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Introduction

The interest on the analysis of piecewise linear differential systems (or simply
piecewise linear systems) has increased in the last decades, as modern engineering
applications require the piecewise linear modeling of a wide range of problems in
mechanics, power electronics, control theory, biology...

On the one hand piecewise linear systems are the natural extension of the linear
ones in order to cope with nonlinear phenomena, for they can reproduce much of
the complex behavior observed in smooth nonlinear systems: multi-stability, self-
sustained oscillations, hysteretic behavior, homoclinic and heteroclinic connections
and of course, chaotic behavior. On the other hand, piecewise linear systems turn
out to be the most accurate models for some realistic applications.

Piecewise linear systems can be classified in two big classes depending on the
continuity of the associated vector field. Discontinuous cases constitute nowadays
the subject of intense research, and there is not yet a total agreement about basic
concepts and definitions. Even for continuous piecewise linear systems (CPWL,
for short), there are still unsolved issues as the seemingly simple problem of
stability of the only equilibrium point.



Introduction

Apart from equilibria, it is very important to characterize the periodic
orbits of such systems, since they constitute the next step in complexity
for observed behavior in practice.

We have payed special attention to the study of existence of periodic
orbits for piecewise linear systems, following a point of view which is
typical in bifurcation theory, that is, we will study degenerated situations
and after parameter variations we will look for the appearance of limit
cycles.

Unfortunately the non-smoothness of continuous piecewise linear
systems requires that limit cycle bifurcations must be analyzed in a case-
by-case approach for the different families of systems which are relevant
in applications.

Only planar and certain three dimensional cases will be here reviewed.
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® A historical review
® A general setting for planar PWL systems with 2 zones

® Some unexpected results



A historical review

The Russian school. Andronov et al. (1934)

The Berkeley ERL reports by Chua & Lum (1990)
A paper by Llibre & Sotomayor (1992...1996) stimulated by some mexican authors

Ph. D. dissertations of Rodrigo, Teruel (1998...2000), and then Carmona,
Fernandez-G, Fernandez-S, Ros, Garcia-Medina, Vela... (initiating a series of
publications still unfinished, much of them under supervision of Emilio Freire and
F. Torres)

A good source: the DiBernardo-Budd-Champneys-Kowalczyk book (2008)

Seminal papers by Kuznetsov-Gragnani-Grinaldi (2003) and Guardia-M.Seara-
Teixeira (2011)



A general setting for planar PVVL systems with 2 zones

® We consider the non-smoothness boundary at the
vertical axis

¥ ={(z,y) €R?:x =0}

® The boundary induces the partition of the phase

plane into
S™ ={(z,y) € R?: z < 0},

ST ={(z,y) €R*: > 0}.

The systems to be studied become

Ft(x) = (F(x),Fy (x)) =Afx+b*, ifxeST,

*EFRIZ P = (Fr 0, By (x)" = Ax b, ifxe 5.




Tangencies and sliding set

¥ ={(z,y) € R*: 2 = 0}
( P > _ ( ap T+ ajy + by ) ( P > _ ( ali + ajyy + by >
Y U9 % + QoY + by Y a3, T + Aoy + by

We will assume a...a 0 to avoid ‘wall’ cases.
125 @19

We have a tangency point in ¥ when | __, = a12y + b1 vanishes.

At tangency points, we speak of visible (invisible) tangency depending on
the sign of Z. Since Z|,_, = a11(a12y + b1) + a12(a21y + b2), we obtain

E|._q = a12ba — a1y



Tangencies and sliding set (cont'd)

Assuming a;, < 0, there are two possibilities for a5:
—
- —
— s
—_— —

(a7, < 0: bounded sliding) (a7, > 0: bounded crossing)



For a non-smooth system...a non-smooth change!

We do a continuous piecewise linear change of variables u = f(x), where

_ X + 0
u= 012( agzx—af2y>+a12< b ), x < 0,

u——a_< o )—I—cﬁ( O) x>0
2\ agyr — afhy 2\ by )7 ’

and afterwards rename the variable u to x.

and

This change is a global homeomorfism that conjugates the vector
field in each halfplane, separately. Such a conjugacy cannot be
extended to the sliding vector field.




The (possibly) discontinuous canonical form

Liénard canonical form for DPWL systems. Assume that a/,a;, > 0
(bounded sliding set). Then the system can be written in the form,

. (T -1 0 . _
X_<D_ O)X—(@_)IfXGS,

X_<D+ O)X—<a+>1fXES,

where T'.D stand for trace and determinant, and

e + _ + + _ ot -
a —a12(a12b2 —a22bl), a _a12(a226 a,12b) b= ajsby —ay07.

