From steady solutions to chaotic flows in a Rayleigh–Bénard problem at moderate Rayleigh numbers

Carles Simó

Dept. Matemàtica Aplicada i Anàlisi, UB, Barcelona, Catalunya

carles@maia.ub.es

Dynamic Days 2012

Session on Global bifurcations: dynamics associated to cycles Benicàssim, Castelló, València, 1210241600

Joint work with Dolors Puigjaner, Joan Herrero and Francesc Giralt, URV (see Physica D, 240, (2011), 920–934)

Contents

- The physical problem and motivations
- The equations of the problem
- What we want to do: why and how
- A short comment on the numerical methods
- Results: Some bifurcation diagrams, related to steady solutions, to some periodic orbits and to the creation of chaos
- Chaotic dynamics
 - -Chaotic dynamics at Pr = 0.71
 - -Chaotic attractors at Pr = 0.75 and Pr = 0.80

Introduction to the problem

Goal: to study the **dynamics of a Rayleigh–Bénard convection** problem. To **understand different dynamical mechanisms**.

This is the dynamics in a **bounded domain** created by **differences of temperature** between the walls.

One of the most difficult problems is the case of a **cubical cavity** due to **multiplicities** because of the symmetries.

For concreteness the cubical domain is assumed to be **heated from below** with **perfectly conducting sidewalls** and **uniform temperature at the top and bottom** walls.

The main **physical parameters** are **Rayleigh and Prandtl** numbers. Our goal is to give **strong evidence** that **chaotic dynamics and chaotic attractors exist** at **moderate Rayleigh numbers**.

A realistic **motivation** is to have **enhanced mixing** properties in small domains where a **chemical reaction is made possible by the presence of some bacterias**. Their presence prevents from **large temperature changes**.

The equations

We assume the cube to be of side L and normalised to $\Omega = [-1/2, 1/2] \times [-1/2, 1/2] \times [-1/2, 1/2]$ with top and bottom temperatures T_c and T_h , $T_c < T_h$, $\Delta T = T_h - T_c$.

Physical parameters:

 $\rho = \text{density}, \beta = \text{thermal expansion}, \alpha = \text{thermal conductivity}, \nu = \text{kinematic viscosity}, g = \text{gravity acceleration}.$ Then the Rayleigh, Ra, and Prandtl, Pr, numbers are defined as

$$Ra = \beta(\Delta T)gL^3/\alpha\nu, \qquad Pr = \nu/\alpha.$$

The main parameter to change is Ra for a fixed Pr. Most of the computations will be done with Pr = 0.71 (air at 300 K).

Later on it will be **necessary for our purpose** to change the value of Pr. The values Pr = 0.75 (CO₂ at 380 K) and Pr = 0.80, (butane at 300 K), will be used.

For the presentation of some results we shall use the **Nüsselt number** Nu, that is, the dimensionless **convective heat transfer coefficient** at the hot bottom wall. Nu_a is the averaged value of Nu for an amount of time, to be taken equal to **the period** in the case of p.o.

In most of the plots Nu is replaced by the **modified value** $Nu-0.012Ra^{1/2}$ for plot clarity.

Variables:

The velocity $\mathbf{V} = (u, v, w)$, temperature departure from the linear motionless conductive state θ and the **pressure** p. Then we have

$$Pr^{-1}\left(\frac{\partial \mathbf{V}}{\partial t} + Ra^{1/2}(\mathbf{V}\cdot\nabla)\mathbf{V}\right) - \nabla^2 \mathbf{V} - Ra^{1/2}\theta \,\mathbf{e}_z + \nabla \,p = 0$$
$$\frac{\partial \theta}{\partial t} + Ra^{1/2}(\mathbf{V}\cdot\nabla)\theta - \nabla^2\theta - Ra^{1/2}w = 0, \qquad \nabla\cdot\mathbf{V} = 0.$$

The **boundary conditions** are

 $u = v = w = \theta = 0$ along |x| = 1/2, |y| = 1/2, and |z| = 1/2.

