A global study of 2D dissipative diffeomorphisms with a Poincaré homoclinic figure-eight.

DDAYS 2012, Benicàssim,

October 24-26, 2012

A. Vieiro
(Univ. Barcelona)

Joint work with S. Gonchenko (Univ. Nizhny Nóvgorod) and C. Simó (Univ. Barcelona)

Introduction

We consider a family $T_{\mu, \epsilon}, \mu \in \mathbb{R}^{2}, \epsilon \in \mathbb{R}$, of 2 D analytic diffeomorphisms.
$T_{\mu, \epsilon}$ can be seen as the Poincaré map of a non-autonomous (2π-periodic in time) $\mathcal{O}(\epsilon)$-perturbation of an autonomous family of vector fields f_{μ}.

- The non-autonomous perturbation is assumed to be fixed and sufficiently small (equivalently, ϵ is a small given value).
- The family of autonomous systems f_{μ} is a 2-parameter unfolding of the system f_{0}, which we assume to posses a homoclinic figure-eight to a dissipative saddle point.

Let $\Gamma^{+}=W^{u+}=W^{s+}$ and $\Gamma^{-}=W^{u-}=$ W^{s-} be the homoclinic loops of the flow f_{0}. Then $\Gamma_{0}=\Gamma^{+} \cup \Gamma^{-}$is the (unperturbed) homoclinic figure-eight of the saddle O.

Motivation

$T_{\mu, \epsilon}$ are pendulum-like systems under forcing and dissipation.

- Forcing \Rightarrow elliptic point becomes a repellor.
- Dissipation \Rightarrow the dynamics is towards the separatrix.

The cylinder-sphere-stereo projection identifies with a dissipative figure-eight.

Device? pendulum + dissipation proportional to velocity (assymetric if different bulk left/right shapes) + magnetic field kicks at the minimum to make the fixed points unstable.

Idea of this talk

We want to study the parameter space of $T_{\mu, \epsilon}$ for ϵ small fixed. Concretely, we consider:

1. A qualitative approach to the full bifurcation diagram.
\rightarrow Different dynamics and regions.
\rightarrow Homoclinic dynamics. Lobe dynamics.
\rightarrow MS \& SA boundaries.
2. A quantitative approach to the full bifurcation diagram.

We use a separatrix map model.
\rightarrow Size of the main regions having different dynamics.
\rightarrow Scaling properties of the bifurcation diagram.
\rightarrow Stability regions related to cubic tangencies.
This talk is based on (some of) the results that can be found in
Richness of dynamics and global bifurcations in systems with a homoclinic figure-eight.
S.V. Gonchenko, C. Simó and AV, submitted to Nonlinearity.

The flow (autonomous) case

Bifurcations of limit cycles from a homoclinic loop to a saddle:

- Let $\lambda>0$ and $-\gamma<0$ the characteristic roots of the saddle.
- If $\sigma=\lambda-\gamma \neq 0$ exactly one limit cycle is born (Andronov-Leontovich).

Left: unfolding a dissipative loop. Right: figure-eight before unfolding.

The flow case: bifurcation diagram

- Six regions.
- Boundaries:

$$
\begin{aligned}
& W^{u+}=W^{s+}(\mathrm{I} \rightarrow \mathrm{II}) \\
& W^{u-}=W^{s+}(\mathrm{II} \rightarrow \mathrm{II}) \\
& W^{u-}=W^{s-}(\mathrm{II} \rightarrow \mathrm{IV}) \\
& W^{u+}=W^{s+}(\mathrm{IV} \rightarrow \mathrm{~V}) \\
& W^{u+}=W^{s-}(\mathrm{V} \rightarrow \mathrm{VI}) \\
& W^{u-}=W^{s-}(\mathrm{VI} \rightarrow \mathrm{I})
\end{aligned}
$$

D. Turaev. On a case of bifurcation of a contour composed by two homoclinic curves of a saddle.

Methods of the qualitative theory of differential equations, Ed. Gorki, 1984, 162-175.

The diffeomorphism case: bifurcation diagram

We consider the effect of the non-autonomous perturbation and we look at the Poincaré map.

Properties of the bifurcation diagram of $T_{\mu, \epsilon}$

1. There appear $\mathbf{3 5}$ regions with different dynamics!
2. These regions are separated by first/last tangency curves

$$
\mathrm{L}_{1}^{+}, \mathrm{L}_{2}^{+}, \mathrm{L}_{1}^{-}, \mathrm{L}_{2}^{-}, \mathrm{L}_{1}^{ \pm}, \mathrm{L}_{2}^{ \pm}, \mathrm{L}_{1}^{\mp}, \mathrm{L}_{2}^{\mp},
$$

and/or by "curves" that indicate transitions from "simple" dynamics to strange attractor (e.g. folding of an invariant curve can cause collision between tangent/normal bundles and create a SA)

$$
\mathrm{BD}^{+}, \mathrm{BD}^{-}, \mathrm{BD}^{+-} .
$$

3. Only the $\mathrm{L}_{1,2}^{+,-}$are smooth. The curves $\mathrm{L}_{1,2}^{ \pm, \mp}$ have a complicated structure (later) with infinitely many intervals of smoothness.
4. Multiple attractors can coexist.
\rightarrow For a detailed analysis we introduce the following return map model...

