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Introduction to the problem

Goal: to study the dynamics of a Rayleigh–Bénard convection
problem. To understand different dynamical mechanisms.

This is the dynamics in a bounded domain created by differences of
temperature between the walls.

One of the most difficult problems is the case of a cubical cavity due to
multiplicities because of the symmetries.

For concreteness the cubical domain is assumed to be heated from below
with perfectly conducting sidewalls and uniform temperature at
the top and bottom walls.

The main physical parameters are Rayleigh and Prandtl numbers.
Our goal is to give strong evidence that chaotic dynamics and
chaotic attractors exist at moderate Rayleigh numbers.

A realistic motivation is to have enhanced mixing properties in small
domains where a chemical reaction is made possible by the pres-
ence of some bacterias. Their presence prevents from large temper-
ature changes.



The equations

We assume the cube to be of side L and normalised to Ω = [−1/2, 1/2]×
[−1/2, 1/2]× [−1/2, 1/2] with top and bottom temperatures Tc and
Th, Tc < Th, ∆T = Th − Tc.

Physical parameters:
ρ = density, β = thermal expansion, α = thermal conductivity, ν = kine-
matic viscosity, g = gravity acceleration. Then the Rayleigh, Ra, and
Prandtl, Pr, numbers are defined as

Ra = β(∆T )gL3/αν, Pr = ν/α.

The main parameter to change is Ra for a fixed Pr. Most of the
computations will be done with Pr = 0.71 (air at 300 K).

Later on it will be necessary for our purpose to change the value of
Pr. The values Pr = 0.75 (CO2 at 380 K) and Pr = 0.80, (butane
at 300 K), will be used.



For the presentation of some results we shall use theNüsselt number Nu,
that is, the dimensionless convective heat transfer coefficient at the
hot bottom wall. Nua is the averaged value of Nu for an amount of
time, to be taken equal to the period in the case of p.o.

In most of the plotsNu is replaced by themodified value Nu−0.012Ra1/2

for plot clarity.

Variables:

The velocity V = (u, v, w), temperature departure from the linear
motionless conductive state θ and the pressure p. Then we have

Pr−1
(

∂V

∂t
+ Ra1/2(V · ∇)V

)

−∇2V − Ra1/2θ ez +∇ p = 0

∂θ

∂t
+Ra1/2(V · ∇)θ −∇2θ − Ra1/2w = 0 , ∇ ·V = 0.

The boundary conditions are

u = v = w = θ = 0 along |x| = 1/2, |y| = 1/2, and |z| = 1/2.



The equations are adimensionalised taking suitable units and are written
using the vorticity, so that instead of (V · ∇)V appears ω = ∇×V and

instead of ∇ p appears ∇Π where Π = p + |V|2 /2.

Symmetries

Sx : (x, y, z) → (−x, y, z) , (u, v, w, θ) → (−u, v, w, θ) ,
Sy : (x, y, z) → (x,−y, z) , (u, v, w, θ) → (u,−v, w, θ) ,
Sz : (x, y, z) → (x, y,−z) , (u, v, w, θ) → (u, v,−w,−θ) ,
Sd+ : (x, y, z) → (y, x, z) , (u, v, w, θ) → (v, u, w, θ).

These elements generate the symmetry group D4h = Z2 × D4 where
Z2 is generated by the reflection about the horizontal midplane, Sz, and
D4 is the dihedral group generated by Sy and Sd+. These symmetries
are responsible for the existence of multiple invariant subspaces in the
space of solutions of the equations.

There are solutions invariant under some subgroup of D4h. We
denote these subgroups as Gi. They leave invariant a subspace, de-
noted as Ei. In particular we shall make strong use of G7, generated
by −Sz = −I · Sz, i.e., a rotation by π around the z-axis, and leaving
invariant E7. The full space is denoted as E0 (G0 generated by I).



What we want to do, why and how

What: We want to obtain, in a moderate range of Ra the skeleton
of the dynamics, that is, the different invariant objects, like steady
state solutions, periodic orbits, their stability properties and
some invariant manifolds.

