(Y )

= H(Y ; ε) +O(ε6),

and plot the variation H̃(y(t); ε)− H̃(y(0); ε)
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Smooth invariant

Under the previous assumtions for

d

dt
y = J−1∇H(y ; ε), H(y ; ε) := ε−1HF (y) + HS(y),

consider H(Y ; ε) = H0(Y ) + εH1(Y ) + ε2H2(y) + · · · as before,
then H(y ; ε) is a first integral of the original system.

Indeed, for tn = 2πεn, n = 1, 2, . . .

H(Y (tn); ε) = H(y(tn); ε) = Const

and by a interpolating argument, H(Y (t); ε) = Const, and thus

{H,H} ≡ 0.

Can this be generalized to the multi-frequency case?
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Numerical integration of HOS with ε-independent time-steps

Integrate the smooth system

d

dt
Y = J−1∇H(Y ; ε), Y (0) = y0

instead of the highly oscillatory one. Different options

Symbolic-numeric algorithms using explicit knowledge of H
Purely numerical schemes that try to approximate Y (t) by
using H as input (HMSM, SAM, . . .).

Motivated by that, we aim at

Obtaining formulae for H(Y ; ε) and its solutions Y (t)

Such formulae should be as explicit as possible and of
universal character

Knowledge about possible (formal) invariants of the original
system.



Standard high order averaging [Bogoliubov and Mitropolski 1958,
Perko 1969, Sanders, Verhulst, Murdock 2007]

Under suitable assumptions on the HOS

d

dt
y = f (y , t/ε).

there exists a formal (2πε)-periodic change of variables
y = K (Y , t/ε) that transforms the original HOS into the
(averaged) autonomous equations

d

dt
Y = F (Y ; ε) := F0(Y ) + εF1(Y ) + ε2F2(Y ) + · · ·

The change of variables y = K (Y , τ) is not unique:

Stroboscopic averaging: K (Y , 0) = Y , which implies
Y (2πεn) = y(2πεn) for all n ∈ Z .∫ 2π
0 K (Y , τ) dτ = Y ,



Autonomous form for stroboscopic averaging

Consider an autonomous system (in terms of slow time τ = t/ε),

d

dτ
y = fF (y) + εfS(y),

and denote ϕετ its τ -flow. Assume that ϕ0
τ (y) is (2π)-periodic in τ .

The periodic change of variables y = ϕ0
τ (x) leads to a system in

standard form for periodic averaging

d

dτ
x = εf (x , τ), f (x , τ) =

∂

∂x
ϕ0
−τ (x) fS(ϕ0

τ (x))

where f (y , τ) is (2π)-periodic in τ . In turn, a system in standard
form can be written in autonomous form, with y = (x , θ) ∈ R ×T,
and

d

dτ

(
x
θ

)
=

(
0
1

)
+ ε

(
f (x , θ)

0

)



Recall that we consider an autonomous system

d

dτ
y = fF (y) + εfS(y), (1)

and denote ϕετ its τ -flow. (ϕ0
τ (y) is (2π)-periodic in τ .)

General idea for formal averaging

Obtain a formal representation of the τ -flow ϕετ in the form
ϕετ (y) = Φτ,τ (y), where

Φτ,θ(y) = ϕ0
θ(y + εG1(y , τ, θ) + ε2G2(y , τ, θ) + · · · ),

and each Gj(y , τ, θ) is polynomial in τ and (2π)-periodic in θ.

Under general assumptions, it holds ∀(τ, θ), (τ ′, θ′) ∈ R × T,

Φτ,θ ◦ Φτ ′,θ′ = Φτ+τ ′,θ+θ′(y).



In particular, both Φτ,0 and Φ0,τ are flows of autonomous
vector fields, the former a smooth near-to-identity map, and
the later a periodic map.

If both fF (y) and fS(y) are Hamiltonian, then Φτ,0 and Φ0,τ

are Hamiltonian flows (with Hamiltonian functions εH(y) and
HF (y) + ε(HS(y)−H(y))), and since they commute with the
flow ϕετ = Φτ,τ , we have that {H,HF + εHS} = 0 (i.e., H is a
formal invariant of the system).

The (stroboscopically) averaged ODE is

d

dτ
Y = F (Y ) :=

d

dτ
Φτ,0(Y )

∣∣∣∣
τ=0

, Y (τ) = Φτ,0(Y (0)),

and the (2π)-periodic change of variables is
y = K (Y , τ) := Φ0,τ (Y ), so that, if Y (0) = y(0) = y0,

y(τ) = ϕετ (y0) = Φτ,τ (y0) = Φ0,τ (Φτ,0(y0)) = K (Y (τ), τ).

The idea generalizes nicely to the quasiperiodic case!



