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Example (Fermi-Pasta-Ulam type problem)
Hamiltonian system with Hamiltonian function

L 1 1 )
H(p.p,q.3) = 5(pTP+p"P)+ 559" a4+ U(q,3),
_ 1, _ _
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Example (Fermi-Pasta-Ulam time problem (cont.))

Solution for the component gx(t),
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Example (Fermi-Pasta-Ulam time problem (cont.))

Solution for the component gx(t),
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and for n=20,1,2,3,...,

q2(2men)
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problem (cont
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Example (Fermi-Pasta-Ulam time problem (cont.))

Solution for the component gx(t),
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and for n=20,1,2,3,...

g2(2men), and q2(2 + 27en).




Consider a Hamiltonian system

d

= J7'VH(y;€), H(y;e):=e "He(y) + Hs(y),

Let ¢ : R?¢ — R?9 be such that 90;/5 is the t-flow of that
system. Assume that 2 is (27)-periodic.



Consider a Hamiltonian system

d

= J7'VH(y;€), H(y;e):=e "He(y) + Hs(y),

Let ¢ : R?¢ — R?9 be such that 90;/5 is the t-flow of that
system. Assume that 2 is (27)-periodic.

Stroboscopic averaging
There exists H(Y;¢€) = Ho(Y) + eH1(Y) + Ha(y) + -+,

d
—Y: _1 Y
Y =JIVH(Y:e),

such that, Y(2mwen) = y(2men) if Y(0) = y(0) = yo.




Example (Fermi-Pasta-Ulam type problem)

We consider
H(Y,e) = Ho(Y)+ Ha(Y) + *Ha(Y)
= H(Y;e)—l—@(eﬁ),

and plot the variation H(y(t); €) — H(y(0); €)
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Smooth invariant

Under the previous assumtions for

d - _
v =1 WH(y;e), H(yie) =€ 'He(y) + Hs(y),

consider H(Y;€) = Ho(Y) + eH1(Y) + €2Ha(y) + - - - as before,
then H(y; €) is a first integral of the original system.

Indeed, for t, = 2men, n=1,2,...
H(Y(tn); €) = H(y(tn); €) = Const
and by a interpolating argument, H(Y'(t); €) = Const, and thus

{H,H} =0.



Smooth invariant

Under the previous assumtions for

d - _
v =1 WH(y;e), H(yie) =€ 'He(y) + Hs(y),

consider H(Y;€) = Ho(Y) + eH1(Y) + €2Ha(y) + - - - as before,
then H(y; €) is a first integral of the original system.

Indeed, for t, = 2men, n=1,2,...
H(Y(tn); €) = H(y(tn); €) = Const
and by a interpolating argument, H(Y'(t); €) = Const, and thus

{H,H} =0.

Can this be generalized to the multi-frequency case?



Numerical integration of HOS with e-independent time-steps

Integrate the smooth system

%Y = JTIWVH(Y;e), Y(0) =y

instead of the highly oscillatory one. Different options
@ Symbolic-numeric algorithms using explicit knowledge of H

@ Purely numerical schemes that try to approximate Y(t) by
using H as input (HMSM, SAM, ...).

Motivated by that, we aim at
@ Obtaining formulae for H(Y; €) and its solutions Y(t)

@ Such formulae should be as explicit as possible and of
universal character

e Knowledge about possible (formal) invariants of the original
system.



Standard high order averaging [Bogoliubov and Mitropolski 1958,

Perko 1969, Sanders, Verhulst, Murdock 2007]

Under suitable assumptions on the HOS

d
Zv o= fly.t/e).
= (v, t/e)

there exists a formal (27e)-periodic change of variables
y = K(Y, t/e€) that transforms the original HOS into the
(averaged) autonomous equations

%Y = F(Y;€):=F(Y)+eFi(Y)+EF(Y)+ -

The change of variables y = K(Y, 7) is not unique:

@ Stroboscopic averaging: K(Y,0) =Y, which implies
Y (2men) = y(2men) for all n € Z.

