

Contents

Delay equations arise in mechanical systems...

- ... by the information system (of control), and by the contact of bodies.
- Linear stability & subcritical Hopf bifurcations
- Force control and balancing human and robotic
- Contact problems
 - Shimmying wheels (of trucks and motorcycles) Machine tool vibrations

Main references

- Stepan, G., Haller, G., Quasiperiodic oscillations in robot dynamics, Nonlinear Dynamics 8 (1995) 513-528.
- Stepan, G., Vibrations of machines subjected to digital force control, International Journal of Solids and Structures 38 (2001) 2149-2159.
- Kovecses J, Kovacs LL, Stepan G, Dynamics modeling and stability of robotic systems with discrete-time force control, *Archive of Applied Mechanics* **77** (2007) 293-299.
- Kovacs LL, Kovecses J, Stepan G, Analysis of effects of differential gain on dynamic stability of digital force control, *International Journal of Non-Linear Mechanics* **43** (2008) 514-520.
- Insperger T, Kovacs LL, Galambos P, Stepan G, Increasing the accuracy of digital force control process using the act-and-wait concept, *IEEE/ASME Transactions on Mechatronics*, **15** (2010) 291-298.

Stability of digital position control		
$x''(T) \equiv -px(j-1) - dx'(j-1), \ T \in [j, j+1)$		
	$=: a_j \qquad p = P\tau^2 / m, d = D$	τ / m
$x(T) = x(j) + x'(j)(T-j) + \frac{1}{2}a_j(T-j)^2$		
$x'(T) = x'(j) + a_j(T - j), T \in [j, j + 1)$		
$\left(x(j) \right)$	(1 1	$\left(\frac{1}{2}\right)$
$\mathbf{z}^j \coloneqq x'(j)$	$\Rightarrow \mathbf{z}^{j+1} = \mathbf{A}\mathbf{z}^{j}, \mathbf{A} = \begin{bmatrix} 0 & 1 \end{bmatrix}$	1
$\left(\begin{array}{c}a_{j}\end{array}\right)$	$\begin{pmatrix} -p & -d \end{pmatrix}$	0)
$\det(\mu \mathbf{I} - \mathbf{A}) = \mu^3 - 2\mu^2 + (1 + d + \frac{1}{2}p)\mu + (\frac{1}{2}p - d) = 0$		

Force control – motivation

- Polishing turbine blade \Box (Newcastle/Parsons robot)
- Rehabilitation robotics (human/machine contact)
- Coupling force control (CF (between truck and trailer)
- Electronic brake force control (added to ABS systems)* * ©Knorr-Bremse

Motivation

- Polishing turbine blade (Newcastle/Parsons robot)
- Rehabilitation robotics \Box 2 (human/machine contact)
- Coupling force control (CF (between truck and trailer)
- Electronic brake force control (added to ABS systems)* * ©Knorr-Bremse

2

Motivation - Polishing turbine bla (Newcastle/Parsons - Rehabilitation roboti (human/machine con - Coupling force control (CFC) \Longrightarrow (between truck and trailer)* - Electronic brake force control

(added to ABS systems)* * ©Knorr-Bremse

Modeling sampling

Sampling time is τ , the *j*th sampling instant is $t_j = j\tau$ $Q(t) \equiv -P(ky(t_j - \tau) - F_d) + ky(t_j - \tau), \quad t \in [t_j, t_j + \tau)$ Natural frequency: $f_n = \omega_n / (2\pi) = \sqrt{k/m} / (2\pi)$ Sampling frequency: $f_s = 1/\tau$ time: $T = t/\tau$ Dimensionless equations of motion: $T \in [j, j+1)$ $x''(T) + (\omega_n \tau)^2 x(T) = (\omega_n \tau)^2 (1-P) x(j-1)$ $x(T) = x_h(T) + x_p(T) = x(j), x'(j) \Rightarrow B_1, B_2$ $B_1 \cos(\omega_n t) + B_2 \sin(\omega_n t) + (1-P)x(j-1)$

$$\begin{aligned} & \underbrace{\text{Stability of digital force control}}_{\mathbf{z}^{j} = \begin{pmatrix} x(j-1) \\ x(j) \\ x'(j) \end{pmatrix}} \Rightarrow \mathbf{z}^{j+1} = \mathbf{A}\mathbf{z}^{j} \Rightarrow \det(\mu\mathbf{I} - \mathbf{A}) = 0 \\ & \left| \mu_{1,2,3} \right| < \mathbf{E} \text{ stability} \end{aligned} \\ & \mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ (1-P)(1-\cos(\omega_{n}\tau)) & \cos(\omega_{n}\tau) & \frac{1}{\omega_{n}\tau}\sin(\omega_{n}\tau) \\ (1-P)\omega_{n}\tau\sin(\omega_{n}\tau) - \omega_{n}\tau\sin(\omega_{n}\tau) & \cos(\omega_{n}\tau) \end{pmatrix} \\ & \underbrace{\text{Parameters:}} \quad (\omega_{n}\tau)/(2\pi) = f_{n}/f_{s} \text{and} \quad P \end{aligned}$$

Conclusions on digital force control

- All the 3 kinds of co-dimension 1 bifurcations arise in digital force control (Neimark-Sacker, flip, fold)
- Application of differential gain leads to loss of stable parameter regions
- Force derivative signal can be filtered with the help of sampling, but stability properties do not improve
- Do not use differential gain in force control

