Models for return maps near a generalized homoclinic tangency for 3D-diffeomorphisms

A. Pumariño
(joint work with J. A. Rodríguez, J. C. Tatjer*, E. Vigil)
Departamento de Matemáticas
Universidad de Oviedo.
* Departament de Matemàtica Aplicada i Anàlisi
Universitat de Barcelona

Ddays2012
Benicassim, October 24-26, 2012.

Unfolding homoclinic tangencies: The 2D-case revisited

Let $f: M \rightarrow M$ a diffeomorphism defined on a compact manifold M. Let us assume the existence of a periodic saddle point p whose invariant manifolds intersects in some homoclinic point q. A natural question is :

Unfolding homoclinic tangencies: The 2D-case revisited

Let $f: M \rightarrow M$ a diffeomorphism defined on a compact manifold M. Let us assume the existence of a periodic saddle point p whose invariant manifolds intersects in some homoclinic point q. A natural question is :
How the existence of the homoclinic orbit affects to the dynamics? or:

Unfolding homoclinic tangencies: The 2D-case revisited

Let $f: M \rightarrow M$ a diffeomorphism defined on a compact manifold M. Let us assume the existence of a periodic saddle point p whose invariant manifolds intersects in some homoclinic point q. A natural question is :
How the existence of the homoclinic orbit affects to the dynamics? or:
What is new in the dynamical phase space when a homoclinic orbit arises?

Unfolding homoclinic tangencies: The 2D-case revisited

Let $f: M \rightarrow M$ a diffeomorphism defined on a compact manifold M. Let us assume the existence of a periodic saddle point p whose invariant manifolds intersects in some homoclinic point q. A natural question is :
How the existence of the homoclinic orbit affects to the dynamics? or:
What is new in the dynamical phase space when a homoclinic orbit arises?

Unfolding homoclinic tangencies:The 2D-case revisited

Some know phenomena arising in the unfolding of 2D-homoclinic tangencies

Unfolding homoclinic tangencies:The 2D-case revisited

Some know phenomena arising in the unfolding of 2D-homoclinic tangencies
Infinitely many sinks

Unfolding homoclinic tangencies:The 2D-case revisited

Some know phenomena arising in the unfolding of 2D-homoclinic tangencies
Infinitely many sinks NEWHOUSE,.....

Unfolding homoclinic tangencies:The 2D-case revisited

Some know phenomena arising in the unfolding of 2D-homoclinic tangencies
Infinitely many sinks NEWHOUSE,.....
Persistent strange attractors (but not infinitely many)

Unfolding homoclinic tangencies:The 2D-case revisited

Some know phenomena arising in the unfolding of 2D-homoclinic tangencies
Infinitely many sinks NEWHOUSE,.....
Persistent strange attractors (but not infinitely many) MORA,

VIANA...

Unfolding homoclinic tangencies:The 2D-case revisited

Some know phenomena arising in the unfolding of 2D-homoclinic tangencies
Infinitely many sinks NEWHOUSE,.....
Persistent strange attractors (but not infinitely many) MORA,

VIANA...
Infinitely many strange attractors (but not persistent)

Unfolding homoclinic tangencies:The 2D-case revisited

Some know phenomena arising in the unfolding of 2D-homoclinic tangencies
Infinitely many sinks NEWHOUSE,.....
Persistent strange attractors (but not infinitely many) MORA,

VIANA...
Infinitely many strange attractors (but not persistent) COLLI,....

Unfolding homoclinic tangencies:The 2D-case revisited

Some know phenomena arising in the unfolding of 2D-homoclinic tangencies
Infinitely many sinks NEWHOUSE,.....
Persistent strange attractors (but not infinitely many) MORA,

VIANA...
Infinitely many strange attractors (but not persistent) COLLI,.... Creation of horseshoes

Unfolding homoclinic tangencies:The 2D-case revisited

Some know phenomena arising in the unfolding of 2D-homoclinic tangencies
Infinitely many sinks NEWHOUSE,.....
Persistent strange attractors (but not infinitely many) MORA,

VIANA...
Infinitely many strange attractors (but not persistent) COLLI,.... Creation of horseshoes JUST THINKING A LITLLE BIT...

