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Outline & Landscape

Outline with landscape: single neurons

@ Models of neurons, quick overview: biophysical models versus
simpler models (see also Holmes in RTNS 2013,
http://www.dance-net.org/rtns2013/).
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Outline & Landscape

Outline with landscape: single neurons

@ Models of neurons, quick overview: biophysical models versus
simpler models (see also Holmes in RTNS 2013,
http://www.dance-net.org/rtns2013/).
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@ Problems at single-cell level: e.g., cell’s ability to integrate external
forcing (neural synchrony, see my first abstract).




-~ Outine&landscape
Outline with landscape: synapses

@ Synaptic dynamics: building-up networks

Synapse
http://www.unc.edu/ ejw/synapse.html
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Outline & Landscape

Outline with landscape: networks

@ Experimentally-inspired networks: “realistic" units,
computational brute force.




Outline & Landscape

Outline with landscape: reduced networks

@ Reduced networks: simplistic units, “realistic" synaptic
mechanisms (e.g. Hopfield networks, see Rafael Obaya’s talk).

Reduced models: analysis and modelling high .

Goal: show our “modus operandi" from neuroscience problems
to mathematical problems, and some problems of interest.



Outline & Landscape

Outline with landscape: reduced networks

@ Reduced networks: simplistic units, “realistic" synaptic
mechanisms (e.g. Hopfield networks, see Rafael Obaya’s talk).

@ Reduced networks: mean-field reductions (see also Alex Roxin’
talk) lead to rate equations, used for cognitive problems.

Reduced models: analysis and modelling high .

Goal: show our “modus operandi" from neuroscience problems
to mathematical problems, and some problems of interest.



Outline & Landscape

Outline with landscape: mathematical tools in
neuroscience.

@ Mononeuronal mechanisms: Differential equations, dynamical
systems, functional analysis

@ Network dynamics: information theory, statistics, graph theory,
differential equations.



~ Basicreuonbiophysics  Biophysicalmodels
Structure of a neuron and synapses
among them.

We have around 102 neurons and 10'® connections (synapses)

Synapse

http://www.unc.edu/ ejw/synapse.html
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Basic neuron biophysics Biophysical models

Spikes or action potentials, a fundamental element

[Izhikevich, “Dynamical systems in neuroscience", Fig.1.5]

@ The explanation of spikes is one of the discoveries of
neuroscience in which maths have played an important role.



Basic neuron biophysics Biophysical models

Spikes, a fundamental piece

Why spikes are produced in such a variety of cells
and why are they so universal?

Hodgkin and Huxley, two physiologists, proved that mathematics
could address these questions by establishing the basis for modern
neuroscience...and for the Nobel Prize in Medicine and Physiology in

1963.

Hodgkin and Huxley theory is still used today for mathematical
modeling purposes.
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Basic neuron biophysics Biophysical models

The neuron as an electrical circuit

outside the cell
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inside the cell

Applying Kirchhoff’s laws ...



Basic neuron biophysics Biophysical models

Membrane potential in Hodgkin-Huxley's

v = v(t) membrane potential:

dv
Cma = _/L - lNa - IK - lsyn + /app~

Isyn synaptic current; /55, applied current.

Ina =gnam3h (v—Vys),  sodium current,

I =9 (v— V), leakage current,
Ik =gk n*(v— V), potassium current.

The variables h, m, represent the state (open=1,
closed=0) of ionic channels.




Basic neuron biophysics lonic channels modeling

Hodgkin and Huxley were able to deduce the dynamics of h, m and
thanks to a recently (in 1940’s) developed technique (voltage clamp)
that was possible to apply to squid giant axons.

ﬂi)

Figure 2.5: Two-wire voltage-clamp experiment on the axon. The top wire is used to
monitor the membrane potential V. The bottom wire is used to inject the current /.

proportional to the difference V. = V', to keep the membrane potential at V..

