Formal averaging of periodic and quasi-periodic vector fields

Ander Murua Joint work with P. Chartier and J.M. Sanz-Serna

Universidad del Pais Vasco

Calatayud, DDays 2010

Example (Fermi-Pasta-Ulam type problem)

Hamiltonian system with Hamiltonian function

$$egin{array}{rcl} \mathcal{H}(p,ar{p},q,ar{q}) &=& rac{1}{2}(p^Tp+ar{p}^Tar{p})+rac{1}{2\epsilon^2}q^Tq+\mathcal{U}(q,ar{q}), \ \mathcal{U}(q,ar{q}) &=& rac{1}{4}\left((ar{q}_1-q_1)^4+(ar{q}_m+q_m)^4
ight) \ &+rac{1}{4}\sum_{j=1}^{m-1}(ar{q}_{j+1}-q_{j+1}-ar{q}_j-q_j)^4. \end{array}$$

We consider m = 3, $\epsilon = 1/100$, and initial values

$$ar{p}(0)=p(0)=ar{q}(0)=\left(egin{array}{c}1\\0\\0\end{array}
ight), \ q(0)=\left(egin{array}{c}\epsilon\\0\\0\end{array}
ight).$$

Solution for the component $q_2(t)$,

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Solution for the component $q_2(t)$,

▲口 > ▲圖 > ▲臣 > ▲臣 > ▲臣 > の < @ >

Solution for the component $q_2(t)$,

and for $n = 0, 1, 2, 3, \ldots$,

 $q_2(2\pi\epsilon n)$

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ ● の Q ()~

•

Solution for the component $q_2(t)$,

and for $n = 0, 1, 2, 3, \ldots$,

$$q_2(2\pi\epsilon n)$$
, and $q_2(\frac{\pi\epsilon}{2}+2\pi\epsilon n)$.

Consider a Hamiltonian system

$$\frac{d}{dt}y = J^{-1}\nabla H(y;\epsilon), \quad H(y;\epsilon) := \epsilon^{-1}H_F(y) + H_S(y),$$

Let $\varphi_{\tau}^{\epsilon} : \mathbb{R}^{2d} \to \mathbb{R}^{2d}$ be such that $\varphi_{t/\epsilon}^{\epsilon}$ is the *t*-flow of that system. Assume that φ_{τ}^{0} is (2π) -periodic.

Stroboscopic averaging

There exists $\mathcal{H}(Y; \epsilon) = \mathcal{H}_0(Y) + \epsilon \mathcal{H}_1(Y) + \epsilon^2 \mathcal{H}_2(y) + \cdots$,

$$\frac{d}{dt}Y = J^{-1}\nabla \mathcal{H}(Y;\epsilon),$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

such that, $Y(2\pi\epsilon n) = y(2\pi\epsilon n)$ if $Y(0) = y(0) = y_0$.

Consider a Hamiltonian system

$$\frac{d}{dt}y = J^{-1}\nabla H(y;\epsilon), \quad H(y;\epsilon) := \epsilon^{-1}H_F(y) + H_S(y),$$

Let $\varphi_{\tau}^{\epsilon}: \mathbb{R}^{2d} \to \mathbb{R}^{2d}$ be such that $\varphi_{t/\epsilon}^{\epsilon}$ is the *t*-flow of that system. Assume that φ_{τ}^{0} is (2π) -periodic.

Stroboscopic averaging

There exists
$$\mathcal{H}(Y; \epsilon) = \mathcal{H}_0(Y) + \epsilon \mathcal{H}_1(Y) + \epsilon^2 \mathcal{H}_2(y) + \cdots$$
,

$$\frac{d}{dt}Y = J^{-1}\nabla \mathcal{H}(Y;\epsilon),$$

such that, $Y(2\pi\epsilon n) = y(2\pi\epsilon n)$ if $Y(0) = y(0) = y_0$.

Example (Fermi-Pasta-Ulam type problem)

We consider

$$egin{array}{lll} ilde{\mathcal{H}}(Y,\epsilon) &:= & \mathcal{H}_0(Y) + \epsilon^2 \mathcal{H}_2(Y) + \epsilon^4 \mathcal{H}_4(Y) \ &= & \mathcal{H}(Y;\epsilon) + \mathcal{O}(\epsilon^6), \end{array}$$

and plot the variation $\mathcal{\tilde{H}}(y(t);\epsilon) - \mathcal{\tilde{H}}(y(0);\epsilon)$

Smooth invariant

Under the previous assumtions for

$$\frac{d}{dt}y = J^{-1}\nabla H(y;\epsilon), \quad H(y;\epsilon) := \epsilon^{-1}H_F(y) + H_S(y),$$

consider $\mathcal{H}(Y; \epsilon) = \mathcal{H}_0(Y) + \epsilon \mathcal{H}_1(Y) + \epsilon^2 \mathcal{H}_2(y) + \cdots$ as before, then $\mathcal{H}(y; \epsilon)$ is a first integral of the original system.