This system has as its tangency points (0,0) and (0,b).

Apart from the linear invariants, the other three parameters are associated to the

x-coordinates of the equilibrium points (a” and a”) and the size and stability of
the sliding set (b).



Remarks

For continuous vector fields one has A*-(0,1)T = A™-(0,1)Tand b" = b, so
that a"=a” and b =0, automatically.

When a"=a™ and » =0, we get a continuous piecewise linear system even if
the original system was discontinuous.

In particular, homogeneous systems (b" = b™ = 0) with bounded sliding set
can always be transformed in a continuous system. Thus the class of
bimodal systems considered in

Y. Zou, T. KupPER AND W. J. BEYN, Generalized Hopf Bifurcations for
Planar Filippov Systems Continuous at the origin, J. Nonlinear Science 16
(2006), 159-177.

Y. IWATANI AND S. HARA, Stability Analysis and Stabilization for Bimodal
Piecewise Linear Systems Based on Eigenvalue Loci Mathematical Engineering
Technical Reports Web page http://www.i.u.-tokyo.ac.jp/mi-e.htm.

could be analyzed just by using the results in

E. FrREIRE, E. P., F. RODRIGO AND F.TORRES, Bifurcation Sets of Con-
tinuous Piecewise Linear Systems with Two Zones, Int. J. Bifurcation and

Chaos 8 (1998), 2073-2097.



A necessary condition for crossing periodic orbits

Proposition Defining the values ¢~ = area (27),
ot =area (Q7) and h = yy — yr, then we have

T o~ +TT ot +bh =0.

YL



Boundary Equilibrium Bifurcations (BEB’s) in the continuous case
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Boundary Equilibrium Bifurcations (BEB’s) in the continuous case

1




Saddle-Focus BEB’s are possible!

1
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Focus-Center-Limit Cycle Bifurcations




Focus-Center-Limit Cycle Bifurcations
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Focus-Center-Limit Cycle Bifurcations
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Focus-Center-Limit Cycle Bifurcations in 3D

t<tc t:tc t>tc

N W\ O\
LY D)

vl

Ny

e [ hetracet is choosen as the bifurcation parameter, and m, d are assumed
to be constant. The center condition holds for the critical value tc = d/m

e A complex eigenvalue pair crosses the imaginary axis like in the Hopf
bifurcation of differentiable systems



F-C-Limit Cycle Bifurcations in Symmetric 2D systems

e Max Wien (1891) e
e Implemented as A200 oscillator by William
Hewlett (1939) (the first commercial HP R, :
assembly product). W” oA
e The battery Ep is introduced to break the - . ‘
symmetry. | )

=R - : R
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view of garage from 1939

Kriegsmann, G.A. [1987] “The rapid bifurcation of the Wien bridge oscillator ",
IEEE Trans. Circuits Syst. 34, 1093—1096.



F-C-Limit Cycle Bifurcations in Symmetric 2D systems

R Ci
AN |
R
ANV * bl
OA Vo
+ EB
— | Co
Rs Re
l o—"\\\——o NV
Kirchhoff laws give
. : : Vo, — F
RiOWe, = Vo, ~ Ve, + Vo, CiVe, = CoVle, = =7 (1)
2

where Vo, y Ve, are voltages across capacitors C; y Cop, and Vo = f(V,) is the

output voltage of Op amp.



F-C-Limit Cycle Bifurcations in Symmetric 2D systems

Modelling the op amp characteristics, two options are normally chosen:
e A smooth function like Vp = f (V¢,) = Z£ arctan (Z2V¢,),
e T he piecewise linear function

. | Esign(aVesx — E), si|laVes| > E,
Vo= f(VCQ) o { aVeo, Si |OéVC2| < K,

Ry

S

where a = 1 +

is the resulting OA gain and E is the saturation voltage.

L e
I Saturacion Positiva
________ —_—— e — = =
Yo=8 1772 V
5u-
BU—E
~50-
Yo=-8 1757 V

i Saturacion Negatiwva

Output voltage Vp versus Voo for“;c”h’e OA LF411 commercial model



F-C-Limit Cycle Bifurcations in Symmetric 2D systems

e As it will be seen, the piecewise linear approach is much better.
Under generic assumptions and after some linear algebra, above
equations can be written in Liénard form,

A A | T —t 0
X—[d O]X—I_[D—dlsat(x)_l_[—D:E]’
where x stands for the equilibrium abscissa at the central region,
X = [ N ] c R?,
(]

t, T are the traces, d, D, are the determinants in the linear zones.

