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Unfolding homoclinic tangencies: The 2D-case revisited

Let f : M → M a diffeomorphism defined on a compact manifold
M. Let us assume the existence of a periodic saddle point p whose
invariant manifolds intersects in some homoclinic point q. A
natural question is :

How the existence of the homoclinic orbit affects to the dynamics?
or:
What is new in the dynamical phase space when a homoclinic orbit
arises?
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Some know phenomena arising in the unfolding of 2D-homoclinic
tangencies

Infinitely many sinks NEWHOUSE,.....
Persistent strange attractors (but not infinitely many) MORA,

VIANA...
Infinitely many strange attractors (but not persistent) COLLI,....
Creation of horseshoes JUST THINKING A LITLLE BIT...

Most of the above results have a common mathematical tool:
The existence of a family of limit return maps associated to the
unfolding of homoclinic tangency
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The limit return map for the 2D-case

Reparametrization near the parameters for which there is the
homoclinic tangency,

Change of scale near a point of the homoclinic orbit.

Fa,n = Φn◦f nµ ◦Φ−1
n limn→∞Fa,n = (fa(x), 0) fa(x) = 1−ax2
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Unfolding homoclinic tangencies:The 2D-case revisited

The family fa(x) = 1− ax2 is the well-known one-dimensional
quadratic family

For many values of the parameter a (for instance, for a = 2), the
quadratic map is conjugate to the piecewise linear map
(one-dimensional tent map) λ(x) = 1− a|x |
In any case, a natural approach to understand the dynamics of the
quadratic family is to obtain a complete description of the
dynamics of the one dimensional tent maps.
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to a strange attractor (those ones
arising in the unfolding of a homoclinic tangency)

is complete
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Off the record

These ideas were the starting point for proving that the proper
HENON MAP

Ha,b(x , y) = (1− ax2 + y , bx)

exhibits a STRANGE ATTRACTOR for la large range of
parameters (a, b). In:
Benedicks, M. and Carleson, L.- The dynamics of the Henon map.
Ann. Math, 1991
the authors strongly use the idea that, after a simple change of
coordinates, the Henon family can be written as

Ha,b(x , y) = (1− ax2 +
√
by ,
√
bx)

which is, for 0 < b << 1 very close to (fa(x), 0) = (1− ax2, 0).
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YOCCOZ, TEDESCHINI-LALI, YORKE, ALLIGOOD,
JAKOBSON, DIAZ, ROCHA, ROMERO, MAÑE, PACIFICO,
ROVELLA, URES,...and many many others...
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THE MAIN OBJETIVE OF THIS TALK

Dessing the same kind of travel for the case of the unfolding
tangencies in the 3D-framework

MIDDLE POINT: Families of limit return maps for the unfolding of
certain homoclinic bifurcation in dimension three.
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THE 3-D MIDDLE POINT

Let us start this travel just in the middle point: Families of limit
return maps for the unfolding of certain class of homoclinic
tangencies in 3-D.

Suppose that for some (a0, b0) ∈ R2, a 3-D
diffeomorphism fa0,b0 has a hyperbolic fixed point p0 such that
dimW u(p0) = 2 and the invariant manifolds of p0 have a
homoclinic tangency:

J. C. Tatjer.- Three-dimensional dissipative diffeomorphisms with
homoclinic tangencies. Ergodic Theory and Dynamical Systems,
21. 2001.
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THE 3-D MIDDLE POINT

In our case the family of limit return maps is

lim
n→∞

Fa,b,n = fa,b(x , y , z) = (z , a + by + z2, y)

We note that every point in R3 falls in one iteration into the
surface

Ca,b = {(x , y , z) : y = a + bz + x2}.

Therefore, our family of limit return maps reduce (as expected) to
a bidimensional transformation given by

Ta,b(x , y) = (a + y2, x + by),

Let us start by drawing the subset of parameters (a, b), for which
the map Ta,b has an attractor.



THE 3-D MIDDLE POINT

In our case the family of limit return maps is

lim
n→∞

Fa,b,n = fa,b(x , y , z) = (z , a + by + z2, y)

We note that every point in R3 falls in one iteration into the
surface

Ca,b = {(x , y , z) : y = a + bz + x2}.