Indeed, for $t_n = 2\pi\epsilon n$, n = 1, 2, ...

$$H(Y(t_n); \epsilon) = H(y(t_n); \epsilon) = \text{Const}$$

and by a interpolating argument, $H(Y(t); \epsilon) = \text{Const}$, and thus

$$\{H,\mathcal{H}\}\equiv 0.$$

Can this be generalized to the multi-frequency case?

Smooth invariant

Under the previous assumtions for

$$\frac{d}{dt}y = J^{-1}\nabla H(y;\epsilon), \quad H(y;\epsilon) := \epsilon^{-1}H_F(y) + H_S(y),$$

consider $\mathcal{H}(Y; \epsilon) = \mathcal{H}_0(Y) + \epsilon \mathcal{H}_1(Y) + \epsilon^2 \mathcal{H}_2(y) + \cdots$ as before, then $\mathcal{H}(y; \epsilon)$ is a first integral of the original system.

Indeed, for $t_n = 2\pi\epsilon n$, n = 1, 2, ...

$$H(Y(t_n); \epsilon) = H(y(t_n); \epsilon) = \text{Const}$$

and by a interpolating argument, $H(Y(t); \epsilon) = \text{Const}$, and thus

$$\{H, \mathcal{H}\} \equiv 0.$$

Can this be generalized to the multi-frequency case?

Numerical integration of HOS with ϵ -independent time-steps

Integrate the smooth system

$$\frac{d}{dt}Y = J^{-1}\nabla \mathcal{H}(Y;\epsilon), \quad Y(0) = y_0$$

instead of the highly oscillatory one. Different options

- \bullet Symbolic-numeric algorithms using explicit knowledge of ${\cal H}$
- Purely numerical schemes that try to approximate Y(t) by using H as input (HMSM, SAM, ...).

Motivated by that, we aim at

- Obtaining formulae for $\mathcal{H}(Y; \epsilon)$ and its solutions Y(t)
- Such formulae should be as explicit as possible and of universal character
- Knowledge about possible (formal) invariants of the original system.

Standard high order averaging [Bogoliubov and Mitropolski 1958, Perko 1969, Sanders, Verhulst, Murdock 2007]

Under suitable assumptions on the HOS

$$\frac{d}{dt}y = f(y, t/\epsilon).$$

there exists a formal $(2\pi\epsilon)$ -periodic change of variables $y = K(Y, t/\epsilon)$ that transforms the original HOS into the *(averaged)* autonomous equations

$$\frac{d}{dt}Y = F(Y;\epsilon) := F_0(Y) + \epsilon F_1(Y) + \epsilon^2 F_2(Y) + \cdots$$

The change of variables $y = K(Y, \tau)$ is not unique:

• Stroboscopic averaging: K(Y, 0) = Y, which implies $Y(2\pi\epsilon n) = y(2\pi\epsilon n)$ for all $n \in \mathbb{Z}$.

•
$$\int_0^{2\pi} K(Y,\tau) d\tau = Y$$
,

Autonomous form for stroboscopic averaging

Consider an autonomous system (in terms of slow time $\tau = t/\epsilon$),

$$\frac{d}{d\tau}y = f_F(y) + \epsilon f_S(y),$$

and denote $\varphi_{\tau}^{\epsilon}$ its τ -flow. Assume that $\varphi_{\tau}^{0}(y)$ is (2π) -periodic in τ .