=
|

tr —y—(T'—t), & Te—y, | & te —y+T —t,
de —D(14+z)+di ¥ Dz —DZ | y de +D(1—-Z) —d
r < —1 . —1<z<1 z> 1

.
|



F-C-Limit Cycle Bifurcations in Symmetric 2D systems

Effectively, it suffices to change variables in (1) as follows
Ve, 1 Vg 1 Ve, a FEp

5’ YT RO E RiCiE R.CoE’

Ef (E:L) =sat(z) 1= { T it || < 1.

Thus we arrive at the piecewise linear differential system with three linear regions

i

and write

1 1 1 o
. a (Rlcl —l_ R, C5 —l_ RQCQ) —1 R.C, 0
X = x + sat () + - . (2)
_ 1 0 . a b
R.Ci R, 0 R,CiR,C> E

e Here determinants are positive and equal but traces are different, namely

1 1 1 1
D=d= ) t = — < 07
R1C1R>C5 (Rlcg T R>C5 T R101>

—1 1 1 1 R C
T = < — — p— oa— 11 —|— 1 _|_ 2
RiC> R1C1 R>(Co R1C5 R R> C1 ’

.

e There is only one equilibrium point at x = Epa/E. For Eg = 0 the equi-
librium is at the origin and the system is symmetric.




F-C-Limit Cycle Bifurcations in Symmetric 2D systems

Theorem Every observable S3CPL5 system with D > 0, 7% < 4D
and t = 0, undergoes for T'=0 a F-C-LC bifurcation.

The bifurcating limit cycle exists for Tt < 0 and T suf. small, and it
IS stable provided that ¢t < O.

The amplitude a, period P and logarithm of the characteristic multi-
plier p are analytic functions at O in the variable T/3 namely

4\ g2
_ (67r) — (674)3(120D ﬂ21: 21d) T+ O(T)
8t3 960Dts
2,5)3 o 2 2 ]
P — 2_7T_|_7T(d D) ~ (6%7°):((d D) +t D)T5—|—O(T2),
VD D3t 10D5t5
p = —2(61)T5 + % (12d 4 15 — 3) T + O(T*3).

Freire E.; Ponce E.; Ros J. “Limit Cycle Bifurcation from Center in Symmetric
Piecewise-Linear Systems”. International Journal of Bifurcation and Chaos, Vol. 9,
No. 5, 895-907 (1999).

e [ here are discrepancies with the classical Hopf bifurcation



F-C-Limit Cycle Bifurcations in Symmetric 2D systems




F-C-Limit Cycle Bifurcations in Symmetric 2D systems

Amplitud

X experimental measures

- numer. sol. of closing eq.

- numer. sol. smooth model
two terms of our series

- three terms of our series



Some unexpected results

® Algebraically computable PWL nodal oscillators
® Three limit cycles in planar PWL systems with 2 zones

® The continuous matching of 3D PWVL stable systems
can be unstable



Algebraically computable PWL nodal oscillators



Algebraically computable PWL nodal oscillators

Consider the family of piecewise linear differential systems
. T
x = Ax + ¢(c’ x)b,

where x = (z,y)! € R?, A is a 2 x 2 matrix, b, ¢ € R? and the nonlinearity ¢
is a symmetric piecewise linear continuous function

( Meo — (My —my) 9, o < —4,
p(o) = Mo, o] <4,
| Mao + (my —myg) 9, o >0,

with m, % myp, 0 > 0. Assume that there exist ¢ > 0 and n € R, such that the
different linear parts satisfy

Spec (A+ mabe®) = {—p,—2u}
Spec (A + mypb cT) = {n,2n},

and that the system is “observable”, that is

CT



Algebraically computable PWL nodal oscillators

Then the system is topologically equivalent to the Liénard system

T\ -3 -1 T 3(a+1)
(5)=(73 ) (0) (2t st
where o« = — and “sat” stands for the normalized saturation function

1, if z< -1,
sat(x) = r, if |x| <1,
1, if x>1.



Algebraically computable PWL nodal oscillators

T=3«x, D=2 t=-3 d=2

AD
<
\ \
\\_\ p— — ﬁ\\\ \
~_ S \
\
< 272

Transicion Nodo-Nodo D = o




Algebraically computable PWL nodal oscillators

Theorem For the piecewise linear differential system, the following state-
ments hold.