° 027r K(Y,T)dr =Y,



Autonomous form for stroboscopic averaging

Consider an autonomous system (in terms of slow time 7 = t/e),

=1 f
7Y F(y) + efs(y),

and denote ¢ its 7-flow. Assume that ©9(y) is (27)-periodic in 7.

The periodic change of variables y = ©?(x) leads to a system in

standard form for periodic averaging
Tmeflor), Fom) = o () (e2()

where f(y,7) is (2m)-periodic in 7. In turn, a system in standard
form can be written in autonomous form, with y = (x,60) € R x T,

and
£()-(2) ()



Recall that we consider an autonomous system

Ly = )+ efsy). 1)

and denote ¢¢ its T-flow. (¢2(y) is (27)-periodic in 7.)

General idea for formal averaging

@ Obtain a formal representation of the 7-flow ¢ in the form
£ (y) = .- (y), where

P, 0(y) = 03(y + €Gi(y,T,0) + €Galy, 7,0) + - -),

and each Gj(y, 7, 6) is polynomial in 7 and (27)-periodic in 6.
e Under general assumptions, it holds V(7,0),(7',0') e R x T,

¢T,9 o (DT’,G’ = ¢T+T’,0+0’ ()/)




@ In particular, both @, and ®g ; are flows of autonomous
vector fields, the former a smooth near-to-identity map, and
the later a periodic map.

o If both fe(y) and fs(y) are Hamiltonian, then ®, o and &g -
are Hamiltonian flows (with Hamiltonian functions ¢H(y) and
He(y) + e(Hs(y) — H(y))), and since they commute with the
flow ¢S = @, ;, we have that {H, Hr +eHs} =0 (i.e., His a
formal invariant of the system).

@ The (stroboscopically) averaged ODE is

d d

EY =F(Y) = Ed)T’O(Y) s Y (1) = ¢,0(Y(0)),

and the (2)-periodic change of variables is
y =K(Y,7) = &g -(Y), so that, if Y(0) = y(0) = yo,

y(1) = ¢7(v0) = Prr(¥0) = P07 (Pr0(10)) = K(Y(7), 7).

@ The idea generalizes nicely to the quasiperiodic case!



Multifrequency case

Given w € R non-resonant (k -w # 0 for all k € Z9\{0}),

d
Zy=f t 0) =
= (v,wt), y(0)= yo,

where f(y,0) is
@ smooth in y

o 2m-periodic in each component of § € R, with Fourier
expansion

Fy,0) =Y ekDf(y).
keZd

@ The map f itself may depend on the frequencies w but we do
not reflect that in the notation.




High order averaging of quasi-periodic vector fields (Perko 1969)

Given the quasi-periodic vector field

d i(k-w
S = dhwt)=cd EIh(y).

keZd

there exists a formal quasi-periodic change of variables
y = K(Y,wt) that transforms the QP system into
d

ZY = eha(Y) +ER(Y)+ -

@ The first term Fi(y) is uniquely determined as

Fily) = 337 |, F0:0)40 = fly).

e K(Y,0) is not unique. Classical choice:

2y /Td K(y,0)do =y




B-series expansion of solution of the QP system

For the solutions of y = 3, e/(k©)tf (y),

(0%

“(ut) Fu(9(0).

g

y(£) = y(0) +

ueT

T is the set of rooted trees labelled by k € Z 9, and for each
ueT,

o the coefficients a,(t) are linear combinations of t/e/(k«)t,

o the elementary differentials 7, : R — R < are smooth maps,
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“(ut) Fu(9(0).

g

y(£) = y(0) +

ueT

T is the set of rooted trees labelled by k € Z 9, and for each
ueT,

o the coefficients a,(t) are linear combinations of t/e/(k«)t,

o the elementary differentials 7, : R — R < are smooth maps,
(o0u € Z is a normalization factor.)