The periodic change of variables $y = \varphi_{\tau}^{0}(x)$ leads to a system in standard form for periodic averaging

$$\frac{d}{d\tau}x = \epsilon f(x,\tau), \qquad f(x,\tau) = \frac{\partial}{\partial x} \varphi_{-\tau}^{0}(x) f_{\mathcal{S}}(\varphi_{\tau}^{0}(x))$$

where $f(y, \tau)$ is (2π) -periodic in τ . In turn, a system in standard form can be written in autonomous form, with $y = (x, \theta) \in \mathbb{R} \times \mathbb{T}$, and

$$\frac{d}{d\tau} \left(\begin{array}{c} x\\ \theta \end{array}\right) = \left(\begin{array}{c} 0\\ 1 \end{array}\right) + \epsilon \left(\begin{array}{c} f(x,\theta)\\ 0 \end{array}\right)$$

Recall that we consider an autonomous system

$$\frac{d}{d\tau}y = f_F(y) + \epsilon f_S(y), \tag{1}$$

and denote $\varphi_{\tau}^{\epsilon}$ its τ -flow. ($\varphi_{\tau}^{0}(y)$ is (2 π)-periodic in τ .)

General idea for formal averaging

• Obtain a formal representation of the τ -flow $\varphi_{\tau}^{\epsilon}$ in the form $\varphi_{\tau}^{\epsilon}(y) = \Phi_{\tau,\tau}(y)$, where

$$\Phi_{\tau,\theta}(y) = \varphi_{\theta}^{0}(y + \epsilon G_{1}(y,\tau,\theta) + \epsilon^{2}G_{2}(y,\tau,\theta) + \cdots),$$

and each $G_j(y, \tau, \theta)$ is polynomial in τ and (2π) -periodic in θ . • Under general assumptions, it holds $\forall (\tau, \theta), (\tau', \theta') \in \mathbb{R} \times \mathbb{T}$,

$$\Phi_{ au, heta}\circ\Phi_{ au', heta'}=\Phi_{ au+ au', heta+ heta'}(y).$$

- In particular, both $\Phi_{\tau,0}$ and $\Phi_{0,\tau}$ are flows of autonomous vector fields, the former a smooth near-to-identity map, and the later a periodic map.
- If both $f_F(y)$ and $f_S(y)$ are Hamiltonian, then $\Phi_{\tau,0}$ and $\Phi_{0,\tau}$ are Hamiltonian flows (with Hamiltonian functions $\epsilon \mathcal{H}(y)$ and $H_F(y) + \epsilon(H_S(y) - \mathcal{H}(y))$), and since they commute with the flow $\varphi_{\tau}^{\epsilon} = \Phi_{\tau,\tau}$, we have that $\{\mathcal{H}, H_F + \epsilon H_S\} = 0$ (i.e., \mathcal{H} is a formal invariant of the system).
- The (stroboscopically) averaged ODE is

$$\left. rac{d}{d au} Y = F(Y) := \left. rac{d}{d au} \Phi_{ au,0}(Y)
ight|_{ au=0}, \quad Y(au) = \Phi_{ au,0}(Y(0)),$$

and the (2π) -periodic change of variables is $y = K(Y, \tau) := \Phi_{0,\tau}(Y)$, so that, if $Y(0) = y(0) = y_0$,

$$y(\tau) = \varphi_{\tau}^{\epsilon}(y_0) = \Phi_{\tau,\tau}(y_0) = \Phi_{0,\tau}(\Phi_{\tau,0}(y_0)) = K(Y(\tau),\tau).$$

• The idea generalizes nicely to the quasiperiodic case!

Multifrequency case

Given $\omega \in \mathbb{R}^{d}$ non-resonant $(k \cdot \omega \neq 0 \text{ for all } k \in \mathbb{Z}^{d} \setminus \{0\})$,

$$\frac{d}{dt}y = f(y, \omega t), \quad y(0) = y_0,$$

where $f(y, \theta)$ is

- smooth in y
- 2π -periodic in each component of $\theta \in \mathbb{R}^{d}$, with Fourier expansion

$$f(y,\theta) = \sum_{k\in\mathbb{Z}^d} e^{i(k\cdot\theta)} f_k(y).$$

 The map f itself may depend on the frequencies ω but we do not reflect that in the notation.