Why: As said at the Introduction we look for the existence of chaotic
dynamics and chaotic attractors for moderate values of Ra.
Another motivation is to realise that techniques used typically in
low dimensional dynamical systems can be applied systematically to
infinite dimensional ones.
An additional motivation is to stress the importance of following
unstable solutions. They can become stable and attract the dynamics
or be involved in homoclinic/heteroclinic phenomena leading to
chaotic dynamics.

How: We use numerical tools guided by the knowledge on dynam-
ical systems. We give an interpretation of the results concerning
the dynamics.



A short comment on the numerical methods

The equations are discretised in space by means of a Galerkin spec-
tral method with a complete divergence–free set of basis functions. The
velocity and temperature fields are approximated by

(

V
θ

)

(t, x, y, z) =
n
∑

i=1

n
∑

j=1

n
∑

k=1

4
∑

l=1

c
(l)
ijk(t)F

(l)
ijk(x, y, z) ,

where c
(l)
ijk(t) are the unknown time–dependent coefficients, and

F
(l)
ijk(x, y, z) are the basis functions.

Typically n=14 has been used. Hence the number of unknown coeffi-
cients amounts to N = 143× 4 = 10976. For checks values like n = 12
(N = 6912) or n = 16 (N = 16384) have been used. The symmetry of
some solutions reduces the number of unknowns in some cases.
The set of ODE obtained can be represented in matrix form as

B dx/dt = (L1 + λL2)x + λQ(x,x) , λ = Ra1/2,

where x are the coefficients, B, L1 and L2 are linear operators and Q
is a quadratic operator.



A list of tools:

•Computation of steady states (fixed points) and its stability,

•Computation of periodic solutions and its stability. As in the
previous case Newton-Krylov methods are used,

•Continuation of solutions via arc-length and variants,

•Detection of bifurcations in both cases,

•Computation of invariant unstable manifolds for the flow or
suitable Poincaré maps,

•Detection/computation of homoclinic and heteroclinic con-
nections,

•Computation of the relevant Lyapunov exponents,

•Multiple checks using different values of n, different time inte-
gration steps, different ways to evaluate the quadratic terms,
many random initial conditions and several long time integra-
tions.



A sample of results

Next we shall show some bifurcation diagrams of steady state and
periodic solutions. For other diagrams, the symmetries of the dif-
ferent solutions (if any), numerical values of the ranges of stability and
illustrations for other kinds of orbits, see the paper.

Notation: Steady solutions bifurcating from the motionless state are la-
belled as Bi. In subsequent bifurcations appear the ones labelled
Bij, Bijk, . . .. Similar notation for periodic orbits: pojBi, pojkBi,
pokBij, etc. This allows to follow the genealogy of the different families.

The steady solutions not bifurcating from the motionless state are
labelled as Ai. They appear by fold (SN) bifurcation.

Typically stable (unstable) solutions shown with solid (dashed) lines.

For steady state solutions pitchfork (Hopf) bifurcations are marked
with filled (hollow) circles,

For periodic solutions
Filled circles, squares, triangles =⇒ pitchfork, homoclinic and
Neimark-Sacker.
Hollow circ., squa., triang. =⇒ Hopf, fold and period doubling.
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Bifurcation diagram of the steady solutions B1, B3, B4, A2, B11, B14,
B312 and B143 for Pr = 0.71.

The branches B1, B3 and B4 are born at the basic conductive state at
Ra = 6 799, 11 612 and 8 353 respectively.
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An example with several orbits.

Left: po2B11 at Ra = 91 801.95 after 4th turning point, close to the last
computed point . We show also Sy–symmetric solutions: po1B11, B11
and two Sy–symmetrically related B143. They are involved in heteroclinic
connections.

Right: Evolution with time of the Nüsselt number.
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Sketch of the ranges of stability of all the stable identified solutions.
Each solution is stable within the Rayleigh range represented by the
segment delimited by two bifurcation symbols. Exchange of stability
between solutions is represented by adjacent segments in the sketch.
For clarity the scale in the horizontal axis is magnified in the interval
[60, 100].

Note that in the full range there is always a stable steady or p.o.



Chaotic dynamics at Pr = 0.71

Chaotic dynamics has been found forRa < 105 for Pr = 0.71, 0.75, 0.80.

A problem: the dynamics for Pr = 0.71 has been found to be chaotic
only in E7, a non-attracting subspace. A small initial departure from
E7 takes the points away from it. They are attracted by B11, po1B11,
po2B11 or B3, depending on the value of Ra (see previous page).