A quantitative model: dissipative separatrix map

$\rightarrow \mathrm{FD}=$ two annuli: the index j equals 1 if $s=1$ and $j=2$ if $s=-1$.
$\rightarrow \psi=\lambda / \gamma$ accounts for the dissipation in the passage near the saddle.
\rightarrow Returning time $=$ constant $\omega_{j}+$ "flying" time $A \log (y)$ near the saddle.
$\rightarrow y=a_{j}+\eta+b_{j} \sin (2 \pi z)$, and for both η (distance w.r.t. W^{u}) and y (distance w.r.t. W^{s}) the positive orientation points towards the saddle.
\rightarrow If $a_{j}=b_{j}=0$ both branches $W^{u / s}$ coincide.
For $b_{j}=0$ it mimics the vector field provided $\left|a_{j}\right|<(\psi-1) / \psi^{\psi /(\psi-1)}$.
Then b_{j} play the role of ϵ (they undulate the inv. manifolds).
\rightarrow In the simulations: $\omega_{j}=0, A=2, \psi=1.6, b_{1}=0.003, b_{2}=0.0015$.
Then a_{1}, a_{2} are taken as leading parameters ranging in $[-0.15,0.15]$.

A preliminary numerical exploration of the model

In the (a_{1}, a_{2})-parameter space we compute first/last primary homoclinic quadratic tangency curves between $W^{u \pm}=\{\eta=0, s= \pm 1\}$ and $W^{s \pm}=\{y=0, s= \pm 1\}$. The curves $L_{1,2}^{ \pm}$and $L_{1,2}^{\mp}$ are the envelope of different bifurcating curves (related to different primary quadratic tangencies) that bound a "diagonal" strip with "stair-type" structure. Essentially 8 curves.

Bifurcating curves within $H Z^{ \pm}$

Homoclinic tangencies - phase space

Comments on the attractors

1. Only the regions $I, I I, \ldots, \mathrm{VI}$ are related to non-chaotic dynamics (like the flow). The global attractors are invariant curves C^{+}, C^{-}and/or C^{*}.
2. In the chaotic regions, the closure of the invariant manifolds can contain a quasi-attractor: a nontrivial attracting invariant set which contains stable p.o. (sinks) and/or SA (maybe made by several pieces). Arbitrarily small perturbations of the parameters when a SA is found can give rise to sinks.
3. There appear strange attractors of different nature:
$\rightarrow A^{+}, A^{-}$and A^{*} are born under the break-down of the closed invariant curves C^{+}, C^{-}and C^{*} : Due to the folding of the curve it becomes tangent to stable foliation of the saddle fixed point.
\rightarrow The global attractors $A T^{+}, A T^{-}$and $G A$ are "homoclinic attractors" related to the intersection of (some or all) the invariant manifolds.
\rightarrow SA can also appear at the end of a period doubling cascade of sinks. These attractors have local character.

Tail attractors

Homoclinic intersections:

(a) "Tail" strange attractor $A T^{+} \quad(\mu \in \mathbf{2 6})$
(b) Global strange attractor $G A \quad(\mu \in 19)$

Double homoclinic tangencies

The boundaries of $\mathrm{HZ}^{+,-, \pm, \mp}$ intersect at \rightarrow double primary tangencies b, d, e, f, g, h
\rightarrow double non-primary tangencies a, c.

The stepness of $H Z^{ \pm, \mp}$

Tangency "b"

(c)

(a)

Cubic single-round homoclinic tangencies

Outer map:

$$
\begin{aligned}
\bar{x}-x^{+} & =a x+b\left(y-y^{-}\right), \\
\bar{y} & =c x+d\left(y-y^{-}\right)^{3} .
\end{aligned}
$$

Single round k-p.o, k large, limit return map:

$$
\begin{aligned}
\bar{X} & =Y, \\
\bar{Y} & =M_{1}+M_{2} Y+\operatorname{sign}(d) Y^{3} .
\end{aligned}
$$

In our system, c_{1}, \ldots, c_{4} cubic tangencies inside $H Z^{ \pm}$and $H Z^{\mp}$.

Lemma. All the cubic tangencies c_{1}, \ldots, c_{4} are of spring-area type $(d<0)$.