[Izhikevich, “Dynamical systems and neuroscience", Fig.2.5]



Basic neuron biophysics lonic channels modeling
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Figure 2.6: Voltage-clamp experiment to measure instantaneous and steady-state I-V

relation. Shown are simulations of the Iy, +/x-model (see Fig.4.1b): the continuous
curves are theoretically found I-V relations.

[Izhikevich, “Dynamical systems and neuroscience", Fig.2.6]
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Basic neuron biophysics lonic channels modeling

gating variables
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Basic neuron biophysics lonic channels modeling

Modeling the conductances from voltage clamp

dw Woo(V) — W
Tw(V)

— = ¢ (w(v) (1 = w) = Bu(v) W) = ¢ : (3)

aw(v) =0.07 exp(—(v+50)/10), 1.0+

B, (V) — 1 0.6
o "1 +exp(—0.1 (v+20)) 04




Basic neuron biophysics lonic channels modeling

The final model of Hodgkin and Huxley

dv
Cm—y =90 (V—=V)—gnam3h (v — Wng) — gk n* (v — V),

at

I 6 (am(¥) (1 = m) = in(¥) M) = 6(Mo(¥) = m)/7m(¥),
I 5 (an(¥) (1 = 1) = u(¥) ) = 6(Ac(v) — B}/ (V).
90— 6 (an(¥) (1 = 1) = n(¥) 1) = 6(1o(v) = 1)/ 7n(V).

(4)



Basic neuron biophysics Single cell dynamics

Challenges in single cell dynamics



Basic neuron biophysics

Single cell dynamics
Challenges in single cell dynamics: phase control and
synchrony

For a given stimulus A:

0 —isochron

........ 7(00)
TOFAW)

¥(0,+A©))

A(0; A) = I(~(0) + A) — 6: phase variation depends on the geometry
stimulus.

of isochrons and it needs some time to relax back before next



Basic neuron biophysics

Single cell dynamics

Challenges in single cell dynamics: phase control and

synchrony

Possible track of phase entrainment or synchronisation.
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Bursting

V(mv)

c(uM)

Basic neuron biophysics Single cell dynamics
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[Keener-Sneyd, “Mathematical physiology"]



Basic neuron biophysics Single cell dynamics

Bursting

| Okca® =
= —loalV) = (G + HEE) (V= Vi) —9u(V — V),
BIFURCATION DIAGRAM

C
v Hg max Voge /1

(V)& = ny (V) —n,

dc/dt=0

— =e(=Kilca—kec),

lea(V) = GcamM3e(V)heo(V)(V = Vea).

@ FIXED POINTS
B LIMIT CYCLE (min & max values)



Basic neuron biophysics
Bursting

Single cell dynamics

BIFURCATION DIAGRAM

1

BURSTING TRAJECTORY
on the bifurcation diagram

@ FIXED POINTS

[ LIMIT CYCLE (min & max values)

@ FIXED POINTS
e
Singular perturbations.

“riding” on LIMIT CYCLES



Basic neuron biophysics Single cell dynamics

Bursting
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Basic neuron biophysics

Chaos in Hodgkin-Huxley

Single cell dynamics
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Aihara, Chaos in neurons, Scholarpedia



http://www.scholarpedia.org/article/Chaos_in_neurons

Networks

Very beautiful patterns of a neuron, but ...

e what do we do to simulate large networks of neurons?



Networks

Very beautiful patterns of a neuron, but ...

e what do we do to simulate large networks of neurons?

e Basic Ingredients: simple models + accurate synapses



Networks

Hopfield models

@ Binary neurons, the network perceives cell’s activity as an on-off
event.

@ Adding complexity through synaptic coupling (time delays,
network topology,...).

See talk by Rafael Obaya .