Unfolding homoclinic tangencies:The 2D-case revisited

Some know phenomena arising in the unfolding of 2D-homoclinic tangencies
Infinitely many sinks NEWHOUSE,.....
Persistent strange attractors (but not infinitely many) MORA,

VIANA...
Infinitely many strange attractors (but not persistent) COLLI,.... Creation of horseshoes JUST THINKING A LITLLE BIT...

Most of the above results have a common mathematical tool:

Unfolding homoclinic tangencies:The 2D-case revisited

Some know phenomena arising in the unfolding of 2D-homoclinic tangencies
Infinitely many sinks NEWHOUSE,.....
Persistent strange attractors (but not infinitely many) MORA,
VIANA...
Infinitely many strange attractors (but not persistent) COLLI,.... Creation of horseshoes JUST THINKING A LITLLE BIT...

Most of the above results have a common mathematical tool: The existence of a family of limit return maps associated to the unfolding of homoclinic tangency

Unfolding homoclinic tangencies:The 2D-case revisited

The limit return map for the 2D-case

Unfolding homoclinic tangencies:The 2D-case revisited

The limit return map for the 2D-case

- Reparametrization near the parameters for which there is the homoclinic tangency,

Unfolding homoclinic tangencies:The 2D-case revisited

The limit return map for the 2D-case

- Reparametrization near the parameters for which there is the homoclinic tangency,
- Change of scale near a point of the homoclinic orbit.

Unfolding homoclinic tangencies:The 2D-case revisited

The limit return map for the 2D-case

- Reparametrization near the parameters for which there is the homoclinic tangency,
■ Change of scale near a point of the homoclinic orbit.
$F_{a, n}=\Phi_{n} \circ f_{\mu}^{n} \circ \Phi_{n}^{-1} \quad \lim _{n \rightarrow \infty} F_{a, n}=\left(f_{a}(x), 0\right) \quad f_{a}(x)=1-a x^{2}$

Unfolding homoclinic tangencies:The 2D-case revisited

The family $f_{a}(x)=1-a x^{2}$ is the well-known one-dimensional quadratic family

Unfolding homoclinic tangencies:The 2D-case revisited

The family $f_{a}(x)=1-a x^{2}$ is the well-known one-dimensional quadratic family

For many values of the parameter a (for instance, for $a=2$), the quadratic map is conjugate to the piecewise linear map (one-dimensional tent map) $\lambda(x)=1-a|x|$

Unfolding homoclinic tangencies:The 2D-case revisited

The family $f_{a}(x)=1-a x^{2}$ is the well-known one-dimensional quadratic family

For many values of the parameter a (for instance, for $a=2$), the quadratic map is conjugate to the piecewise linear map (one-dimensional tent map) $\lambda(x)=1-a|x|$
In any case, a natural approach to understand the dynamics of the quadratic family is to obtain a complete description of the dynamics of the one dimensional tent maps.

Unfolding homoclinic tangencies:The 2D-case revisited

Hence, the long travel (more than fifty years...) from a single map

Unfolding homoclinic tangencies:The 2D-case revisited

Hence, the long travel (more than fifty years...) from a single map

to a strange attractor (those ones arising in the unfolding of a homoclinic tangency)

is complete

Off the record

These ideas were the starting point for proving that the proper HENON MAP

$$
H_{a, b}(x, y)=\left(1-a x^{2}+y, b x\right)
$$

exhibits a STRANGE ATTRACTOR for la large range of parameters (a, b). In:
Benedicks, M. and Carleson, L.- The dynamics of the Henon map. Ann. Math, 1991
the authors strongly use the idea that, after a simple change of coordinates, the Henon family can be written as

$$
H_{a, b}(x, y)=\left(1-a x^{2}+\sqrt{b} y, \sqrt{b} x\right)
$$

which is, for $0<b \ll 1$ very close to $\left(f_{a}(x), 0\right)=\left(1-a x^{2}, 0\right)$.

Unfolding homoclinic tangencies:The 2D-case revisited

MIDDLE POINT:

Unfolding homoclinic tangencies:The 2D-case revisited

$$
\Longrightarrow \text { MDDIE POINT } \Longrightarrow
$$

MIDDLE POINT:

PALIS, TAKENS, NEWHOUSE, MORA, VIANA, COLLI, YOCCOZ, TEDESCHINI-LALI, YORKE, ALLIGOOD, JAKOBSON, DIAZ, ROCHA, ROMERO, MAÑE, PACIFICO, ROVELLA, URES,...and many many others...