The equations are **adimensionalised** taking suitable units and are written using the **vorticity**, so that instead of $(\mathbf{V} \cdot \nabla)\mathbf{V}$ appears $\omega = \nabla \times \mathbf{V}$ and instead of ∇p appears $\nabla \Pi$ where $\Pi = p + |\mathbf{V}|^2/2$.

Symmetries

$$\begin{array}{ll} S_x & : \ (x,y,z) \rightarrow (-x,y,z) \,, & (u,v,w,\theta) \rightarrow (-u,v,w,\theta) \,, \\ S_y & : \ (x,y,z) \rightarrow (x,-y,z) \,, & (u,v,w,\theta) \rightarrow (u,-v,w,\theta) \,, \\ S_z & : \ (x,y,z) \rightarrow (x,y,-z) \,, & (u,v,w,\theta) \rightarrow (u,v,-w,-\theta) \,, \\ S_{d_+} & : \ (x,y,z) \rightarrow (y,x,z) \,, & (u,v,w,\theta) \rightarrow (v,u,w,\theta) . \end{array}$$

These elements generate the **symmetry group** $D_{4h} = \mathbb{Z}_2 \times D_4$ where \mathbb{Z}_2 is generated by the **reflection** about the horizontal midplane, S_z , and D_4 is the **dihedral group** generated by S_y and S_{d_+} . These symmetries are responsible for the existence of **multiple invariant subspaces** in the space of solutions of the equations.

There are solutions invariant under some subgroup of D_{4h} . We denote these subgroups as G_i . They leave invariant a subspace, denoted as E_i . In particular we shall make strong use of G_7 , generated by $-S_z = -I \cdot S_z$, i.e., a rotation by π around the z-axis, and leaving invariant E_7 . The full space is denoted as E_0 (G_0 generated by I).

What we want to do, why and how

What: We want to obtain, in a moderate range of *Ra* the skeleton of the dynamics, that is, the different invariant objects, like steady state solutions, periodic orbits, their stability properties and some invariant manifolds.

Why: As said at the Introduction we look for the existence of chaotic dynamics and chaotic attractors for moderate values of *Ra*. Another motivation is to realise that techniques used typically in low dimensional dynamical systems can be applied systematically to infinite dimensional ones.

An additional motivation is **to stress the importance of following unstable solutions**. They can **become stable** and attract the dynamics or **be involved in homoclinic/heteroclinic phenomena** leading to **chaotic dynamics**.

How: We use numerical tools guided by the knowledge on dynamical systems. We give an interpretation of the results concerning the dynamics.

A short comment on the numerical methods

The equations are **discretised in space** by means of a **Galerkin** spectral method with a complete **divergence**—**free** set of basis functions. The velocity and temperature fields are approximated by

$$\begin{pmatrix} \mathbf{V} \\ \theta \end{pmatrix} (t, x, y, z) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{l=1}^{n} \sum_{l=1}^{4} c_{ijk}^{(l)}(t) \mathbf{F}_{ijk}^{(l)}(x, y, z)$$

where $c_{ijk}^{(l)}(t)$ are the **unknown time-dependent coefficients**, and $F_{ijk}^{(l)}(x, y, z)$ are the **basis functions**. Typically **n=14** has been used. Hence the number of **unknown coefficients amounts to** $N = 14^3 \times 4 = 10976$. For **checks** values like n = 12 (N = 6912) or n = 16 (N = 16384) have been used. The **symmetry** of some solutions **reduces the number of unknowns** in some cases. The **set of ODE** obtained can be represented in matrix form as

$$B d\mathbf{x}/dt = (L_1 + \lambda L_2) \mathbf{x} + \lambda Q(\mathbf{x}, \mathbf{x}), \quad \lambda = Ra^{1/2},$$

where **x** are the **coefficients**, B, L_1 and L_2 are **linear operators** and Q is a **quadratic operator**.