Multifrequency case

Given ω ∈ R d non-resonant (k · ω 6= 0 for all k ∈ Z d\{0}),

d

dt
y = f (y , ω t), y(0) = y0,

where f (y , θ) is

smooth in y

2π-periodic in each component of θ ∈ R d , with Fourier
expansion

f (y , θ) =
∑

k∈Z d

e i(k·θ)fk(y).

The map f itself may depend on the frequencies ω but we do
not reflect that in the notation.



High order averaging of quasi-periodic vector fields (Perko 1969)

Given the quasi-periodic vector field

d

dt
y = εf (y , ω t) = ε

∑
k∈Z d

e i(k·ω)t fk(y).

there exists a formal quasi-periodic change of variables
y = K (Y , ω t) that transforms the QP system into

d

dt
Y = εF1(Y ) + ε2F2(Y ) + · · ·

The first term F1(y) is uniquely determined as

F1(y) =
1

(2π)d

∫
Td

f (y , θ) dθ = f0(y).

K (Y , θ) is not unique. Classical choice:

1

(2π)d

∫
Td

K (y , θ) dθ = y

.



B-series expansion of solution of the QP system

For the solutions of ẏ =
∑

k e i(k·ω)t fk(y),

y(t) = y(0) +
∑
u∈T

αu(t)

σu
Fu(y(0)),

T is the set of rooted trees labelled by k ∈ Z d , and for each
u ∈ T,

the coefficients αu(t) are linear combinations of t je i(k·ω)t ,

the elementary differentials Fu : R d → R d are smooth maps,
(σu ∈ Z is a normalization factor.)

Elementary coefficients

αu(t) =

∫ t

0
e i(k·ω)t′αu1(t ′) · · ·αum(t ′) dt ′, u = [u1 · · · um]k .
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Examples for rooted trees with less than 4 vertices

u Fu(y) αu(t)

ik fk(y)
∫ t
0 e i(k·ω)t1 dt1

imik f ′m(y)fk(y)
∫ t
0

∫ t2
0 e i(kt1+mt2)·ω dt1 dt2

ee

%%

ìim ik
f ′` (y)f ′m(y)fk(y)

∫ t
0

∫ t3
0

∫ t2
0 e i(kt1+mt2+`t3)·ω dt1 dt2 dt3

ee %%

im ikì f ′′` (y)(fm(y), fk(y))
∫ t
0

∫ t2
0 e i(kt1+mt1+`t2)·ω dt1 dt2

For each u ∈ T,

αu(t) =
∑

k∈Z d

αk
u(t)e i(k·ω)t ,

where each αk
u(t) is a polynomial in t.
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Averaging with B-series

There exist β̄u, ᾱu(t), κu(θ), u ∈ T, (ᾱu(t) polynomial, κu(θ)
(2π)-periodic) such that for any solution y(t) of the QP system

y(t) = K (Y (t), ωt),
d

dt
Y (t) = F (Y (t)),

where

F (Y ) =
∑
u∈T

β̄u

σu
Fu(Y ),

Y (t) = Y (0) +
∑
u∈T

ᾱu(t)

σu
Fu(Y (0)),

K (Y , θ) = Y +
∑
u∈T

κu(θ)

σu
Fu(Y ),

That is, α(t) = ᾱ(t) ∗ κ(tω) with d
dt ᾱ(t) = ᾱ(t) ∗ β̄.
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Observe that α(t) is such that

d

dt
α(t) = α(t) ∗ β(ωt), α(0) = 11,

where βk(θ) = e ik·θ and βu(θ) = 0 if u has more than one vertices.
Recall that, for each u ∈ T,

αu(t) =
∑

k∈Z d

αk
u(t)e i(k·ω)t ,

where each αk
u(t) is a polynomial in t. Consider now

γu(t, θ) =
∑

k∈Z d

αk
u(t)e i(k·θ),

so that α(t) = γ(t, tω). It is not difficult to see that

( ∂∂t + ω · ∇θ)γ(t, θ) = γ(t, θ) ∗ β(θ), γ(0, 0) = 11.



The multifrequency case

Consider non-resonant ω ∈ R d (k · ω 6= 0 if 0 6= k ∈ Z d) and

d

dτ
y = fF (y) + εfS(y)

where its τ -flow ϕετ is such that ϕ0
τ = Ψτω, where ∀θ, θ′ ∈ Td

Ψθ ◦Ψθ′ = Ψθ+θ′ .

The change of variables y = ϕ0
τ (x) = Ψτω(x) transforms the

autonomous system into

d

dτ
x = εf (x , τ), f (x , τ) =

∂

∂x
Ψ−τω(x) fS(Ψτω(x)).

We want to expand the solutions x(τ) of the later in the form

x(τ) = x(0) + εG1(x(0), τ, τω) + ε2G2(x(0), τ, τω) + · · ·

Where each Gj(x , τ, θ) is (2π)-periodic in each component of θ, it
is polynomial in τ , and Gj(x , 0, 0) = 0.