Networks

Integrate & Fire models

Bruce Knight, 1972 (preceeded by Lapicque (1907), Hill (1936),
Gerstein & Mandelbrot (1964), Stein (1965),...)

av .
C o =91 (v— VL) +lsyn, V(t+ Trer) = Vreset, if V(1) > Vinresh
Isyn = > GsynS(V — Viyn) . [ Integrate and fire with “spikes” |
presynap sorer T
S threshold
ds _ f V S Vinre AN N AN =
gt = el Vee) = NN
E / / ?\ AN AN
r“ [ y” \\\ AN \\\
- “‘ ‘/ / “spike” and reset
| !‘ {
Vresi 0 ‘ f




Networks Neurotransmission: communication among neurons

Isyn excitation or inhibition? Simple
neurotransmission

/syn - lsyn,exc + /syn7inh

@ Excitation: Isynexc = ge(t) (v — VE), Ve =~ 0mV

Action
potential
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Networks Neurotransmission: communication among neurons

Isyn excitation or inhibition? Simple
neurotransmission

/syn - lsyn,exc + /syn7inh

VEmOmV

@ Excitation: Isynexc = ge(t) (v — VE),
V,~ -80mV

@ Inhibition: lsyn inn = gi(t) (v — V)),

I

Action
potential

Voltage (mV)y

=35
Resting state

=70
Refractory
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Networks Neurotransmission: communication among neurons

lsyn = Gsyn S (V — Viyn): Specific neurotransmission

@ Excitation: AMPA neuroreceptors: 7 = 2 ms, Vs, = 0OmV
@ Inhibition: GABA neuroreceptors: 7 = 10 ms, Vsyn = —70mV

f

ds S
E:Oésf(Vpre)_?s, 08

b B0 B0 40 20 FI
v presinaptica



Networks Neurotransmission: communication among neurons

lsyn = Gsyn S (V — Viyn): Specific neurotransmission

@ Excitation: AMPA neuroreceptors: 7 = 2 ms, Vs, = 0OmV
@ Inhibition: GABA neuroreceptors: 7 = 10 ms, Vsyn = —70mV

f

ds S
E:Oésf(Vpre)_?s, 08

b B0 B0 40 20 FI
v presinaptica

@ Slow excitation: NMDA neuroreceptors (memory processes)

ds S ax X
E—asx(‘l—s)—?s, E—Oéxf(‘/pre)—;,

7s = 100 ms, 7 =2 ms, Vsyn = 0. Vpre, presynaptic potential.



Networks Neurotransmission: communication among neurons

Networks of 1& F neurons: large scale simulations

@ The I&F model and some variants allow large scale simulations for
its mathematical simplicity (in contrast with models based on
conductances). It is a suitable modelling to speculate about
connectivity rather than on intrinsic properties of neurons.

See video at http://www.izhikevich.org/publications/large-
scale_model_of human_brain.htm
Spontaneous activity generated by injecting small stimuli the first 30 min of simulation (~ 1/2.4
msec) [Izhikevich, Edelman, PNAS 2008]



Networks Neurotransmission: communication among neurons

Networks of 1& F neurons: large scale simulations

@ The I&F model and some variants allow large scale simulations for
its mathematical simplicity (in contrast with models based on
conductances). It is a suitable modelling to speculate about
connectivity rather than on intrinsic properties of neurons.

@ But... what is the limit?

See video at http://www.izhikevich.org/publications/large-
scale_model_of human_brain.htm
Spontaneous activity generated by injecting small stimuli the first 30 min of simulation (~ 1/2.4
msec) [Izhikevich, Edelman, PNAS 2008]



Networks Neurotransmission: communication among neurons

Networks of integrate and fire neurons: large scale
simulations

@ Is this one the future of neuronal networks research?



Networks Neurotransmission: rication g neurons

Networks of integrate and fire neurons: large scale
simulations

@ Is this one the future of neuronal networks research?

@ Only for problems in close collaboration with
experimentalists.



Networks

Neurotrar ission: icati
Networks of integrate and fire neurons: large scale
simulations

on

g neurons

@ Is this one the future of neuronal networks research?