Therefore, our family of limit return maps reduce (as expected) to
a bidimensional transformation given by

Ta,b(x , y) = (a + y2, x + by),

Let us start by drawing the subset of parameters (a, b), for which
the map Ta,b has an attractor.



THE 3-D MIDDLE POINT

In our case the family of limit return maps is

lim
n→∞

Fa,b,n = fa,b(x , y , z) = (z , a + by + z2, y)

We note that every point in R3 falls in one iteration into the
surface

Ca,b = {(x , y , z) : y = a + bz + x2}.

Therefore, our family of limit return maps reduce (as expected) to
a bidimensional transformation given by

Ta,b(x , y) = (a + y2, x + by),

Let us start by drawing the subset of parameters (a, b), for which
the map Ta,b has an attractor.



The space of parameters

Region in the plane a, b for which Ta,b has attractors
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Blue: attracting
periodic point.

Green: Attracting
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closed curves.

Red: 1D strange
attractor.

Black: 2D strange
attractor.



Some of the pathologies

Some of the attractors numerically detected for Ta,b. Details can
be found in
Tatjer and P.- Attractors for return maps near homoclinic
tangencies of three-dimensional dissipative diffeomorphisms.
Discrete and continuous dynamical systems, series B, 2007.
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A special value of the parameters (a, b) = (−4,−2)

T−4,−2 is conjugate to the following trasformation: Let
T0 = {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ u} (the red one),
T1 = {(u, v) : 1 ≤ u ≤ 2, 0 ≤ v ≤ (2− u)} (the blue one) and
T = T0 ∪ T1. Then, T−4,−2 is conjugate to

Λ = A ◦ S,

whit S(u, v) =

{
(u, v) if (u, v) ∈ T0

(2− u, v) if (u, v) ∈ T1
, A =

(
1 1
1 −1

)
.

hola



A special value of the parameters (a, b) = (−4,−2)

1 The mat Λ (and therefore T−4,−2) is conjugate to the one
sided shift with two symbols.

2 For almost all (u, v) the Lyapunov exponent of Λ along the
orbit of (u, v) is positive (in fact, 1

2 log 2) in all nonzero
direction. The same holds for the return map Ta,b.

3 The map Λ (or T−4,−2) has an absolutely continuous ergodic
invariant measure.

LET US CALL Λ, THE BIDIMENSIONAL TENT MAP



THE BIDIMENSIONAL TENT MAP

As far as we know, this is the first example of a bidimensional map
with a strange attractor with two positive Lyapounov exponents,
which neither it nor any of its powers is C 1-conjugate to a
”skew-product” map SK (x , y) = (h1(x), h2(x , y))
Moreover,

due to the geometry of this transformation

we call it BAKER MAP, a nice name for a nice map.
BUT...... SOMEONE SAID NO.....
HE IS NOW HERE.....
PROBABLY ON THE FRONT ROW...
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BAKER MAP IS NOT A GOOD NAME

He said to us that, more than fifty years
ago, someone used the name of BAKER MAP to refer to certain
conservative bidimensional transformation.

BUT............................. This original (and so, the authentic)
Baker map is not continuous. In other words... The baker needs a
knife and the bread dough has to be surgery.
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ALTERNATIVE NAMES FOR OUR MAP

Therefore, we thought in using one of the following alternatives for
our (continuous, non operated, pacific...) transformation:

THE OLD STYLE BAKER MAP
THE MAP OF THE NON-AGGRESSIVE BAKER

THE NATURAL BAKER MAP (Natural in the sense that the
dough never has visited the operated room)
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EXPANDING BAKER MAP IS THE BEST CHOICE

Fortunately, Joan Carles Tatjer uses his famous good sense and
proposes the best choice to baptize our map under the name of
EXPANDING BAKER MAP (although the baker probably is not
too much happy).

This is, of course, the starting point of the long travel...we have to
make
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LONG FAMILIES OF EXPANDING BAKER MAPS (EBM)

We extend the EBM, Λ = A ◦ S, to any map, Λ̃ = Ã ◦ S, with

S(u, v) =

{
(u, v) if (u, v) ∈ T0

(2− u, v) if (u, v) ∈ T1
, Ã =

(
a b
c d

)
,

whenever
Ã(T0) ⊂ (T0

⋃
T1) = T

A initial choice could be Λt = Ã ◦ S, with

Ã = At =

(
t t
t −t

)
,

for 0 ≤ t ≤ 1, noting that, when, t = 1 we recover the
bidimensional tent map Λ.