But even restricted to E7 the dynamics is interesting: a potential
strange attractor is promoted to a true attractor.

Concretely: There are different unstable objects (steady and
p.o.) in E7 with heteroclinic connections. This give rise to a strange
attractor in E7. But the orbit comes close to po1B312, attracting (in E7)
in a range ending at RaHC1

and it is attracted by it.

When po1B312 ends at that RaHC1
the potential attractor becomes

a true one (still only in E7).



-1.5

-1

-0.5

 0

 0.5

 50  60  70  80  90  100

N
u a

-0
.0

12
R

a1/
2

10-3Ra

B4

B312

po1B312

B3

po1B4po11B4

P
2

P
5

P
6

P
7

P
6

P
7H

5

H
6

HC
1

T
2

T
3

T
3

P
5

-1.02

-0.88

 52  88

Bifurcation diagram of steady solutions and periodic orbits that are
related to chaotic dynamics.

B4 has been included to clarify the origin of the po1B4.

In contrast, po1B312 plays a crucial role in the generation of chaotic
dynamics. The initially stable po1B312 arises at an H3 on B312. It
ends on a homoclinic HC1 (Ra = RaHC1

= 74 256.8441) with λ1 =
18.22, λ2 = −42.17 (in E7) with σ = λ1 + λ2 < 0 (inside E7) and, hence,
limit of stable p.o..
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Evolution with time of cIII , the first coefficient belonging to the third
symmetry block in the truncated expansion. Left: at Ra = 74 000 < Rah.
Right: at Ra = 74 260 > Rah. Note that both Ra are close to Rah =
RaHC1

.
On the left: After a chaotic transient the orbit is attracted by a stable
periodic orbit in the po1B312 branch.
On the right: the p.o. do not longer exists. The chaotic behavior
persists.
All these orbits belong to E7.
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Qualitative sketch of the ranges of existence and stability of solutions
relevant to the occurrence of chaotic attractors. Gray rectangles:
regions where the solutions attract in the full space E0. Black rect-
angles regions where the solutions attract only in E7. Empty rectan-
gles: regions with solutions not attracting neither in E0 nor in E7.

In particular, the dependence of the ranges of existence of chaotic attrac-
tors as a function of Pr is shown.
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Projection on (cII , cIII) of the chaotic dynamics (attractor only in
E7) and involved solutions at Ra = 8× 104 (left) and Ra = 9× 104 (right).
Attractor in solid gray lines. The two symmetric B3 with filled circles.
On the left 4 copies (by symmetries) of po11B4 in dashed black lines.
On the right several orbits of the family po1B4 in solid, dotted and
dot–dashed black lines.
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Similar to previous plot for Ra = 8.3 × 104 (left) and a magnification
(right). Attractor (inside E7) in solid gray lines. Two symmetrically
related po1B4 in solid black lines.

Note that, similar to the previous plots, the orbit in the attractor
remains for a long time close to the po1B4 orbits, which are mildly
unstable.
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Evolution with time of the Nüsselt number for the chaotic at-
tractor (in E7) at Ra = 8.3× 104. The dashed horizontal line shows the
Nu value corresponding to the B3 solution.

Departure from E7 leads the dynamics to be attracted by B3.

But we know from previous work thatB3 becomes stable for increasing
values of Ra if Pr increases. See the sketch page. This suggests...



Chaotic attractors at Pr = 0.75 and Pr = 0.80
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Projection and time evolution of the chaotic attractor at Ra =
9.5× 104 and Pr = 0.75.
For these values all the steady and periodic solutions that have been
found are unstable.
Checked for long time intervals (several thousands of units), for
many random initial conditions and different space discretisa-
tions (coarser and finer) and by computing Lyapunov exponents.
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Projection and time evolution of the chaotic attractor at Ra =
105 and Pr = 0.80.
For these values all the steady and periodic solutions that have been
found are unstable.
Checked for long time intervals (several thousands of units), for
many random initial conditions and different space discretisa-
tions (coarser and finer) and by computing Lyapunov exponents.



Thanks for your attention!

And sorry for changing from DANCE to DNASC:

Dynamics, Nonlinearity, Attractors, Stability and Chaos