(a) If @ < 0 then the origin is the only equilibrium point, in particular it is a
stable node, being the global attractor for all the orbits of the system.

(b) For o = 0 there exists a continuum of equilibrium points, namely all the
points of the segment ¥ = {(z,y) € R* : —1 < z < 1,y = 0}. This
segment is the global attractor for the system. It is formed by unstable
points, but the endpoints of the segment are the w-limit set for R% \ X.

(c) For a > 0 the only equilibrium point is the origin, which is an unstable
node. Furthermore there exists one periodic orbit which is a stable limit
cycle, being symmetric with respect to the origin and the w-limit set for
all orbits except the origin.



Algebraically computable PWL nodal oscillators

All the points of this limit cycle can be described in an algebraic way in
terms of the parameter «. In particular, the limit cycle intersections (1, ) and
(1,Yp) with the line z = 1 can be algebraically determined as follows. For each
« > 0 there exists only a value v € (\@ — 1, 1) such that

(14 2v —v?)(v? +2v—1)

— — 1
e ( 2 ( 2
all — v+ 2v a2 —v+wv
Yo — — ) YO — . (2)
v(l —v) 1 —w
Furthermore, the period of the limit cycle is
V2 +20—1 at1
P=-21 o 3
Og<1+2v—02v )’ (3)

and its characteristic multiplier v satisfies

v 4+ 20 — 1 6<1
V —
1+ 20 — v? ’




Algebraically computable PWL nodal oscillators

a ~ 0.5384

Figure 1: The segment of equilibrium points for o = 0 and the limit cycle for several values of
a > 0 (left). The waveforms for z(¢) when o ~ 0.2526 (v = 0.46, two cycles), and « ~ 0.5384

(v = 0.5, three cycles) (right).



Three limit cycles in planar PVWL systems with 2 zones



The Huan-Yang example

The planar non-smooth piecewise linear differential system with two zones
separated by a straight line corresponding to Example 5.1 of Huan and Yang is

. ATx itx <1,
=) Atx ifz> 1,

where x = (z,y)? with

! = 51090 _%
A= — d At =
37 13 ), Al 119

Theorem (J. Llibre & E.P.) The above planar non-smooth piecewise linear
differential system with two zones has 3 limit cycles surrounding its unique
equilibrium point located at the origin.

S.-M. HUAN AND X.-S. YANG, On the number of limit cycles in general planar piecewise linear
systems, Discrete and Continuous Dynamical Systems-A 32 (2012) pp. 2147-2164.

J. LLIBRE AND E. P., Three Nested Limit Cycles In Discontinuous Piecewise Linear Differential
Systems With Two Zones, Dynamics of Continuous, Discrete and Impulsive Systems-B 19 (2012)

pp. 325-335.



4 20 19 |
3 3 50

d AT =
7726 |7 T R
750 15 50

(after rescaling time, differently in each side)




The discontinuous canonical form in the focus-focus case

Assume TF = 2aF, D* = (a®)? + (w*)? with w® > 0 in the
canonical form, so that the corresponding eigenvalues are \* =

a* £ iw*, and introduce the parameters
™ a” at a”
,YR:——I—’ YL — ——, a’R:—_|_7 arp = ——-
W W W W

Then the previous canonical form can be written in the form

. Q’YL —1 0 . _
X_(l—l—%% O)X—<aL>1fXES,

X—<1_|_W22 O)X—<aR)1fXES.

It suffices to do a new non-smooth change of variables

x t w— if x <0,
(xayat) ’ (W(ZI?)’ Y, w(aj‘>’) ) where W($) — { wT if £ > 0.




The half-return maps and their dependence on parameters

Py y y

Yr=0 Yr>0 Pp
71.<0 . | b>0
Pr (y) /
7R<0 /Bx
7,50 //// \
')/L:O ///
y ’
\ AN
’)/R>O
YR=
’)/R<O

Asymptotes:
Ap(y) = ="y + 2xpyp(1 +€™7)

Ap-1(y) = —e "7y 4+ (b+ 22gpYR)(1 + €™ 777)



The b-bifurcation through the crossing critical cycle

P! (y;b)

Pr(y)

NG y

o E E j; y+e€ y |
IZE . S (®7
Pr (y;bcc) \/ ;




The crossing critical cycle curve in the parameter plane (Vr,b)

We assume x;, < 0, vz < 0 and xr < 0 fixed, and look for possible
biturcations leading to one crossing limit cycle by moving parameters b
and/or vg.