First properties of these last EBM Λt

1 The triangle T = T0 ∪ T1 is invariant.

2 If 0 ≤ t < 1/
√

2, (0, 0) is an attracting (node) fixed point. It
is a global attractor in T0 ∪ T1

3 If t > 1/
√

2, (0, 0) is a repelling node and

P =
(

2t(2t+1)
2t2+2t+1

, 2t
2t2+2t+1

)
is a repelling focus.

4 The Lyapunov exponent of any point which is not a preimage
of the critical line v = 1 in any non-zero direction is log(

√
2t).

5 All the periodic orbits with no critical points are repelling if
t > 1/

√
2.
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Evolution for the attractor of Λt :TYPES OF BREADS

As we said before, for 0 ≤ t < 1/
√

2, (0, 0) the origin is a global
attractor.

For 1/
√

2 < t < (1/4)1/5, we have a 8-pieces strange attractor.
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(a, b) for the real return map Ta,b.
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Evolution for the attractor of Λt :TYPES OF BREADS

For (1/4)1/5 < t < (1/2)1/3, we have a 1-piece strange attractor
with a hole:
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Evolution for the attractor of Λt :TYPES OF BREADS

For (1/2)1/3 < t < 1, we have a 1-piece strange attractor without
holes:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

t=0.8

-0.42

-0.41

-0.4

-0.39

-0.38

-0.37

-0.36

-0.35

-0.34

-0.33

-0.32

-2.85 -2.8 -2.75 -2.7 -2.65 -2.6

t=1.88904

The right hand figure represents the attractor for certain value of
(a, b) for the real return map Ta,b.



Evolution for the attractor of Λt :TYPES OF BREADS

For (1/2)1/3 < t < 1, we have a 1-piece strange attractor without
holes:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

t=0.8

-0.42

-0.41

-0.4

-0.39

-0.38

-0.37

-0.36

-0.35

-0.34

-0.33

-0.32

-2.85 -2.8 -2.75 -2.7 -2.65 -2.6

t=1.88904

The right hand figure represents the attractor for certain value of
(a, b) for the real return map Ta,b.



Evolution for the attractor of Λt :TYPES OF BREADS

For (1/2)1/3 < t < 1, we have a 1-piece strange attractor without
holes:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

t=0.8

-0.42

-0.41

-0.4

-0.39

-0.38

-0.37

-0.36

-0.35

-0.34

-0.33

-0.32

-2.85 -2.8 -2.75 -2.7 -2.65 -2.6

t=1.88904

The right hand figure represents the attractor for certain value of
(a, b) for the real return map Ta,b.



Final comments

There are strong similarities between the behaviour of our
family of EBMs and the non-invertible quadratic maps Ta,b, in
the behaviour of the 2D strange attractors.

A renormalization procedure can be used to explain the
behaviour of the EBM when the baker produces fairy cakes.
As far as we know this is the first example in 2-D
transformations where a Renormalization method produces
nice (and not nice also) results as well as in the quadratic
family (or in the family of unidimensional tent-maps).
For EBM it is enough (as in the one dimensional case) to
control the orbits of the critical points in order to capture
attractors.
Using the results of Tsujii (Invent. math. 143 (2001)) it
seems possible to prove that the invariant sets that we find
have absolutely continuous invariant measures.
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More final comments

Choosing different expanding matrices A in the definition of
EBMs it is also possible to produce what seems to be 1-D
strange attractors. For instance, if we take
Λ = A ◦ S, with

S(u, v) =

{
(u, v), (u, v) ∈ T0

(2− u, v), (u, v) ∈ T1
A =

(
1.75 −0.25
0.25 0.25

)

then, the baker produces
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Last final comments

It seems that some of the numerically computed attractors for
the real limit retun map Ta,b has no equivalent one in the
world of EBMs. For instance, for certain (a, b), the attractor
looks like

e) R.:  [-2.825,-2.616]x[-0.412,-0.328],  t= 1.88762

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.95  1  1.05  1.1  1.15  1.2  1.25  1.3  1.35  1.4

t=1.11, s=0.453

However, if we extend our family of EBMs to a 2D-parametric
scenario new types of breads appear.
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BREAD IS SERVED......THANK YOU VERY MUCH
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