B-series expansion of solution of the QP system
For the solutions of y = ", ei(k'w)tfk(y),

(¥(0));

ueT

T is the set of rooted trees labelled by k € Z 9, and for each
ueT,

o the coefficients a,(t) are linear combinations of t/e/(k«)t,

o the elementary differentials 7, : R — R < are smooth maps,
(o0u € Z is a normalization factor.)

<

Elementary coefficients

& /
au(t)—/ kD o (1. (£)dE, 1= [t tm]k.
0




Examples for rooted trees with less than 4 vertices

Fuly) ay(t)
® fi(y) o ekt gty
% 0 )hly) £ i eftktmtz)e gy i
(1
(m) () | fo Jo° Jo? e’Fatmetia)e gy dt dts
O,
m

fg”(}/)(fm(}/), fk()’)) fot fotz ei(kt1+mt1+£t2).w dt; dt




Examples for rooted trees with less than 4 vertices

fu(y) Oéu(t)
® fi(y) s ellkw)t gty
0
% 0 )hly) £ i eftktmtz)e gy i
(1
(m) () | fo Jo° Jo? e’Fatmetia)e gy dt dts
O,
. - . fg”(}/)(fm(}/)y fk()’)) fot fotz ei(kt1+mt1+£t2).w dt; dt,

For each u € T,
au(t) = Y ak(t)etee)r,
kezd

where each aX(t) is a polynomial in t.




Averaging with B-series

There exist (3, ay(t), ku(0), u € T, (au(t) polynomial, ,(6)
(27)-periodic) such that for any solution y(t) of the QP system

Y(t) = K(Y(D)0t), V()= F(Y (1),

where

F(Y) = Zﬁ“
ueT
Y(t) = +ZO‘“ Fu(Y(0)),
ueT
K(Y,0) = Y+Z”Zf
ueT v




Averaging with B-series

There exist (3, ay(t), ku(0), u € T, (au(t) polynomial, ,(6)
(27)-periodic) such that for any solution y(t) of the QP system

Y(t) = K(Y(D)0t), V()= F(Y (1),

where

F) = Y 2mm),

ueT

v = v+ 29 5 v())
ueT u
k(o) = v+ 3D g,
ueT u

That is, a(t) = a(t) * k(tw) with %o‘z(t) = a(t) * .



Observe that «(t) is such that

d
Sa(t) = a(t) «Bwt), a(0)=1,

where Bx(0) = €% and (,(#) = 0 if u has more than one vertices.
Recall that, for each v € T,

au(t) = ) aj(t)e’ ),

kezd

where each aX(t) is a polynomial in t. Consider now

Yu(t,0) = D ak(t)e’*O),

kezd

so that a(t) = v(t, tw). It is not difficult to see that

(% +w- v9)7(t79) = '7(t7 0) * /8(0)7 7(070) =1



The multifrequency case

Consider non-resonant w € R? (k-w #0if 0 # k € Z9) and

d
= fr(y) + efs(y)

where its 7-flow ¢ is such that 0 = W, where V6,6’ € T¢

Voo Wy = Vg, .

The change of variables y = ©9(x) = W, (x) transforms the

autonomous system into
9 e cfor), F0T) = 2V () fs(Wr(x))
7o X = ef(x,7), X, T = I —rw(X) fs(W 0 (X)).

We want to expand the solutions x(7) of the later in the form
x(7) = x(0) + €G1(x(0), 7, 7w) + €2 Go(x(0), 7, Tw) + - - -

Where each Gj(x, 7,0) is (2r)-periodic in each component of 0, it
is polynomial in 7, and Gj(x,0,0) = 0.