High order averaging of quasi-periodic vector fields (Perko 1969)

Given the quasi-periodic vector field

$$\frac{d}{dt}y = \epsilon f(y, \omega t) = \epsilon \sum_{k \in \mathbb{Z}^d} e^{i(k \cdot \omega)t} f_k(y).$$

there exists a formal quasi-periodic change of variables $y = K(Y, \omega t)$ that transforms the QP system into

$$\frac{d}{dt}Y = \epsilon F_1(Y) + \epsilon^2 F_2(Y) + \cdots$$

• The first term $F_1(y)$ is uniquely determined as

$$F_1(y) = \frac{1}{(2\pi)^d} \int_{\mathbb{T}^d} f(y,\theta) \, d\theta = f_0(y).$$

• $K(Y, \theta)$ is not unique. Classical choice:

$$\frac{1}{(2\pi)^d} \int_{\mathbb{T}^d} K(y,\theta) \, d\theta = y$$

B-series expansion of solution of the QP system

For the solutions of $\dot{y} = \sum_{k} e^{i(k \cdot \omega)t} f_k(y)$,

$$y(t) = y(0) + \sum_{u \in \mathbb{T}} \frac{\alpha_u(t)}{\sigma_u} \mathcal{F}_u(y(0)),$$

 $\mathbb T$ is the set of rooted trees labelled by $k\in \mathbb Z^{\,d},$ and for each $u\in \mathbb T,$

- the coefficients $\alpha_u(t)$ are linear combinations of $t^j e^{i(k \cdot \omega)t}$,
- the elementary differentials $\mathcal{F}_u : \mathbb{R}^d \to \mathbb{R}^d$ are smooth maps, $(\sigma_u \in \mathbb{Z} \text{ is a normalization factor.})$

Elementary coefficients

$$\alpha_u(t) = \int_0^t e^{i(k\cdot\omega)t'} \alpha_{u_1}(t') \cdots \alpha_{u_m}(t') dt', \quad u = [u_1 \cdots u_m]_k.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

B-series expansion of solution of the QP system

For the solutions of $\dot{y} = \sum_{k} e^{i(k \cdot \omega)t} f_k(y)$,

$$y(t) = y(0) + \sum_{u \in \mathbb{T}} \frac{\alpha_u(t)}{\sigma_u} \mathcal{F}_u(y(0)),$$

 $\mathbb T$ is the set of rooted trees labelled by $k\in \mathbb Z^{\,d},$ and for each $u\in \mathbb T,$

- the coefficients $\alpha_u(t)$ are linear combinations of $t^j e^{i(k \cdot \omega)t}$,
- the elementary differentials $\mathcal{F}_u : \mathbb{R}^d \to \mathbb{R}^d$ are smooth maps, $(\sigma_u \in \mathbb{Z} \text{ is a normalization factor.})$

Elementary coefficients

$$\alpha_u(t) = \int_0^t e^{i(k\cdot\omega)t'} \alpha_{u_1}(t') \cdots \alpha_{u_m}(t') dt', \quad u = [u_1 \cdots u_m]_k.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

B-series expansion of solution of the QP system

For the solutions of $\dot{y} = \sum_{k} e^{i(k \cdot \omega)t} f_k(y)$,

$$y(t) = y(0) + \sum_{u \in \mathbb{T}} \frac{\alpha_u(t)}{\sigma_u} \mathcal{F}_u(y(0)),$$

 \mathbb{T} is the set of rooted trees labelled by $k \in \mathbb{Z}^{d}$, and for each $u \in \mathbb{T}$,

- the coefficients $\alpha_u(t)$ are linear combinations of $t^j e^{i(k \cdot \omega)t}$,
- the elementary differentials $\mathcal{F}_u : \mathbb{R}^d \to \mathbb{R}^d$ are smooth maps, $(\sigma_u \in \mathbb{Z} \text{ is a normalization factor.})$

Elementary coefficients

$$\alpha_u(t) = \int_0^t e^{i(k\cdot\omega)t'} \alpha_{u_1}(t') \cdots \alpha_{u_m}(t') dt', \quad u = [u_1 \cdots u_m]_k.$$

Examples for rooted trees with less than 4 vertices			
u	$\mathcal{F}_u(y)$	$\alpha_u(t)$	
k	$f_k(y)$	$\int_0^t e^{i(k\cdot\omega)t_1} dt_1$	
	$f_m'(y)f_k(y)$	$\int_{0}^{t} \int_{0}^{t_2} e^{i(kt_1+mt_2)\cdot\omega} dt_1 dt_2$	
(k) (m) (l)	$f'_{\ell}(y)f'_{m}(y)f_{k}(y)$	$\int_0^t \int_0^{t_3} \int_0^{t_2} e^{i(kt_1+mt_2+\ell t_3)\cdot\omega} dt_1 dt_2 dt_3$	
m k	$f_{\ell}^{\prime\prime}(y)(f_m(y),f_k(y))$	$\int_0^t \int_0^{t_2} e^{i(kt_1+mt_1+\ell t_2)\cdot\omega} dt_1 dt_2$	

For each $u \in \mathbb{T}$,

$$\alpha_u(t) = \sum_{k \in \mathbb{Z}^d} \alpha_u^k(t) e^{i(k \cdot \omega)t},$$

where each $lpha_u^k(t)$ is a polynomial in t.