@ Only for problems in close collaboration with
experimentalists.

e For higher level brain functions, better use mean-field
approaches




Two examples: synaptic depression and bistable perception

Two examples: synaptic depression and bistable
perception



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Short-term synaptic depression (STD)

[Benita et al., Frontiers in Computational Neuroscience, 2012.]



Two examples: synaptic depression and bistable perception Short-term synaptic depression

What is synaptic depression?

@ Synaptic depression is the loss of synaptic strength along time.
Depression/Facilitation are forms of plasticity.
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Two examples: synaptic depression and bistable perception Short-term synaptic depression

What is synaptic depression?

@ Synaptic depression is the loss of synaptic strength along time.
Depression/Facilitation are forms of plasticity.

@ Short-term synaptic depression (STD) is explained by the
depletion of the pool of vesicles ready to release the
neurotransmitters.




Two examples: synaptic depression and bistable perception Short-term synaptic depression

What is synaptic depression?

@ Synaptic depression is the loss of synaptic strength along time.
Depression/Facilitation are forms of plasticity.

@ Short-term synaptic depression (STD) is explained by the
depletion of the pool of vesicles ready to release the
neurotransmitters.

@ Reducing extracellular calcium, the release probability (7,./)
decreases.



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Experimental STD measurements

@ A presynaptic neuron is stimulated and the activity at the
(target/postsynaptic neuron) is recorded.

@ The target neuron must be prevented from spiking. Small voltage
variations (PSP=PostSynaptic Potentials) are then measured.

@ To measure STD one observes how the amplitude of the PSPs
varies for sufficiently long time.



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Results on STD from experiments

@ [Reig et al, Cerebral Cortex, 2006]. The amount of activity of the
network (with UP/DOWN states) is important. When the (in vitro)
network has rhythmic activity, there is less depression.

silent slice silent slice C  oscillatory slice
“classical” ACSF “modified” ACSF “modified” ACSF

100ms

@ More activity, less depression.

e Can we reproduce this phenomenon in a model and
explain why?

e Does it depend on the experimental preparation used to
modify activity?



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Building up the model

@ Network of 1280 neurons (80% exc., 20% inh.) bicompartmental
with 10 currents (excitatory neurons) [Compte et al., 2003].

{ CmAS avs —As(IL + Ina + Ik + I+ Ixks + Ikna) — Isyn,s — gsa( Vs — Vi)

CmAd dVy - _Ad(ICa + IKCa + INaP + IAH) — Isyn,d — gsd( Vd - VS)a

@ Synapses (Isyn exc/inn) Mediated by AMPA, GABA and NMDA:

Isyn = 9syn S (V — Vsyn)

@ Specific equation (important!) for the release probability:

Trel Prei(t) = Po — Prel, Pret — fp Prejs fp < 1, every presynaptic
event.

@ Neurons on a line, Gaussian connectivity (=~ 20 presynaptic

contacts per neuron).
@ Approximately 19000 differential equations.



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Somatic currents: Iy, Ik, /1, and:
@ a fast KT-current named A-current, Iy;
@ a slow inactivating K*-current, Ixs;
@ a [Nat]-dependent K*-current, Ixnsa-
Dendritic currents:
@ a Ca’t-current with high threshold, /¢y;
@ a [Ca’t]-dependent KT-current, Ixca;
@ a persistent Nat-current, Inap;
@ a K" -current activated during hyperpolaritzation (inward rectifier),
IaR.



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Building up the model: procedures

lllustration with some currents in the soma compartment:

dV.
CmAsTts = —As(lL 4+ Ina + Ik + la + Iks + Ikna) — Isyn,s — Gsa( Vs — Va),
@ A target neuron chosen, we stimulate a unique presynaptic

neuron.



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Building up the model: procedures

lllustration with some currents in the soma compartment:

dV.
CmAsTts = _AS(IL + INa + IK + IA + /KS + /KNa) - Isyn,s - gsd( Vs - Vd)7
@ A target neuron chosen, we stimulate a unique presynaptic
neuron.
@ \oltage “clamp"is simulated by blocking sodium channels in the
model of the target neuron.