This will give an expansion of the solutions of the original
autonomous system of the form

}/(T) = (bT,Tw(y(O))

¢T,9(y) = W@(y + 6G]-(y7 T, 6) + 6262(}/,7', 9) + e )

There are many options of write such expansion. Among then, we
choose first Fourier expanding

d
f(x,0) = 5-W_g(x) fs(Wo(x = > % (x
kezd

and then, either using series indexed by rooted trees (B-series), or
series indexed by words.



Given w € R non-resonant (k-w #0if 0 # k € Z9)

ix = ef(x,Tw) =€ Z '™ (k9 (x),

dr
kezd



Given w € R non-resonant (k-w #0if 0 # k € Z9)

ix = ef(x,Tw) =€ Z '™ (k9 (x),

dr
kezd

Expansion of solutions of quasi-periodic system

x(£) = x(0) + Y el yu(r,wr) fu(x(0)),

wew

where W is the set of 'words’ w = kj - - - k, on the alphabet Z1,
and for each word w,
@ |w| is the number of letters in the word w, v,,(7,0) depends
polynomially in 7 and it is a Laurent polynomial on each e,
o and fipk = ffm, fomk = £ (fm, fy) + f.fLf;, and in general,

0

ot () = it (i ()



Each 7, (7, 6) is a linear combination of terms of the form
reikd)



Each 7, (7, 6) is a linear combination of terms of the form
I e/(k9)  The coefficients 7, (7, #) are a solution of

0 P
EVWI((’R 9) + W - ve VWk(T’ 6) = elk GFVW(Ta 9)7 IYW(Ov O) = 07

which is unique if we require that for each word w, v, (7, 6)
depends polynomially on 7.



Each 7, (7, 6) is a linear combination of terms of the form
I e/(k9)  The coefficients 7, (7, #) are a solution of

0 P
EVWI((’E 9) + W - ve FVWk(T’ 6) = elk GFVW(Ta 9)7 IYW(Ov O) = 07

which is unique if we require that for each word w, v, (7, 6)
depends polynomially on 7.

Recursive formulae for 7, (7, 0)

freZ*, keZ9—{0},/c€Z9 and w e WU {0},
Wrb) = - -iw(l — ik,
Yor(1,0) = :! :
ok(r8) = 1 (or1e(7:60) — 20r(7,6) <),
w(1,0) = = (l6,6) = Yl 0))
Yorkiw(T,0) = P _iw(”Yorflk/w(Ta 0) — 70’(k+/)w(7—’ 0)).

R R RS E EEEEEEEBEEBBmmmmS



For each (1,0) € R x T9 and each y € R”,

Sro(y) =Woly + Y el (rwr) fuly)).
wew

v
Main result

Y(7,0),(7,0') € R x T?¢

(DT’9 O CDT/’Q/ = ¢7-+7-/’9+9/.




In particular, high-order averaging decomposition:
(Pfr = q)T,wT = d>7',0 © q)O,wT;

where ®q ., is a quasiperiodic flow, and ®, g is a smooth
near-to-identity flow.
Furthermore,

®gr = ¢[T1] ol ¢[Td]’

where each ®¥ is a (27 /wj)-periodic flow of a periodic vector field.
In the Hamiltonian case, this gives d oscillatory formal invariants
/(y) of the original system (in addition to a smooth formal
invariant /°(y) such that He(y) + eHs(y) = I1°(y) + > 19 (y)).



Explict expression of the formal invariants (Hamiltonian case)

Let us denote wll = (0,.. ,0,w;,0,...,0). Then

. d )
1] - - . lw| U]
W(y) = VoY) Lt > e 8 Hu(v),
T wew
where
1
Hkl"'km = E{Hku {Hk27 000 {Hkm717 Hkm} T }7
n _ 4 Il
& dT'yW(O,w T) .

Simple recursions from the recursions of v, (7, ).



Recursion for coefficients of averaged equation

Ul

k
ﬁ[j]
B
ﬂk/w

60’ klw

k - bl
Ckew’
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(IBOf 1p

(50’ 1kiw
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— By, r(k+Hw );