Examples for rooted trees with less than 4 vertices			
u	$\mathcal{F}_u(y)$	$\alpha_u(t)$	
k	$f_k(y)$	$\int_0^t e^{i(k\cdot\omega)t_1} dt_1$	
	$f_m'(y)f_k(y)$	$\int_{0}^{t} \int_{0}^{t_2} e^{i(kt_1+mt_2)\cdot\omega} dt_1 dt_2$	
(k) (m) (l)	$f'_{\ell}(y)f'_{m}(y)f_{k}(y)$	$\int_0^t \int_0^{t_3} \int_0^{t_2} e^{i(kt_1+mt_2+\ell t_3)\cdot\omega} dt_1 dt_2 dt_3$	
m k	$f_{\ell}^{\prime\prime}(y)(f_m(y),f_k(y))$	$\int_0^t \int_0^{t_2} e^{i(kt_1 + mt_1 + \ell t_2) \cdot \omega} dt_1 dt_2$	

For each $u \in \mathbb{T}$,

$$\alpha_u(t) = \sum_{k \in \mathbb{Z}^d} \alpha_u^k(t) e^{i(k \cdot \omega)t},$$

where each $\alpha_{u}^{k}(t)$ is a polynomial in t.

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

Averaging with B-series

There exist $\bar{\beta}_u, \bar{\alpha}_u(t), \kappa_u(\theta), u \in \mathbb{T}$, $(\bar{\alpha}_u(t) \text{ polynomial}, \kappa_u(\theta) (2\pi)$ -periodic) such that for any solution y(t) of the QP system

$$y(t) = K(Y(t), \omega t), \quad \frac{d}{dt}Y(t) = F(Y(t)),$$

where

$$F(Y) = \sum_{u \in \mathbb{T}} \frac{\overline{\beta}_u}{\sigma_u} \mathcal{F}_u(Y),$$

$$Y(t) = Y(0) + \sum_{u \in \mathbb{T}} \frac{\overline{\alpha}_u(t)}{\sigma_u} \mathcal{F}_u(Y(0)),$$

$$K(Y, \theta) = Y + \sum_{u \in \mathbb{T}} \frac{\kappa_u(\theta)}{\sigma_u} \mathcal{F}_u(Y),$$

That is, $lpha(t)=ar{lpha}(t)*\kappa(t\omega)$ with $rac{d}{dt}ar{lpha}(t)=ar{lpha}(t)*ar{eta}.$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト → 臣 → の Q ()~

Averaging with B-series

There exist $\bar{\beta}_u, \bar{\alpha}_u(t), \kappa_u(\theta), u \in \mathbb{T}$, $(\bar{\alpha}_u(t) \text{ polynomial}, \kappa_u(\theta) (2\pi)$ -periodic) such that for any solution y(t) of the QP system

$$y(t) = K(Y(t), \omega t), \quad \frac{d}{dt}Y(t) = F(Y(t)),$$

where

$$F(Y) = \sum_{u \in \mathbb{T}} \frac{\overline{\beta}_u}{\sigma_u} \mathcal{F}_u(Y),$$

$$Y(t) = Y(0) + \sum_{u \in \mathbb{T}} \frac{\overline{\alpha}_u(t)}{\sigma_u} \mathcal{F}_u(Y(0)),$$

$$K(Y, \theta) = Y + \sum_{u \in \mathbb{T}} \frac{\kappa_u(\theta)}{\sigma_u} \mathcal{F}_u(Y),$$

That is, $\alpha(t) = \bar{\alpha}(t) * \kappa(t\omega)$ with $\frac{d}{dt}\bar{\alpha}(t) = \bar{\alpha}(t) * \bar{\beta}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ● ●