INa = ONa m® h(v — Vna); ONa =0



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Building up the model: procedures

lllustration with some currents in the soma compartment:

dV.
CmAsTts = _AS(IL + INa + IK + IA + /KS + /KNa) - Isyn,s - gsd( Vs - Vd)7
@ A target neuron chosen, we stimulate a unique presynaptic
neuron.
@ \oltage “clamp"is simulated by blocking sodium channels in the
model of the target neuron.

INa = ONa msh(v_ VNa); Ona =0
@ Network activity is increased by increasing the potassium reversal

potential V (1 extracellular potassium) as in the in vitro
experiments (we introduce parameter a).

IK:gKn4(v—VK); Vk — Vk +a



Two examples: synaptic depression and bistable perception

Running the model: effect of K™ reversal potential
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Two examples: synaptic depression and bistable perception Short-term synaptic depression

Running the model: measuring PSPs

presynaptic neuron ﬂ

v

we induce spikes
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Two examples: synaptic depression and bistable perception Short-term synaptic depression

Results from the model: replication of experiments

@ Using models we test several parameters that change the network
activity (important to keep realistic models).



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Results from the model: replication of experiments

@ Using models we test several parameters that change the network
activity (important to keep realistic models).

@ We provide evidences that is the activity of the network itself the
responsible for the changes in STD, and is not artificially induced
by the experimental solution.



Two examples: synaptic depression and bistable perception

Short-term synaptic depression

Results from the model: replication of experiments
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Two examples: synaptic depression and bistable perception Short-term synaptic depression

Results from the model: testable predictions

Different behaviour in UP and DOWN states of the network.

NMDA
A f BMPA' B f AMENMDACAES C amplitude rate
o o D
DA 0! ’ 53
d 8:2 Nﬁ : g:g \\i:f: = —
=04 S04 g
. 1
202 202 o
E 0+—F+—+—+—+— 5§ 0o+—+—+—+—+ 04+—"F—F—F—t
= 1 2 3 4 5 & 1 2 3 4 5 1 2 3 4
# spike train # spike train # spike train

Depression at UP versus DOWN states.



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Results from the model: non-testable predictions

Reciprocal result: influence of STD on the network activity.

Afp=1
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Two examples: synaptic depression and bistable perception

Short-term synaptic depression

Non-testable predictions: influence of STD on network

activity.
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Two examples: synaptic depression and bistable perception

Short-term synaptic depression
Results from the model: non-testable predictions
explanations

Calcium/sodium buffering (responsible of ending UP states) gets
slower with depression

Ikna = grknaW([Na+])(v — Vk), Ikca =

2
gKCa%(V_VK)
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Two examples: synaptic depression and bistable perception Short-term synaptic depression

Further steps

@ Measures to describe the bifurcation.

@ Reproduce the results with network of more simplified neuron
models (containing a spiking mechanism, different time-scales
allowing buffering) with similar synapse dynamics.

@ Reduce the network to a mean-field* model where P, still plays
a role to be able to do some analysis and state the explanations in
a more consistent way.

* Homogeneity conditions. Using, for instance the diffusion approach
from statistical mechanics (Fokker-Planck) and obtain a rate equation,
see also Alex Roxin’s talk.



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Rate model: Goals and equations

How do the lengths of the UP- and DOWN-states vary in terms of
short-term depression?

@ Activities (rates) of exc/inh populations: ag ;.

@ Depression levels: sg,.

@ Adaptation levels: hg ;.

Taede = —ag + ¢(—(Se We.e ae — S/ WE, & — g he — fo,E)/Ka£),
Ts£SE = —Se + ¢((a — OsE)/Ks E),
hehe = —he + ©((One — ae)/knk),

()
with o(x) = 1/(1 + exp(x)).



Two examples: synaptic depression and bistable perception Short-term synaptic depression

Rate model: partial results

To mimic the amount of depression, we modify the time constant of the
synaptic depression:

7,61 = Ts,e/1 (1 —ag;) (1 = fp,e/1)),

where 75 £/ constant, fp £/, € [0, 1], depression levels.