Accumulation of links inside $H Z^{ \pm}$

Lemma.

1. The primary cubic tangencies c_{1} can exist only if $W^{u+} \cap W^{s+}=\emptyset$ and $W^{u-} \cap$ $W^{s-}=\emptyset$ (i.e. in the regions 3 and 10 of the bif. diagram).
2. The primary cubic tangencies c_{2} can exist if $W^{s+} \cap W^{u+}=\emptyset$ (i.e. in the regions 3, 10 and 18).
3. The primary cubic tangencies c_{3} can exist if $W^{s-} \cap W^{u-}=\emptyset$ (i.e. in the regions 3, 10 and 15).
4. In the region 19 of the bif. diagram only primary cubic tangencies c_{4} can exist.

Corollary. The cusp points c_{1}, c_{2}, c_{3} and c_{4} accumulate to the points $\mathrm{a}, \mathrm{d}, \mathrm{b}$ and c resp.

Further analysis of the model: MLE

For each (a_{1}, a_{2})-parameters we take $z_{0}=0.5, \eta_{0}=0$ and $s_{0}=1$ (left) or $s_{0}=1$ (right) as i.c. (i.e. on W^{u}) and compute the Max. Lyap. $\exp . \Lambda$.

Red points correspond to $\Lambda>0$ (chaotic attractor), green points to $\Lambda=0$ (invariant curve) and white points to $\Lambda<0$ (periodic sink).

Stability regions $(\Lambda<0)$ related to periodic sinks

Stability region: magnification

Blue: set of $\left(a_{1}, a_{2}\right)$-parameters with $\Lambda<0$ for the i.c. $(0.5,0,1)$. The attractor is a periodic sink.
Red: parameters for which there is a 2-periodic sink as attractor.

The cross-road scenario

If k is not large enough (depending on the parameters) other configurations might appear (non-local effects and role of high order terms in the return map). One of this, which is commonly observed in numerical explorations and related to the spring-area configuration, is the cross-road scenario.

H. Broer, C. Simó and J.C. Tatjer. Towards global models near homoclinic tangencies of dissipative diffeomorphisms. Nonlinearity, 1998, 11, 667-770.
J.P. Carcassès, C. Mira, M. Bosch, C. Simó and J.C. Tatjer. "Crossroad area-spring area" transition (I)-(II). Parameter plane representation. Int. J. Bifur. and Chaos, 1991, 1.

Transition to spring-area: larger (return) periods

Note the progressive destruction of the previous crossroad domain.

Lyapunov exponents

A sample of attractors I $\left(a_{2}=0\right)$

1st row: invariant curve ($a_{1}=-0.145$), SA of type A^{*} with a global nature ($a_{1}=-0.129$), detail of the fold in the previous $\mathrm{SA}\left(a_{1}=-0.129\right)$ and a SA of type A^{*} with a local periodic nature $\left(a_{1}=-0.073\right)$. 2nd row: Detail of the Hénon-like structure of the previous SA ($a_{1}=-0.073$), SA of type A^{*} with a local nature ($a_{1}=-0.034$), globalization of the previous SA ($a_{1}=-0.033$) and a SA of type $A^{-}\left(a_{1}=0.006\right)$.

A sample of attractors II ($\left.a_{2}=-0.001\right)$

Left: Tail attractor of type $A T^{-}\left(a_{1}=-0.0095\right)$. Center: Magnification of the previous figure. Right: Global SA of type $G A\left(a_{1}=0\right)$.

We can identify the points e and g of the bif. diagram. The white domains contained in these colored regions correspond to sinks.

The period of the sinks

Lemma. If a s-n appears for a critical value $a_{1}=a_{1, c}$, then the period of nearby sinks behaves as ctant $\times\left|a_{1}-a_{1, c}\right|^{-1 / 2}$.

$a_{2}=0$. We plot Per vs. a_{1} (left) and $\log ($ Per $)$ vs $\log \left(a_{1}-a_{1, c}\right)$ (right).
$a_{1, c} \approx-0.143170413565918$ is the value for the first appearance of period 2 orbits with $a_{1}>-0.15$.
All periods (under M) from 24 to 11026 have been detected!

Open problems and extensions

Several questions remain open, like

- The creation/destruction of SA by folding of IC. In particular the boundary marked as BD in the bifurcation diagram.
- The abundance of sinks, taking into account the existence of cross-road and spring areas.
- Links with s-n boundaries connecting different cross-road and spring areas.
- Relative size of the basins of attraction when there is multiplicity of attractors.
... and possible extensions to 3D and higher dimension diffeomorphisms.
E.g.: Shilnikov-like, Hopf-Shilnikov-like maps, etc.

Thanks for your attention!!

