
I’m sorry, but I’m not going to talk only about...
Neural synchrony tools derived from invariant

manifolds
but on...

Modelling networks of neurons

Toni Guillamon

Dept. Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Barcelona

DDAYS 2012, Benicàssim, Oct 25th, 2012



Outline & Landscape

Outline with landscape: single neurons

Models of neurons, quick overview: biophysical models versus
simpler models (see also Holmes in RTNS 2013,
http://www.dance-net.org/rtns2013/).

http://biomedicalengineering.yolasite.com/neurons.php

Problems at single-cell level: e.g., cell’s ability to integrate external
forcing (neural synchrony, see my first abstract).
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Outline & Landscape

Outline with landscape: synapses

Synaptic dynamics: building-up networks.

http://www.unc.edu/ ejw/synapse.html



Outline & Landscape

Outline with landscape: networks

Experimentally-inspired networks: “realistic" units,
computational brute force.

http://scientopia.org/blogs/scicurious/2011/05/04/science-101-the-neuron/



Outline & Landscape

Outline with landscape: reduced networks

Reduced networks: simplistic units, “realistic" synaptic
mechanisms (e.g. Hopfield networks, see Rafael Obaya’s talk).

Reduced networks: mean-field reductions (see also Alex Roxin’
talk) lead to rate equations, used for cognitive problems.

Reduced models: analysis and modelling high .

Goal: show our “modus operandi" from neuroscience problems
to mathematical problems, and some problems of interest.
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Outline & Landscape

Outline with landscape: mathematical tools in
neuroscience.

Mononeuronal mechanisms: Differential equations, dynamical
systems, functional analysis

Network dynamics: information theory, statistics, graph theory,
differential equations.



Basic neuron biophysics Biophysical models

Structure of a neuron and synapses

We have around 1012 neurons and 1015 connections (synapses)
among them.

http://www.unc.edu/ ejw/synapse.html



Basic neuron biophysics Biophysical models

Spikes or action potentials, a fundamental element

[Izhikevich, “Dynamical systems in neuroscience", Fig.1.5]

The explanation of spikes is one of the discoveries of
neuroscience in which maths have played an important role.



Basic neuron biophysics Biophysical models

Spikes, a fundamental piece

Why spikes are produced in such a variety of cells
and why are they so universal?

Hodgkin and Huxley, two physiologists, proved that mathematics
could address these questions by establishing the basis for modern

neuroscience...and for the Nobel Prize in Medicine and Physiology in
1963.

Hodgkin and Huxley theory is still used today for mathematical
modeling purposes.



Basic neuron biophysics Biophysical models

Nerve impulse conduction: the action potential

https://wiki.bio.purdue.edu/biol13100/index.php/2011_Problem_Set_6_Number_10_Answer



Basic neuron biophysics Biophysical models

The neuron as an electrical circuit

outside the cell

inside the cell

Applying Kirchhoff’s laws ...



Basic neuron biophysics Biophysical models

Membrane potential in Hodgkin-Huxley’s

v = v(t) membrane potential:

Cm
dv
dt

= −IL − INa − IK − Isyn + Iapp. (1)

Isyn synaptic current; Iapp applied current.
IL = gL (v − VL), leakage current,

INa = gNa m3 h (v − VNa), sodium current,
IK = gK n4 (v − VK ), potassium current.

The variables h, m, n represent the state (open=1,
closed=0) of ionic channels.

Which dynamics do they follow?



Basic neuron biophysics Ionic channels modeling

Ionic channels modeling: the voltage clamp technique

Hodgkin and Huxley were able to deduce the dynamics of h, m and n
thanks to a recently (in 1940’s) developed technique (voltage clamp)
that was possible to apply to squid giant axons.

[Izhikevich, “Dynamical systems and neuroscience", Fig.2.5]



Basic neuron biophysics Ionic channels modeling

Voltage clamp: obtaining the relationship I − v (I∞(v))

[Izhikevich, “Dynamical systems and neuroscience", Fig.2.6]



Basic neuron biophysics Ionic channels modeling

Generic equation for the gating variables

dw
dt

= φ (αw(v) (1−w)− βw(v) w) = φ
w∞(v)−w
τw (v)

, (2)

w∞(v) =
αw (v)

αw (v) + βw (v)
, τw (v) =

1
αw (v) + βw (v)

.



Basic neuron biophysics Ionic channels modeling

Modeling the conductances from voltage clamp

dw
dt

= φ (αw(v) (1− w)− βw(v) w) = φ
w∞(v)− w
τw (v)

, (3)

αw(v) = 0.07 exp (−(v + 50)/10),

βw(v) =
1

1 + exp (−0.1 (v + 20))
.