THE MAIN OBJETIVE OF THIS TALK

Dessing the same kind of travel for the case of the unfolding tangencies in the 3D-framework

THE MAIN OBJETIVE OF THIS TALK

Dessing the same kind of travel for the case of the unfolding tangencies in the 3D-framework

THE MAIN OBJETIVE OF THIS TALK

Dessing the same kind of travel for the case of the unfolding tangencies in the 3D-framework

MIDDLE POINT: Families of limit return maps for the unfolding of certain homoclinic bifurcation in dimension three.

THE 3-D MIDDLE POINT

Let us start this travel just in the middle point: Families of limit return maps for the unfolding of certain class of homoclinic tangencies in 3-D.

THE 3-D MIDDLE POINT

Let us start this travel just in the middle point: Families of limit return maps for the unfolding of certain class of homoclinic tangencies in 3-D. Suppose that for some $\left(a_{0}, b_{0}\right) \in \mathbb{R}^{2}$, a 3-D diffeomorphism $f_{a_{0}, b_{0}}$ has a hyperbolic fixed point p_{0} such that $\operatorname{dim} W^{u}\left(p_{0}\right)=2$ and the invariant manifolds of p_{0} have a homoclinic tangency:

THE 3-D MIDDLE POINT

Let us start this travel just in the middle point: Families of limit return maps for the unfolding of certain class of homoclinic tangencies in 3-D. Suppose that for some $\left(a_{0}, b_{0}\right) \in \mathbb{R}^{2}$, a 3-D diffeomorphism $f_{a_{0}, b_{0}}$ has a hyperbolic fixed point p_{0} such that $\operatorname{dim} W^{u}\left(p_{0}\right)=2$ and the invariant manifolds of p_{0} have a homoclinic tangency:

$$
\begin{gathered}
\left|\lambda_{1} \lambda_{2} \lambda_{3}\right|<1 \\
\left|\lambda_{1}\right|<1<\left|\lambda_{2}\right|<\left|\lambda_{3}\right|
\end{gathered}
$$

J. C. Tatjer.- Three-dimensional dissipative diffeomorphisms with homoclinic tangencies. Ergodic Theory and Dynamical Systems, 21. 2001.

THE 3-D MIDDLE POINT

In our case the family of limit return maps is

$$
\lim _{n \rightarrow \infty} F_{a, b, n}=f_{a, b}(x, y, z)=\left(z, a+b y+z^{2}, y\right)
$$

THE 3-D MIDDLE POINT

In our case the family of limit return maps is

$$
\lim _{n \rightarrow \infty} F_{a, b, n}=f_{a, b}(x, y, z)=\left(z, a+b y+z^{2}, y\right)
$$

We note that every point in \mathbb{R}^{3} falls in one iteration into the surface

$$
C_{a, b}=\left\{(x, y, z): y=a+b z+x^{2}\right\} .
$$

THE 3-D MIDDLE POINT

In our case the family of limit return maps is

$$
\lim _{n \rightarrow \infty} F_{a, b, n}=f_{a, b}(x, y, z)=\left(z, a+b y+z^{2}, y\right)
$$

We note that every point in \mathbb{R}^{3} falls in one iteration into the surface

$$
C_{a, b}=\left\{(x, y, z): y=a+b z+x^{2}\right\} .
$$

Therefore, our family of limit return maps reduce (as expected) to a bidimensional transformation given by

$$
T_{a, b}(x, y)=\left(a+y^{2}, x+b y\right)
$$

Let us start by drawing the subset of parameters (a, b), for which the map $T_{a, b}$ has an attractor.

The space of parameters

Region in the plane a, b for which $T_{a, b}$ has attractors

- Blue: attracting periodic point.
- Green: Attracting invariant union of closed curves.
- Red: 1D strange attractor.
- Black: 2D strange attractor.

Some of the pathologies

Some of the attractors numerically detected for $T_{a, b}$. Details can be found in
Tatjer and P.- Attractors for return maps near homoclinic tangencies of three-dimensional dissipative diffeomorphisms.
Discrete and continuous dynamical systems, series B, 2007.

Some of the pathologies

Some of the attractors numerically detected for $T_{a, b}$. Details can be found in
Tatjer and P.- Attractors for return maps near homoclinic tangencies of three-dimensional dissipative diffeomorphisms.
Discrete and continuous dynamical systems, series B, 2007.