This will give an expansion of the solutions of the original
autonomous system of the form

y(τ) = Φτ,τω(y(0))

,
Φτ,θ(y) = Ψθ(y + εG1(y , τ, θ) + ε2G2(y , τ, θ) + · · · )

There are many options of write such expansion. Among then, we
choose first Fourier expanding

f (x , θ) =
∂

∂x
Ψ−θ(x) fS(Ψθ(x)) =

∑
k∈Z d

e ik·θfk(x),

and then, either using series indexed by rooted trees (B-series), or
series indexed by words.



Given ω ∈ R d non-resonant (k · ω 6= 0 if 0 6= k ∈ Z d)

d

dτ
x := εf (x , τω) = ε

∑
k∈Z d

e i τ (k·ω)fk(x),

Expansion of solutions of quasi-periodic system

x(t) = x(0) +
∑
w∈W

ε|w | γw (τ, ωτ) fw (x(0)),

where W is the set of ’words’ w = k1 · · · kr on the alphabet Z d ,
and for each word w ,

|w | is the number of letters in the word w , γw (τ, θ) depends
polynomially in τ and it is a Laurent polynomial on each e iθj ,

and fmk = f ′k fm, f`mk = f ′′k (fm, f`) + f ′k f ′mf`, and in general,

fk1···kr (x) =
∂

∂x
fk2···kr (x)fk1(x).
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Each γw (τ, θ) is a linear combination of terms of the form
τ je i(k·θ). The coefficients γw (τ, θ) are a solution of

∂

∂τ
γwk(τ, θ) + ω · ∇θ γwk(τ, θ) = e ik·θγw (τ, θ), γw (0, 0) = 0,

which is unique if we require that for each word w , γw (τ, θ)
depends polynomially on τ .

Recursive formulae for γw (τ, θ)

If r ∈ Z +, k ∈ Z d − {0}, l ∈ Z d , and w ∈ W ∪ {∅},
γk(τ, θ) =

i

k · ω
(1− e i(k·θ)),

γ0r (τ, θ) =
τ r

r !
,

γ0rk(τ, θ) =
i

k · ω
(γ0r−1k(τ, θ)− γ0r (τ, θ)e i(k·θ)),

γklw (τ, θ) =
i

k · ω
(γlw (t, θ)− γ(k+l)w (τ, θ)),

γ0rklw (τ, θ) =
i

k · ω
(γ0r−1klw (τ, θ)− γ0r (k+l)w (τ, θ)).
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i

k · ω
(γlw (t, θ)− γ(k+l)w (τ, θ)),

γ0rklw (τ, θ) =
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Definition

For each (τ, θ) ∈ R × Td and each y ∈ R n,

Φτ,θ(y) = Ψθ(y +
∑
w∈W

ε|w | γw (τ, ωτ) fw (y)).

Main result

∀(τ, θ), (τ ′, θ′) ∈ R × Td

Φτ,θ ◦ Φτ ′,θ′ = Φτ+τ ′,θ+θ′ .



In particular, high-order averaging decomposition:

ϕετ = Φτ,ωτ = Φτ,0 ◦ Φ0,ωτ ,

where Φ0,ωτ is a quasiperiodic flow, and Φτ,0 is a smooth
near-to-identity flow.
Furthermore,

Φ0,ωτ = Φ[1]
τ ◦ · · ·Φ[d ]

τ ,

where each Φ
[j]
τ is a (2π/ωj)-periodic flow of a periodic vector field.

In the Hamiltonian case, this gives d oscillatory formal invariants
I j(y) of the original system (in addition to a smooth formal
invariant I S(y) such that HF (y) + εHS(y) = I S(y) +

∑
j I [j](y)).



Explict expression of the formal invariants (Hamiltonian case)

Let us denote ω[j] = (0, . . . , 0, ωj , 0, . . . , 0). Then

I [j](y) =
d

dτ
Ψτω[j](Y )

∣∣∣∣
τ=0

+
∑
w∈W

ε|w | β
[j]
w Hw (y),

where

Hk1···km =
1

m
{Hk1 , {Hk2 , . . . {Hkm−1 ,Hkm} · · · },

β
[j]
w =

d

dτ
γw (0, ω[j]τ)

∣∣∣∣
τ=0

.

Simple recursions from the recursions of γw (τ, θ).



Recursion for coefficients of averaged equation

β
[j]
k = −k · ω[j]

k · ω
,

β
[j]
0r = 0,

β
[j]
0rk =

i

k · ω
(β

[j]
0r−1k

− β[j]
0r ),

β
[j]
klw =

i

k · ω
(β

[j]
lw − β

[j]
(k+l)w ),

β
[j]
0rklw =

i

k · ω
(β

[j]
0r−1klw

− β[j]
0r (k+l)w ),