Basic neuron biophysics Ionic channels modeling

The final model of Hodgkin and Huxley

Cm
dv
dt

= −gL (v − VL)− gNa m3 h (v − VNa)− gK n4 (v − VK ),

dm
dt

= φ (αm(v) (1−m)− βm(v) m) = φ(m∞(v)−m)/τm(v),

dh
dt

= φ (αh(v) (1− h)− βh(v) h) = φ(h∞(v)− h)/τh(v),

dn
dt

= φ (αn(v) (1− n)− βn(v) n) = φ(n∞(v)− n)/τn(v).

(4)



Basic neuron biophysics Single cell dynamics

Challenges in single cell dynamics



Basic neuron biophysics Single cell dynamics

Challenges in single cell dynamics: phase control and
synchrony

For a given stimulus A:

∆(θ; A) = ϑ(γ(θ) + A)− θ: phase variation depends on the geometry
of isochrons and it needs some time to relax back before next

stimulus.



Basic neuron biophysics Single cell dynamics

Challenges in single cell dynamics: phase control and
synchrony

Possible track of phase entrainment or synchronisation.

Literature on weakly coupled oscillators.



Basic neuron biophysics Single cell dynamics

Bursting

[Keener-Sneyd, “Mathematical physiology"]



Basic neuron biophysics Single cell dynamics

Bursting



Cm
dV
dt

= −ICa(V )−
(

gK +
gK ,Ca c
Kd+c

)
(V − VK )− gL(V − VL),

τn(V )dn
dt = n∞(V )− n,

dc
dt

= ε (−K1 ICa − kc c),

ICa(V ) = gCam3
∞(V )h∞(V )(V − VCa).



Basic neuron biophysics Single cell dynamics

Bursting

Singular perturbations.



Basic neuron biophysics Single cell dynamics

Bursting

VOLTAGE TIME COURSE



Basic neuron biophysics Single cell dynamics

Chaos in Hodgkin-Huxley

Aihara, Chaos in neurons, Scholarpedia

http://www.scholarpedia.org/article/Chaos_in_neurons


Networks

Very beautiful patterns of a neuron, but ...

what do we do to simulate large networks of neurons?

Basic Ingredients: simple models + accurate synapses
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Networks

Hopfield models

Binary neurons, the network perceives cell’s activity as an on-off
event.
Adding complexity through synaptic coupling (time delays,
network topology,...).

See talk by Rafael Obaya .



Networks

Integrate & Fire models

Bruce Knight, 1972 (preceeded by Lapicque (1907), Hill (1936),
Gerstein & Mandelbrot (1964), Stein (1965),...)



C
dv
dt

= −gL (v − VL) + Isyn, v(t + Tref ) = vreset , if v(t) > vthresh

Isyn =
∑

presynap
gsyn s (V − Vsyn)

ds
dt

= αs f (Vpre)− s
τs
,



Networks Neurotransmission: communication among neurons

Isyn excitation or inhibition? Simple
neurotransmission

Isyn = Isyn,exc + Isyn,inh

Excitation: Isyn,exc = gE (t) (v − VE ), VE ≈ 0 mV
Inhibition: Isyn,inh = gI(t) (v − VI), VI ≈ −80 mV
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Networks Neurotransmission: communication among neurons

Isyn = gsyn s Prel (V − Vsyn): Specific neurotransmission

Excitation: AMPA neuroreceptors: τ = 2 ms, Vsyn = 0mV
Inhibition: GABA neuroreceptors: τ = 10 ms, Vsyn = −70mV

ds
dt

= αs f (Vpre)− s
τs
,

Slow excitation: NMDA neuroreceptors (memory processes)

ds
dt

= αs x (1− s)− s
τs
,

dx
dt

= αx f (Vpre)− x
τx
,

τs = 100 ms, τx = 2 ms, Vsyn = 0. Vpre, presynaptic potential.
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Networks Neurotransmission: communication among neurons

Networks of I& F neurons: large scale simulations

The I&F model and some variants allow large scale simulations for
its mathematical simplicity (in contrast with models based on
conductances). It is a suitable modelling to speculate about
connectivity rather than on intrinsic properties of neurons.

But... what is the limit?

See video at http://www.izhikevich.org/publications/large-
scale_model_of_human_brain.htm

Spontaneous activity generated by injecting small stimuli the first 30 min of simulation (≈ 1/2.4

msec) [Izhikevich, Edelman, PNAS 2008]
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Networks Neurotransmission: communication among neurons

Networks of integrate and fire neurons: large scale
simulations

Is this one the future of neuronal networks research?

Only for problems in close collaboration with
experimentalists.