会

A special value of the parameters $(a, b)=(-4,-2)$

$T_{-4,-2}$ is conjugate to the following trasformation: Let
$T_{0}=\{(u, v): 0 \leq u \leq 1,0 \leq v \leq u\}$ (the red one),
$T_{1}=\{(u, v): 1 \leq u \leq 2,0 \leq v \leq(2-u)\}$ (the blue one) and
$T=T_{0} \cup T_{1}$. Then, $T_{-4,-2}$ is conjugate to

$$
\Lambda=A \circ \mathcal{S}
$$

whit $\mathcal{S}(u, v)=\left\{\begin{array}{ccc}(u, v) & \text { if } & (u, v) \in T_{0} \\ (2-u, v) & \text { if } & (u, v) \in T_{1}\end{array}, A=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)\right.$.

A special value of the parameters $(a, b)=(-4,-2)$

Tatjer, J. C. \& P.- Dynamics near homocl inic bifurcations of threedimensional dissipative diffeomorphisms. Nonlinearity, 2006.

1 The mat Λ (and therefore $T_{-4,-2}$) is conjugate to the one sided shift with two symbols.
2 For almost all (u, v) the Lyapunov exponent of Λ along the orbit of (u, v) is positive (in fact, $\frac{1}{2} \log 2$) in all nonzero direction. The same holds for the return map $T_{a, b}$.
3 The map \wedge (or $T_{-4,-2}$) has an absolutely continuous ergodic invariant measure.

LET US CALL \wedge, THE BIDIMENSIONAL TENT MAP

THE BIDIMENSIONAL TENT MAP

As far as we know, this is the first example of a bidimensional map with a strange attractor with two positive Lyapounov exponents, which neither it nor any of its powers is C^{1}-conjugate to a "skew-product" map $S K(x, y)=\left(h_{1}(x), h_{2}(x, y)\right)$
Moreover,

THE BIDIMENSIONAL TENT MAP

As far as we know, this is the first example of a bidimensional map with a strange attractor with two positive Lyapounov exponents, which neither it nor any of its powers is C^{1}-conjugate to a "skew-product" map $S K(x, y)=\left(h_{1}(x), h_{2}(x, y)\right)$ Moreover, due to the geometry of this transformation

THE BIDIMENSIONAL TENT MAP

As far as we know, this is the first example of a bidimensional map with a strange attractor with two positive Lyapounov exponents, which neither it nor any of its powers is C^{1}-conjugate to a "skew-product" map $S K(x, y)=\left(h_{1}(x), h_{2}(x, y)\right)$ Moreover, due to the geometry of this transformation

we call it BAKER MAP, a nice name for a nice map.

THE BIDIMENSIONAL TENT MAP

As far as we know, this is the first example of a bidimensional map with a strange attractor with two positive Lyapounov exponents, which neither it nor any of its powers is C^{1}-conjugate to a "skew-product" map $S K(x, y)=\left(h_{1}(x), h_{2}(x, y)\right)$
Moreover, due to the geometry of this transformation

we call it BAKER MAP, a nice name for a nice map. BUT......

THE BIDIMENSIONAL TENT MAP

As far as we know, this is the first example of a bidimensional map with a strange attractor with two positive Lyapounov exponents, which neither it nor any of its powers is C^{1}-conjugate to a "skew-product" map $S K(x, y)=\left(h_{1}(x), h_{2}(x, y)\right)$ Moreover, due to the geometry of this transformation

we call it BAKER MAP, a nice name for a nice map. BUT...... SOMEONE SAID NO.....

THE BIDIMENSIONAL TENT MAP

As far as we know, this is the first example of a bidimensional map with a strange attractor with two positive Lyapounov exponents, which neither it nor any of its powers is C^{1}-conjugate to a "skew-product" map $S K(x, y)=\left(h_{1}(x), h_{2}(x, y)\right)$ Moreover, due to the geometry of this transformation

we call it BAKER MAP, a nice name for a nice map. BUT...... SOMEONE SAID NO..... HE IS NOW HERE.....