A list of tools:

- Computation of steady states (fixed points) and its stability,
- Computation of periodic solutions and its stability. As in the previous case **Newton-Krylov** methods are used,
- Continuation of solutions via arc-length and variants,
- **Detection of bifurcations** in both cases,
- Computation of invariant unstable manifolds for the flow or suitable Poincaré maps,
- **Detection/computation of homoclinic and heteroclinic** connections,
- Computation of the relevant Lyapunov exponents,
- Multiple checks using different values of *n*, different time integration steps, different ways to evaluate the quadratic terms, many random initial conditions and several long time integrations.

A sample of results

Next we shall show some **bifurcation diagrams of steady state and periodic solutions**. For other **diagrams**, the **symmetries** of the different solutions (if any), numerical values of the **ranges of stability** and **illustrations** for other kinds of orbits, see the paper.

Notation: Steady solutions bifurcating from the motionless state are **labelled as** B_i . In **subsequent bifurcations** appear the ones labelled B_{ij}, B_{ijk}, \ldots **Similar notation for periodic orbits**: $po_jB_i, po_{jk}B_i$, po_kB_{ij} , etc. This allows to follow the **genealogy** of the different families. The steady solutions **not bifurcating from the motionless state** are labelled as A_i . They appear by **fold (SN) bifurcation**.

Typically **stable (unstable)** solutions shown with solid (dashed) lines.

For **steady state** solutions **pitchfork (Hopf)** bifurcations are marked with **filled (hollow) circles**,

For **periodic** solutions

Filled circles, squares, triangles \implies pitchfork, homoclinic and Neimark-Sacker.

Hollow circ., squa., triang. \implies Hopf, fold and period doubling.

Bifurcation diagram of the steady solutions B_1 , B_3 , B_4 , A_2 , B_{11} , B_{14} , B_{312} and B_{143} for Pr = 0.71.

The branches B_1 , B_3 and B_4 are born at the **basic conductive state** at Ra = 6799, 11612 and 8353 respectively.

Bifurcation diagram of periodic orbits related to the B_{11} solution. Note that the po_1B_{11} and po_2B_{11} branches do not intersect near NS_2 . It is due to the projection. po_1B_{11} joints H_2 to H_4 and loses stability at NS_2 .

 po_2B_{11} starts unstable at H_3 and becomes stable at NS_3 . It loses stability at T_1 .

An example with **several orbits**.

Left: po_2B_{11} at Ra = 91801.95 after 4^{th} turning point, close to the **last** computed point. We show also S_y -symmetric solutions: po_1B_{11} , B_{11} and two S_y -symmetrically related B_{143} . They are involved in **heteroclinic** connections.

Right: Evolution with time of the Nüsselt number.

Sketch of the **ranges of stability** of all the stable **identified** solutions. Each solution is stable within the **Rayleigh range** represented by the segment delimited by two bifurcation symbols. **Exchange of stability** between solutions is represented by **adjacent segments** in the sketch. For clarity the scale in the horizontal axis is **magnified in the interval** [60, 100].

Note that **in the full range** there is always a **stable steady or p.o.**

Chaotic dynamics at Pr = 0.71

Chaotic dynamics has been found for $Ra < 10^5$ for Pr = 0.71, 0.75, 0.80.

A problem: the dynamics for Pr = 0.71 has been found to be **chaotic only in** E_7 , a non-attracting subspace. **A small initial departure from** E_7 takes the points **away from it**. They are **attracted by** B_{11} , po_1B_{11} , po_2B_{11} or B_3 , depending on the value of Ra (see previous page).

But even **restricted to** E_7 the dynamics is interesting: a **potential** strange attractor is promoted to a true attractor.

Concretely: There are different unstable objects (steady and p.o.) in E_7 with heteroclinic connections. This give rise to a strange attractor in E_7 . But the orbit comes close to po_1B_{312} , attracting (in E_7) in a range ending at Ra_{HC_1} and it is attracted by it.