Observe that $\alpha(t)$ is such that

$$rac{d}{dt}lpha(t)=lpha(t)*eta(\omega t),\quad lpha(0)=1\!\!1,$$

where $\beta_k(\theta) = e^{ik \cdot \theta}$ and $\beta_u(\theta) = 0$ if u has more than one vertices. Recall that, for each $u \in \mathbb{T}$,

$$lpha_u(t) = \sum_{k \in \mathbb{Z}^d} lpha_u^k(t) e^{i(k \cdot \omega)t}$$

where each $\alpha_{u}^{k}(t)$ is a polynomial in t. Consider now

$$\gamma_u(t, heta) = \sum_{k\in\mathbb{Z}^d} lpha_u^k(t) e^{i(k\cdot heta)},$$

so that $\alpha(t) = \gamma(t, t\omega)$. It is not difficult to see that

$$(\frac{\partial}{\partial t} + \omega \cdot \nabla_{\theta})\gamma(t,\theta) = \gamma(t,\theta) * \beta(\theta), \quad \gamma(0,0) = \mathbb{1}$$

The multifrequency case

Consider non-resonant $\omega \in \mathbb{R}^d$ $(k \cdot \omega \neq 0 \text{ if } 0 \neq k \in \mathbb{Z}^d)$ and

$$\frac{d}{d\tau}y = f_{\mathsf{F}}(y) + \epsilon f_{\mathsf{S}}(y)$$

where its τ -flow $\varphi^{\epsilon}_{\tau}$ is such that $\varphi^{0}_{\tau} = \Psi_{\tau\omega}$, where $\forall \theta, \theta' \in \mathbb{T}^{d}$

$$\Psi_{ heta} \circ \Psi_{ heta'} = \Psi_{ heta+ heta'}.$$

The change of variables $y = \varphi_{\tau}^0(x) = \Psi_{\tau\omega}(x)$ transforms the autonomous system into

$$rac{d}{d au}x = \epsilon f(x, au), \qquad f(x, au) = rac{\partial}{\partial x} \Psi_{- au\omega}(x) f_{\mathcal{S}}(\Psi_{ au\omega}(x)).$$

We want to expand the solutions $x(\tau)$ of the later in the form

$$x(\tau) = x(0) + \epsilon G_1(x(0), \tau, \tau \omega) + \epsilon^2 G_2(x(0), \tau, \tau \omega) + \cdots$$

Where each $G_j(x, \tau, \theta)$ is (2π) -periodic in each component of θ , it is polynomial in τ , and $G_j(x, 0, 0) = 0$.

This will give an expansion of the solutions of the original autonomous system of the form

$$y(au) = \Phi_{ au, au\omega}(y(0))$$

$$\Phi_{ au, heta}(y) = \Psi_{ heta}(y + \epsilon G_1(y, au, heta) + \epsilon^2 G_2(y, au, heta) + \cdots)$$

There are many options of write such expansion. Among then, we choose first Fourier expanding

$$f(x, heta) = rac{\partial}{\partial x} \Psi_{- heta}(x) f_{\mathsf{S}}(\Psi_{ heta}(x)) = \sum_{k \in \mathbb{Z}^d} e^{ik \cdot heta} f_k(x),$$

and then, either using series indexed by rooted trees (B-series), or series indexed by words.

Given $\omega \in \mathbb{R}^d$ non-resonant $(k \cdot \omega \neq 0 \text{ if } 0 \neq k \in \mathbb{Z}^d)$

$$\frac{d}{d\tau}x := \epsilon f(x, \tau \omega) = \epsilon \sum_{k \in \mathbb{Z}^d} e^{i \tau (k \cdot \omega)} f_k(x),$$

Expansion of solutions of quasi-periodic system

$$x(t) = x(0) + \sum_{w \in \mathcal{W}} \epsilon^{|w|} \gamma_w(\tau, \omega \tau) f_w(x(0)),$$

where \mathcal{W} is the set of 'words' $w = k_1 \cdots k_r$ on the alphabet \mathbb{Z}^d , and for each word w,

- |w| is the number of letters in the word w, $\gamma_w(\tau, \theta)$ depends polynomially in τ and it is a Laurent polynomial on each $e^{i\theta_j}$,
- and $f_{mk} = f'_k f_m$, $f_{\ell mk} = f''_k (f_m, f_\ell) + f'_k f'_m f_\ell$, and in general,

$$f_{k_1\cdots k_r}(x) = \frac{\partial}{\partial x} f_{k_2\cdots k_r}(x) f_{k_1}(x).$$

Given $\omega \in \mathbb{R}^d$ non-resonant $(k \cdot \omega \neq 0 \text{ if } 0 \neq k \in \mathbb{Z}^d)$

$$\frac{d}{d\tau}x := \epsilon f(x, \tau \omega) = \epsilon \sum_{k \in \mathbb{Z}^d} e^{i \tau (k \cdot \omega)} f_k(x),$$