THE BIDIMENSIONAL TENT MAP

As far as we know, this is the first example of a bidimensional map with a strange attractor with two positive Lyapounov exponents, which neither it nor any of its powers is C^{1}-conjugate to a "skew-product" map $S K(x, y)=\left(h_{1}(x), h_{2}(x, y)\right)$ Moreover, due to the geometry of this transformation

we call it BAKER MAP, a nice name for a nice map. BUT...... SOMEONE SAID NO..... HE IS NOW HERE.....
PROBABLY ON THE FRONT ROW...

BAKER MAP IS NOT A GOOD NAME

He said to us that, more than fifty years ago, someone used the name of BAKER MAP to refer to certain conservative bidimensional transformation.

BAKER MAP IS NOT A GOOD NAME

He said to us that, more than fifty years ago, someone used the name of BAKER MAP to refer to certain conservative bidimensional transformation.
BUT..............................

BAKER MAP IS NOT A GOOD NAME

He said to us that, more than fifty years ago, someone used the name of BAKER MAP to refer to certain conservative bidimensional transformation.
BUT............................ This original (and so, the authentic)
Baker map is not continuous. In other words...

BAKER MAP IS NOT A GOOD NAME

He said to us that, more than fifty years ago, someone used the name of BAKER MAP to refer to certain conservative bidimensional transformation.
BUT........................... This original (and so, the authentic)
Baker map is not continuous. In other words... The baker needs a knife and the bread dough has to be surgery.

ALTERNATIVE NAMES FOR OUR MAP

Therefore, we thought in using one of the following alternatives for our (continuous, non operated, pacific...) transformation:

ALTERNATIVE NAMES FOR OUR MAP

Therefore, we thought in using one of the following alternatives for our (continuous, non operated, pacific...) transformation: THE OLD STYLE BAKER MAP

ALTERNATIVE NAMES FOR OUR MAP

Therefore, we thought in using one of the following alternatives for our (continuous, non operated, pacific...) transformation:
THE OLD STYLE BAKER MAP
THE MAP OF THE NON-AGGRESSIVE BAKER

ALTERNATIVE NAMES FOR OUR MAP

Therefore, we thought in using one of the following alternatives for our (continuous, non operated, pacific...) transformation:
THE OLD STYLE BAKER MAP
THE MAP OF THE NON-AGGRESSIVE BAKER

THE NATURAL BAKER MAP (Natural in the sense that the dough never has visited the operated room)

EXPANDING BAKER MAP IS THE BEST CHOICE

Fortunately, Joan Carles Tatjer uses his famous good sense and proposes the best choice to baptize our map under the name of EXPANDING BAKER MAP (although the baker probably is not too much happy).

EXPANDING BAKER MAP IS THE BEST CHOICE

Fortunately, Joan Carles Tatjer uses his famous good sense and proposes the best choice to baptize our map under the name of EXPANDING BAKER MAP (although the baker probably is not too much happy).
This is, of course, the starting point of the long travel...we have to make

LONG FAMILIES OF EXPANDING BAKER MAPS (EBM)

We extend the EBM, $\Lambda=A \circ \mathcal{S}$, to any map, $\tilde{\Lambda}=\tilde{A} \circ \mathcal{S}$, with $\mathcal{S}(u, v)=\left\{\begin{array}{cc}(u, v) & \text { if }(u, v) \in T_{0} \\ (2-u, v) & \text { if }(u, v) \in T_{1}\end{array}, \tilde{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right.$,
whenever

$$
\tilde{A}\left(T_{0}\right) \subset\left(T_{0} \bigcup T_{1}\right)=T
$$

A initial choice could be $\Lambda_{t}=\tilde{A} \circ \mathcal{S}$, with

$$
\tilde{A}=A_{t}=\left(\begin{array}{cc}
t & t \\
t & -t
\end{array}\right)
$$

for $0 \leq t \leq 1$, noting that, when, $t=1$ we recover the bidimensional tent map Λ.

First properties of these last EBM Λ_{t}

1 The triangle $T=T_{0} \cup T_{1}$ is invariant.

First properties of these last EBM Λ_{t}

1 The triangle $T=T_{0} \cup T_{1}$ is invariant.
2 If $0 \leq t<1 / \sqrt{2},(0,0)$ is an attracting (node) fixed point. It is a global attractor in $T_{0} \cup T_{1}$

First properties of these last EBM Λ_{t}

1 The triangle $T=T_{0} \cup T_{1}$ is invariant.
2 If $0 \leq t<1 / \sqrt{2},(0,0)$ is an attracting (node) fixed point. It is a global attractor in $T_{0} \cup T_{1}$
3 If $t>1 / \sqrt{2},(0,0)$ is a repelling node and $\mathcal{P}=\left(\frac{2 t(2 t+1)}{2 t^{2}+2 t+1}, \frac{2 t}{2 t^{2}+2 t+1}\right)$ is a repelling focus.