Proposition Assume that z; < 0,zp < 0 and ~; < O.
Then there exists one smooth function b = boc(yr) with
0 < beo(vr) < 9 and beoe(0) = /2, defined for every value
of vr such that for b = boc(vr) the system has one unstable
crossing critical cycle.

In addition there exists € > 0 such that for boc(vr) — e < b <
boc(YRr) there exists one unstable crossing periodic orbit which
biturcates from the crossing critical cycle.



Results that can be deduced from stability of the point at infinity

Theorem (stable equilibrium and extremal values of b)
Assuming x; < 0, xg < 0, vz < 0 and yg > 0, and defining
bos = 2(xf, + xR)7yL, the following statements hold.

(a) If v +vr < 0 and b > boe, then there is at least one stable
crossing periodic orbit.

(b) If vz +vr < 0 and b < 2z, then there are no crossing
periodic orbits.

(c) If v + vg > 0 and b < boc, then there is at least one
unstable crossing periodic orbit.

(d) If vr + vr = 0, then there exists a constant M > 0 such
that for all b > M there are no crossing periodic orbits.

(e) If b < boo, then there exist €1 > 0 such that for —v; < yr <
—~r, + €1, there is at least one unstable crossing periodic
orbit and when b > b, then there exist €9 > 0 such that
for —eo — v, < vyr < —7r, there is at least one stable
crossing periodic orbit.



Getting our aim by combining local and global results...

Theorem (stable equilibrium, b near boc) Assuming that x;, < 0, xg < 0,
vr, < 0 and yg > 0, the following statements hold.

(a) If v; + vr < 0 there exists € > 0 such that for bpc — e < b < boc the
system has at least two crossing periodic orbits with opposite stabilities.

(b) Provided that § < b, the following statements also hold.

(i) Assume yg = —vr. Then, there exists €y > 0 such that for boc <
b < boc + €p the system has at least a stable crossing periodic orbit.
In addition, there exists €; > 0 such that for boc — 1 < b < bec

the system has at least two crossing periodic orbits with opposite
stabilities.

(ii) There exists e > 0 such that for —y, < yg < —7vr + &2 and b =
bcc(vr) the system has at least two crossing periodic orbits with
opposite stabilities. Furthermore, for —v; < vyg < —7vr + €2 there
exists e3(vgr) > 0 such that for b = boc(vr) — €3(7r) the system has
at least three nested crossing periodic orbits being stable the
intermediate one and unstable the two other.



Hunting the three crossing limit cycles
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Hunting the three crossing limit cycles



Hunting the three crossing limit cycles in a real case
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Hunting the three crossing limit cycles in a real case




The continuous matching of 3D PWL stable systems can be unstable



The continuous matching of 3D PWL stable systems can be unstable

e We consider semi-homogeneous CPWL systems in R3

. Atx, if x>0,
| A™x, if £ <O,

where x = (z,v,2)Y € R3, the dot denotes derivatives
respect to the time s, and

tT —1 0 t~ —1 0
AT = mT™ 0 -1 : A =] m~ 0 -1
dt 0 O d- 0 O

are already in the generalized Liénard form.

e Here, the stability of the origin is not a trivial issue,
even when AT and A~ are Hurwitz matrices.



e \We concentrate our attention in the case where the
eigenvalues are A%, aT 4+ iB* and aT — BT with 8% > 0.

e The two following parameters (to be assumed posi-
tive) turn out to be crucial:

+ _ )T i
’y+=a T and 'y_za :
5 B~
I C
o+ 10
A
a— 10




Theorem. If both matrices are Hurwitz with complex eigenvalues such
that v > 0 and v~ > 0, then the following statements hold.

(i) The origin has a one-dimensional stable manifold and a two-
dimensional invariant manifold which is an attractive two-zonal cone.

Generically, both manifolds are non-smooth.

(ii) The dynamics on the cone is either of stable focus type, or a center,
or of unstable focus type, and there exist specific systems for the

= ,
v A

O ) 0

(a) (b) (c)



I+

Sketch of an orbit on the invariant cone which, spiraling towards the origin, starts from
point A, approaches the half-plane N~ reaching B and, within region x > 0, tends to
the half-plane MNT up to C. The point C can be farther from the origin than point A.
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..que veinte anos no es nada!

Alfredo La Pera, from lyrics of the tango "Volver’ by Carlos Gardel
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