For higher level brain functions, better use mean-field
approaches
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Two examples: synaptic depression and bistable perception

Two examples: synaptic depression and bistable
perception



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Short-term synaptic depression (STD)
[Benita et al., Frontiers in Computational Neuroscience, 2012.]



Two examples: synaptic depression and bistable perception Short-term synaptic depression

What is synaptic depression?

Synaptic depression is the loss of synaptic strength along time.
Depression/Facilitation are forms of plasticity.
Short-term synaptic depression (STD) is explained by the
depletion of the pool of vesicles ready to release the
neurotransmitters.

Reducing extracellular calcium, the release probability (Prel )
decreases.
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Two examples: synaptic depression and bistable perception Short-term synaptic depression

Experimental STD measurements

A presynaptic neuron is stimulated and the activity at the
(target/postsynaptic neuron) is recorded.

The target neuron must be prevented from spiking. Small voltage
variations (PSP=PostSynaptic Potentials) are then measured.

To measure STD one observes how the amplitude of the PSPs
varies for sufficiently long time.



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Results on STD from experiments

[Reig et al, Cerebral Cortex, 2006]. The amount of activity of the
network (with UP/DOWN states) is important. When the (in vitro)
network has rhythmic activity, there is less depression.

More activity, less depression.
Can we reproduce this phenomenon in a model and
explain why?
Does it depend on the experimental preparation used to
modify activity?



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Building up the model

Network of 1280 neurons (80% exc., 20% inh.) bicompartmental
with 10 currents (excitatory neurons) [Compte et al., 2003].

CmAs
dVs
dt = −As(IL + INa + IK + IA + IKS + IKNa)− Isyn,s − gsd (Vs − Vd ),

CmAd
dVd
dt = −Ad (ICa + IKCa + INaP + IAR)− Isyn,d − gsd (Vd − Vs),

Synapses (Isyn,exc/inh) mediated by AMPA, GABA and NMDA:

Isyn = gsyn s Prel (V − Vsyn)

Specific equation (important!) for the release probability:
τrel P ′rel(t) = P0 − Prel , Prel → fD Prel , fD < 1, every presynaptic
event.
Neurons on a line, Gaussian connectivity (≈ 20 presynaptic
contacts per neuron).
Approximately 19000 differential equations.



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Complexity of the model: different currents,
multicompartmental ,...

Somatic currents: INa, IK , IL, and:
a fast K +-current named A-current, IA;
a slow inactivating K +-current, IKS;
a [Na+]-dependent K +-current, IKNa.

Dendritic currents:
a Ca2+-current with high threshold, ICa;
a [Ca2+]-dependent K +-current, IKCa;
a persistent Na+-current, INaP ;
a K +-current activated during hyperpolaritzation (inward rectifier),
IAR.



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Building up the model: procedures

Illustration with some currents in the soma compartment:

CmAs
dVs

dt
= −As(IL + INa + IK + IA + IKS + IKNa)− Isyn,s − gsd (Vs −Vd ),

A target neuron chosen, we stimulate a unique presynaptic
neuron.
Voltage “clamp" is simulated by blocking sodium channels in the
model of the target neuron.

INa = gNa m3 h (v − VNa); gNa = 0

Network activity is increased by increasing the potassium reversal
potential Vk (↑ extracellular potassium) as in the in vitro
experiments (we introduce parameter a).

IK = gK n4 (v − VK ); VK → VK + a
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Two examples: synaptic depression and bistable perception Short-term synaptic depression

Running the model: effect of K+ reversal potential
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Running the model: measuring PSPs



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Results from the model: replication of experiments

Using models we test several parameters that change the network
activity (important to keep realistic models).

We provide evidences that is the activity of the network itself the
responsible for the changes in STD, and is not artificially induced
by the experimental solution.
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Results from the model: replication of experiments

Less depression
when activity increases



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Results from the model: testable predictions

Different behaviour in UP and DOWN states of the network.

Depression at UP versus DOWN states.
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Results from the model: non-testable predictions

Reciprocal result: influence of STD on the network activity.



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Non-testable predictions: influence of STD on network
activity.

Network behaviour with respect to depression levels.



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Results from the model: non-testable predictions,
explanations

Calcium/sodium buffering (responsible of ending UP states) gets
slower with depression.

IKNa = gKNaw([Na+])(v − VK ), IKCa = gKCa
[Ca2+]

[Ca2+] + KD
(v − VK ),

Sodium- and calcium-activated potassium currents with respect to depression levels.



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Further steps

Measures to describe the bifurcation.
Reproduce the results with network of more simplified neuron
models (containing a spiking mechanism, different time-scales
allowing buffering) with similar synapse dynamics.
Reduce the network to a mean-field∗ model where Prel still plays
a role to be able to do some analysis and state the explanations in
a more consistent way.