Expansion of solutions of quasi-periodic system

$$x(t) = x(0) + \sum_{w \in \mathcal{W}} \epsilon^{|w|} \gamma_w(\tau, \omega \tau) f_w(x(0)),$$

where \mathcal{W} is the set of 'words' $w = k_1 \cdots k_r$ on the alphabet \mathbb{Z}^d , and for each word w,

- |w| is the number of letters in the word w, $\gamma_w(\tau, \theta)$ depends polynomially in τ and it is a Laurent polynomial on each $e^{i\theta_j}$,
- and $f_{mk} = f'_k f_m$, $f_{\ell mk} = f''_k (f_m, f_\ell) + f'_k f'_m f_\ell$, and in general,

$$f_{k_1\cdots k_r}(x) = \frac{\partial}{\partial x} f_{k_2\cdots k_r}(x) f_{k_1}(x).$$

Each $\gamma_w(\tau, \theta)$ is a linear combination of terms of the form $\tau^j e^{i(k\cdot\theta)}$. The coefficients $\gamma_w(\tau, \theta)$ are a solution of

 $\frac{\partial}{\partial \tau} \gamma_{wk}(\tau, \theta) + \omega \cdot \nabla_{\theta} \gamma_{wk}(\tau, \theta) = e^{ik \cdot \theta} \gamma_w(\tau, \theta), \quad \gamma_w(0, 0) = 0,$ which is unique if we require that for each word w, $\gamma_w(\tau, \theta)$

Recursive formulae for $\gamma_{m w}(au, heta)$

Each $\gamma_w(\tau, \theta)$ is a linear combination of terms of the form $\tau^j e^{i(k \cdot \theta)}$. The coefficients $\gamma_w(\tau, \theta)$ are a solution of

$$\frac{\partial}{\partial \tau} \gamma_{wk}(\tau, \theta) + \omega \cdot \nabla_{\theta} \gamma_{wk}(\tau, \theta) = e^{ik \cdot \theta} \gamma_w(\tau, \theta), \quad \gamma_w(0, 0) = 0,$$

which is unique if we require that for each word w, $\gamma_w(\tau, \theta)$ depends polynomially on τ .

Recursive formulae for $\gamma_w(\tau, \theta)$

f
$$r \in \mathbb{Z}^+$$
, $k \in \mathbb{Z}^d - \{0\}$, $l \in \mathbb{Z}^d$, and $w \in \mathcal{W} \cup \{\emptyset\}$,
 $\gamma_k(\tau, \theta) = \frac{i}{k \cdot \omega} (1 - e^{i(k \cdot \theta)}),$
 $\gamma_{0^r}(\tau, \theta) = \frac{\tau^r}{r!},$
 $\gamma_{0^r k}(\tau, \theta) = \frac{i}{k \cdot \omega} (\gamma_{0^{r-1}k}(\tau, \theta) - \gamma_{0^r}(\tau, \theta)e^{i(k \cdot \theta)}),$
 $\gamma_{klw}(\tau, \theta) = \frac{i}{k \cdot \omega} (\gamma_{lw}(t, \theta) - \gamma_{(k+l)w}(\tau, \theta)),$
 $\gamma_{0^r klw}(\tau, \theta) = \frac{i}{k \cdot \omega} (\gamma_{0^{r-1}klw}(\tau, \theta) - \gamma_{0^r(k+l)w}(\tau, \theta)).$

Each $\gamma_w(\tau, \theta)$ is a linear combination of terms of the form $\tau^j e^{i(k \cdot \theta)}$. The coefficients $\gamma_w(\tau, \theta)$ are a solution of

$$\frac{\partial}{\partial \tau} \gamma_{wk}(\tau, \theta) + \omega \cdot \nabla_{\theta} \gamma_{wk}(\tau, \theta) = e^{ik \cdot \theta} \gamma_w(\tau, \theta), \quad \gamma_w(0, 0) = 0,$$

which is unique if we require that for each word w, $\gamma_w(\tau, \theta)$ depends polynomially on τ .