First properties of these last EBM Λ_{t}

1 The triangle $T=T_{0} \cup T_{1}$ is invariant.
2 If $0 \leq t<1 / \sqrt{2},(0,0)$ is an attracting (node) fixed point. It is a global attractor in $T_{0} \cup T_{1}$
3 If $t>1 / \sqrt{2},(0,0)$ is a repelling node and $\mathcal{P}=\left(\frac{2 t(2 t+1)}{2 t^{2}+2 t+1}, \frac{2 t}{2 t^{2}+2 t+1}\right)$ is a repelling focus.
4 The Lyapunov exponent of any point which is not a preimage of the critical line $v=1$ in any non-zero direction is $\log (\sqrt{2} t)$.

First properties of these last EBM Λ_{t}

1 The triangle $T=T_{0} \cup T_{1}$ is invariant.
2 If $0 \leq t<1 / \sqrt{2},(0,0)$ is an attracting (node) fixed point. It is a global attractor in $T_{0} \cup T_{1}$
3 If $t>1 / \sqrt{2},(0,0)$ is a repelling node and $\mathcal{P}=\left(\frac{2 t(2 t+1)}{2 t^{2}+2 t+1}, \frac{2 t}{2 t^{2}+2 t+1}\right)$ is a repelling focus.
4 The Lyapunov exponent of any point which is not a preimage of the critical line $v=1$ in any non-zero direction is $\log (\sqrt{2} t)$.
5 All the periodic orbits with no critical points are repelling if $t>1 / \sqrt{2}$.

Evolution for the attractor of $\Lambda_{t}:$ TYPES OF BREADS

As we said before, for $0 \leq t<1 / \sqrt{2},(0,0)$ the origin is a global attractor.

Evolution for the attractor of $\Lambda_{t}:$ TYPES OF BREADS

As we said before, for $0 \leq t<1 / \sqrt{2},(0,0)$ the origin is a global attractor.
For $1 / \sqrt{2}<t<(1 / 4)^{1 / 5}$, we have a 8 -pieces strange attractor.

Evolution for the attractor of $\Lambda_{t}:$ TYPES OF BREADS

As we said before, for $0 \leq t<1 / \sqrt{2},(0,0)$ the origin is a global attractor.
For $1 / \sqrt{2}<t<(1 / 4)^{1 / 5}$, we have a 8 -pieces strange attractor.

The right hand figure represents the attractor for certain value of (a, b) for the real return map $T_{a, b}$.

Evolution for the attractor of $\Lambda_{t}:$ TYPES OF BREADS

As we said before, for $0 \leq t<1 / \sqrt{2},(0,0)$ the origin is a global attractor.
For $1 / \sqrt{2}<t<(1 / 4)^{1 / 5}$, we have a 8 -pieces strange attractor.

The right hand figure represents the attractor for certain value of (a, b) for the real return map $T_{a, b}$.

Evolution for the attractor of $\Lambda_{t}:$ TYPES OF BREADS

For $(1 / 4)^{1 / 5}<t<(1 / 2)^{1 / 3}$, we have a 1-piece strange attractor with a hole:

Evolution for the attractor of $\Lambda_{t}:$ TYPES OF BREADS

For $(1 / 4)^{1 / 5}<t<(1 / 2)^{1 / 3}$, we have a 1-piece strange attractor with a hole:

The right hand figure represents the attractor for certain value of (a, b) for the real return map $T_{a, b}$.

Evolution for the attractor of $\Lambda_{t}:$ TYPES OF BREADS

For $(1 / 4)^{1 / 5}<t<(1 / 2)^{1 / 3}$, we have a 1-piece strange attractor with a hole:

The right hand figure represents the attractor for certain value of (a, b) for the real return $\operatorname{map} T_{a, b}$.