When po_1B_{312} ends at that Ra_{HC_1} the potential attractor becomes a true one (still only in E_7).

Bifurcation diagram of **steady solutions and periodic orbits** that are related to **chaotic dynamics**.

 B_4 has been included to clarify the origin of the po_1B_4 .

In contrast, po_1B_{312} plays a crucial role in the generation of chaotic dynamics. The initially stable po_1B_{312} arises at an H_3 on B_{312} . It ends on a homoclinic HC_1 ($Ra = Ra_{HC_1} = 74256.8441$) with $\lambda_1 = 18.22, \lambda_2 = -42.17$ (in E_7) with $\sigma = \lambda_1 + \lambda_2 < 0$ (inside E_7) and, hence, limit of stable p.o..

Evolution with time of c_{III} , the first coefficient belonging to the third symmetry block in the truncated expansion. Left: at $Ra = 74\,000 < Ra_h$. Right: at $Ra = 74\,260 > Ra_h$. Note that both Ra are **close to** $Ra_h = Ra_{HC_1}$.

On the left: After a **chaotic transient** the orbit is attracted by a **stable periodic orbit in the** po_1B_{312} **branch**.

On the right: **the p.o. do not longer exists**. The **chaotic behavior persists**.

All these orbits **belong to** E_7 .

Qualitative sketch of the ranges of existence and stability of solutions relevant to the occurrence of chaotic attractors. Gray rectangles: regions where the solutions attract in the full space E_0 . Black rectangles regions where the solutions attract only in E_7 . Empty rectangles: regions with solutions not attracting neither in E_0 nor in E_7 .

In particular, the **dependence** of the ranges of existence of chaotic attractors **as a function of** Pr **is shown**.

Projection on (c_{II}, c_{III}) of the **chaotic dynamics (attractor only in** E_7) and involved solutions at $Ra = 8 \times 10^4$ (left) and $Ra = 9 \times 10^4$ (right). Attractor in **solid gray lines**. The two symmetric B_3 with filled circles. On the left 4 copies (by symmetries) of $po_{11}B_4$ in **dashed black lines**. On the right several orbits of the family po_1B_4 in **solid**, **dotted and dot-dashed black lines**.

Similar to previous plot for $Ra = 8.3 \times 10^4$ (left) and a **magnification** (right). Attractor (inside E_7) in **solid gray lines**. Two symmetrically related po_1B_4 in **solid black lines**.

Note that, similar to the previous plots, the orbit in the attractor remains for a long time close to the po_1B_4 orbits, which are mildly unstable.

Evolution with time of the Nüsselt number for the chaotic attractor (in E_7) at $Ra = 8.3 \times 10^4$. The dashed horizontal line shows the Nu value corresponding to the B_3 solution.

Departure from E_7 leads the dynamics to be attracted by B_3 .

But we know from previous work that B_3 becomes stable for increasing values of Ra if Pr increases. See the sketch page. This suggests...

Chaotic attractors at Pr = 0.75 and Pr = 0.80

Projection and time evolution of the chaotic attractor at $Ra = 9.5 \times 10^4$ and Pr = 0.75.

For these values **all the steady and periodic solutions** that have been found are **unstable**.

Checked for long time intervals (several thousands of units), for many random initial conditions and different space discretisations (coarser and finer) and by computing Lyapunov exponents.

Projection and time evolution of the chaotic attractor at $Ra = 10^5$ and Pr = 0.80.

For these values **all the steady and periodic solutions** that have been found are **unstable**.

Checked for long time intervals (several thousands of units), for many random initial conditions and different space discretisations (coarser and finer) and by computing Lyapunov exponents.

Thanks for your attention!

And sorry for changing from **DANCE** to **DNASC**:

Dynamics, Nonlinearity, Attractors, Stability and Chaos