∗ Homogeneity conditions. Using, for instance the diffusion approach
from statistical mechanics (Fokker-Planck) and obtain a rate equation,
see also Alex Roxin’s talk.



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Rate model: Goals and equations

How do the lengths of the UP- and DOWN-states vary in terms of
short-term depression?

Activities (rates) of exc/inh populations: aE/I .
Depression levels: sE/I .
Adaptation levels: hE/I .


τa,E ȧE = −aE + ϕ(−(sE wE ,E aE − sI wE ,I aI − gE hE − θ0,E )/ka,E ),
τs,E ṡE = −sE + ϕ((aE − θs,E )/ks,E ),

τh,E ḣE = −hE + ϕ((θh,E − aE )/kh,E ),
(5)

with ϕ(x) = 1/(1 + exp(x)).



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Rate model: partial results

To mimic the amount of depression, we modify the time constant of the
synaptic depression:

τs,E/I = τ s,E/I ((1− aE/I) (1− fD,E/I)),

where τ s,E/I constant, fD,E/I ∈ [0,1], depression levels.
τ s,E/I when there is activity in the population (that is, aE/I > 0). Thus,
sE/I decay changes according to the level of activity. For fD,E/I ≈ 1,
synaptic depression is less than for fD,E/I ≈ 0.
We have tested different connectivities. There is always a parameter
range in which UP-state durations overcome DOWN-state durations.



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Rate model: partial results

Figure: Changes in Up/Down-state durations in terms of fD,E . Each panel
represents a different connectivity value.

Non-constant parameters in this simulation: fD,E ∈ [0.2,2.0; 0.18].
Fixed parameters in this simulation: wEI = 0.769; wIE = 0.417; wII = 0.031;
gE = 0.16; gI = 0.0; τs,E = 400.0; τs,I = 400.0; fD,E = 1.000; fD,I = 1.0;
τθ,E = 200.000; τθ,I = 200.0; θ0,E = 0.0; θ0,I = 0.0.



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Reduced model: an oversimplification

Isyn = gsyn s Prel (V − Vsyn)


s′(t) = − s

τs
+ S1

∑
spk

δ(t− tspk),

P ′rel(t) = (P0 − Prel)/τrel + S2 Prel
∑
spk

δ(t− tspk).

Can we explain the results only from this simple problem
assuming an input with 2 intertwined frequencies ωS, ωN?

Not enough... network effects are important.



Two examples: synaptic depression and bistable perception Bistable perception

Modeling bistable perception



Two examples: synaptic depression and bistable perception Bistable perception

“Bistable" stimuli



Two examples: synaptic depression and bistable perception Bistable perception

Basic equations

Firing-rate variables:{
τ Ė1 = −E1 + f (−βE2 − φaa1 + I1 + n1(t)),

τ Ė2 = −E2 + f (−βE1 − φaa2 + I2 + n2(t)),
(6)

τ ∼ 10 ms;
β = cross-inhibition;
φa = adaptation strength;
I1,2 = external stimuli.

Gain function:
f (x) =

1
1 + exp(− x−θ

k )
(7)
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Two examples: synaptic depression and bistable perception Bistable perception

Basic equations

Adaptation variables:{
τaȧ1 = −a1 + E1,
τaȧ2 = −a2 + E2,

(8)

τa ∼ 1 s.
Noise dynamics:  ṅ1 = −n1

τn
+ σn

√
2
τn
ξ1(t),

ṅ2 = −n2
τn

+ σn

√
2
τn
ξ2(t),

(9)

ξi(t)ξi(t ′) = 0, ξi(t) = 0, ξ2
i (t) = 1, τn = 100 ms.
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Two examples: synaptic depression and bistable perception Bistable perception

Parameter dependence
Bifurcation diagrams ...

Basic parameter set: β = 1.0, φa = 0.5, τa = 200, k = 0.1, θ = 0.0.

Bifurcation diagram in terms of the strength of the input I1 = I2.



Two examples: synaptic depression and bistable perception Bistable perception

Parameter dependence
Bifurcation diagrams ...

Basic parameter set: I1 = I2 = 0.5, τa = 200, k = 0.1, θ = 0.0.

Bifurcation diagram in terms of the strength of the input I1 = I2.

“juicy" bifurcation details.
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Collaborators

Short-term depression: J.M. Benita (Ph.D. UPC), G. Deco
(ICREA-UPF, computational neuroscience), M.V. Sánchez-Vives
(ICREA-IDIBAPS, electrophysiology).

Bistable perception: P.E. García-Rodríguez (Ph.D. CRM-UPF),
J. Braun, A. Pastukhov (U. Magdeburg, cognitive psychology), G.
Deco (ICREA-UPF, computational neuroscience).
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Thanks for your attention!
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