Bread roll's attractor Typical spanish
"rosca"

Evolution for the attractor of $\Lambda_{t}:$ TYPES OF BREADS

For $(1 / 2)^{1 / 3}<t<1$, we have a 1-piece strange attractor without holes:

Evolution for the attractor of $\Lambda_{t}:$ TYPES OF BREADS

For $(1 / 2)^{1 / 3}<t<1$, we have a 1-piece strange attractor without holes:

The right hand figure represents the attractor for certain value of (a, b) for the real return map $T_{a, b}$.

Evolution for the attractor of $\Lambda_{t}:$ TYPES OF BREADS

For $(1 / 2)^{1 / 3}<t<1$, we have a 1-piece strange attractor without holes:

The right hand figure represents the attractor for certain value of (a, b) for the real return map $T_{a, b}$.

Hogaza's attractor
None translation
founded.

Final comments

■ There are strong similarities between the behaviour of our family of EBMs and the non-invertible quadratic maps $T_{a, b}$, in the behaviour of the 2D strange attractors.

Final comments

- There are strong similarities between the behaviour of our family of EBMs and the non-invertible quadratic maps $T_{a, b}$, in the behaviour of the 2D strange attractors.
- A renormalization procedure can be used to explain the behaviour of the EBM when the baker produces fairy cakes. As far as we know this is the first example in 2-D transformations where a Renormalization method produces nice (and not nice also) results as well as in the quadratic family (or in the family of unidimensional tent-maps).

Final comments

- There are strong similarities between the behaviour of our family of EBMs and the non-invertible quadratic maps $T_{a, b}$, in the behaviour of the 2D strange attractors.
- A renormalization procedure can be used to explain the behaviour of the EBM when the baker produces fairy cakes. As far as we know this is the first example in 2-D transformations where a Renormalization method produces nice (and not nice also) results as well as in the quadratic family (or in the family of unidimensional tent-maps).
- For EBM it is enough (as in the one dimensional case) to control the orbits of the critical points in order to capture attractors.

Final comments

- There are strong similarities between the behaviour of our family of EBMs and the non-invertible quadratic maps $T_{a, b}$, in the behaviour of the 2D strange attractors.
- A renormalization procedure can be used to explain the behaviour of the EBM when the baker produces fairy cakes. As far as we know this is the first example in 2-D transformations where a Renormalization method produces nice (and not nice also) results as well as in the quadratic family (or in the family of unidimensional tent-maps).
- For EBM it is enough (as in the one dimensional case) to control the orbits of the critical points in order to capture attractors.
■ Using the results of Tsujii (Invent. math. 143 (2001)) it seems possible to prove that the invariant sets that we find have absolutely continuous invariant measures.

More final comments

- Choosing different expanding matrices A in the definition of EBMs it is also possible to produce what seems to be 1-D strange attractors. For instance, if we take $\Lambda=A \circ \mathcal{S}$, with

$$
\mathcal{S}(u, v)=\left\{\begin{array}{c}
(u, v),(u, v) \in T_{0} \\
(2-u, v),(u, v) \in T_{1}
\end{array} \quad A=\left(\begin{array}{cc}
1.75 & -0.25 \\
0.25 & 0.25
\end{array}\right)\right.
$$

More final comments

- Choosing different expanding matrices A in the definition of EBMs it is also possible to produce what seems to be 1-D strange attractors. For instance, if we take $\Lambda=A \circ \mathcal{S}$, with
$\mathcal{S}(u, v)=\left\{\begin{array}{c}(u, v),(u, v) \in T_{0} \\ (2-u, v),(u, v) \in T_{1}\end{array} \quad A=\left(\begin{array}{cc}1.75 & -0.25 \\ 0.25 & 0.25\end{array}\right)\right.$ then, the baker produces

Last final comments

- It seems that some of the numerically computed attractors for the real limit retun map $T_{a, b}$ has no equivalent one in the world of EBMs. For instance, for certain (a, b), the attractor looks like
e) R.: $[-2.825,-2.616] \times[-0.412,-0.328], t=1.88762$

Last final comments

- It seems that some of the numerically computed attractors for the real limit retun map $T_{a, b}$ has no equivalent one in the world of EBMs. For instance, for certain (a, b), the attractor looks like
e) R.: $[-2.825,-2.616] \times[-0.412,-0.328], t=1.88762$

However, if we extend our family of EBMs to a 2D-parametric scenario new types of breads appear.

BREAD IS SERVED......THANK YOU VERY MUCH