Recursive formulae for $\gamma_w(\tau, \theta)$

$$f r \in \mathbb{Z}^{+}, k \in \mathbb{Z}^{d} - \{0\}, l \in \mathbb{Z}^{d}, \text{ and } w \in \mathcal{W} \cup \{\emptyset\},$$

$$\gamma_{k}(\tau, \theta) = \frac{i}{k \cdot \omega} (1 - e^{i(k \cdot \theta)}),$$

$$\gamma_{0^{r}}(\tau, \theta) = \frac{\tau^{r}}{r!},$$

$$\gamma_{0^{r}k}(\tau, \theta) = \frac{i}{k \cdot \omega} (\gamma_{0^{r-1}k}(\tau, \theta) - \gamma_{0^{r}}(\tau, \theta)e^{i(k \cdot \theta)}),$$

$$\gamma_{klw}(\tau, \theta) = \frac{i}{k \cdot \omega} (\gamma_{lw}(t, \theta) - \gamma_{(k+l)w}(\tau, \theta)),$$

$$\gamma_{0^{r}klw}(\tau, \theta) = \frac{i}{k \cdot \omega} (\gamma_{0^{r-1}klw}(\tau, \theta) - \gamma_{0^{r}(k+l)w}(\tau, \theta)).$$

200

Definition

For each $(\tau, \theta) \in \mathbb{R} \times \mathbb{T}^d$ and each $y \in \mathbb{R}^n$,

$$\Phi_{ au, heta}(y) = \Psi_{ heta}(y + \sum_{w \in \mathcal{W}} \epsilon^{|w|} \gamma_w(au, \omega au) f_w(y)).$$

Main result

 $\forall (\tau, \theta), (\tau', \theta') \in \mathbb{R} \times \mathbb{T}^d$

$$\Phi_{\tau,\theta} \circ \Phi_{\tau',\theta'} = \Phi_{\tau+\tau',\theta+\theta'}.$$

▲ロ > ▲ □ > ■ → □ > ■ □

In particular, high-order averaging decomposition:

$$\varphi_{\tau}^{\epsilon} = \Phi_{\tau,\omega\tau} = \Phi_{\tau,0} \circ \Phi_{0,\omega\tau},$$

where $\Phi_{0,\omega\tau}$ is a quasiperiodic flow, and $\Phi_{\tau,0}$ is a smooth near-to-identity flow. Furthermore.

$$\Phi_{0,\omega\tau} = \Phi_{\tau}^{[1]} \circ \cdots \Phi_{\tau}^{[d]},$$

where each $\Phi_{\tau}^{[j]}$ is a $(2\pi/\omega_j)$ -periodic flow of a periodic vector field. In the Hamiltonian case, this gives *d* oscillatory formal invariants $I^j(y)$ of the original system (in addition to a smooth formal invariant $I^S(y)$ such that $H_F(y) + \epsilon H_S(y) = I^S(y) + \sum_i I^{[j]}(y)$). Explict expression of the formal invariants (Hamiltonian case)

Let us denote $\omega^{[j]} = (0, \ldots, 0, \omega_j, 0, \ldots, 0)$. Then

$$I^{[j]}(y) = \left. rac{d}{d au} \Psi_{ au\omega^{[j]}}(Y)
ight|_{ au=0} + \sum_{w\in\mathcal{W}} \epsilon^{|w|} \, eta^{[j]}_w \, H_w(y),$$

where

$$\begin{aligned} H_{k_1\cdots k_m} &= \left. \frac{1}{m} \{ H_{k_1}, \{ H_{k_2}, \dots \{ H_{k_{m-1}}, H_{k_m} \} \cdots \}, \\ \beta_w^{[j]} &= \left. \frac{d}{d\tau} \gamma_w(0, \omega^{[j]} \tau) \right|_{\tau=0}. \end{aligned}$$

Simple recursions from the recursions of $\gamma_w(\tau, \theta)$.

Recursion for coefficients of averaged equation

$$\begin{split} \beta_{k}^{[j]} &= -\frac{k \cdot \omega^{[j]}}{k \cdot \omega}, \\ \beta_{0^{r}}^{[j]} &= 0, \\ \beta_{0^{r}k}^{[j]} &= \frac{i}{k \cdot \omega} (\beta_{0^{r-1}k}^{[j]} - \beta_{0^{r}}^{[j]}), \\ \beta_{klw}^{[j]} &= \frac{i}{k \cdot \omega} (\beta_{lw}^{[j]} - \beta_{(k+l)w}^{[j]}), \\ \beta_{0^{r}klw}^{[j]} &= \frac{i}{k \cdot \omega} (\beta_{0^{r-1}klw}^{[j]} - \beta_{0^{r}(k+l)w}^{[j]}), \end{split}$$

▲□ > ▲圖 > ▲目 > ▲目 > → 目 - 釣A()