Ts,£/1 When there is activity in the population (that is, ag/, > 0). Thus,
Se /) decay changes according to the level of activity. For fp £/, ~ 1,
synaptic depression is less than for fp £/, ~ 0.

We have tested different connectivities. There is always a parameter
range in which UP-state durations overcome DOWN-state durations.
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Rate model: partial results

WEE=0.760000 WEE=0.840000
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Figure: Changes in Up/Down-state durations in terms of fp £. Each panel
represents a different connectivity value.

Non-constant parameters in this simulation: fp £ € [0.2,2.0;0.18].
Fixed parameters in this simulation: wg; = 0.769; w;e = 0.417; wy; = 0.031;
ge = 0.16; g = 0.0; Ts,E = 400.0; Ts,| = 400.0; fD,E =1.000; fD’/ =1.0;
T9,E = 200.000; To,1 = 200.0; 9075 = 0.0; 907/ =0.0.
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Reduced model: an oversimplification

lsyn = Gsyn S Prel (V — Vigyn)

S(t) =—= 45> 6t — tepw),

-
s spk

Plei(t) = (Po — Prer)/7re1 + S2 Prer 3 (t — tspk).
spk

Can we explain the results only from this simple problem
assuming an input with 2 intertwined frequencies wg, wyn?

Not enough... network effects are important.



Two examples: synaptic depression and bistable perception Bistable perception

Modeling bistable perception
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“Bistable" stimuli
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Basic equations

@ Firing-rate variables:

{ TE1 = —E1 + f(—“x‘/jEQ - §/>aa1 + /1 + n1(t))7 (6)

TEZ = —E2 + f(—“x‘/jE1 - §/>a32 + /2 + n2(t))7

T~ 10 ms;
e [ = cross-inhibition;
e ¢, = adaptation strength;
e /1 » = external stimuli.
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Basic equations

@ Firing-rate variables:

{ TE1 = —E1 + f(—‘ﬁEg — ¢ga1 + /1 + I’H(t)),

: 6
TE2 = —E2 —|— f(—“x‘/jE1 - Q/)aaZ + /2 + nz(t))v ( )

T~ 10 ms;
e (3 = cross-inhibition;
e ¢, = adaptation strength;
e /1 » = external stimuli.

@ Gain function:
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Basic equations

@ Adaptation variables:

Tad1 = —a1 + B,
Tady = —ap + Ep,

TaN1S
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Basic equations

@ Adaptation variables:

Tad1 = —a1 + B,
Tady = —ap + Ep,

TaN1S

@ Noise dynamics:
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Parameter dependence

Bifurcation diagrams ...

Basic parameter set: 5 = 1.0, ¢5 = 0.5, 7 = 200, k = 0.1, 6 = 0.0.

Ul

08

06

04

Bifurcation diagram in terms of the strength of the input /1 = k.
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Parameter dependence

Bifurcation diagrams ...

Basic parameter set: /i = L = 0.5, 7, = 200, k = 0.1, § = 0.0.

HB curve |

§ HB curve 2
09 b Pitchfork curve ]
0.8 BISTABILITY E

06

05 |

MONOSTABILITY

L s
0 0.05 0.1 0.15 0.2 0.25 0.3
LA

Bifurcation diagram in terms of the strength of the input /1 = k.

“juicy" bifurcation details.
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Collaborators

@ Short-term depression: J.M. Benita (Ph.D. UPC), G. Deco
(ICREA-UPF, computational neuroscience), M.V. Sdnchez-Vives
(ICREA-IDIBAPS, electrophysiology).

@ Bistable perception: P.E. Garcia-Rodriguez (Ph.D. CRM-UPF),
J. Braun, A. Pastukhov (U. Magdeburg, cognitive psychology), G.
Deco (ICREA-UPF, computational neuroscience).
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Thanks for your attention!
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