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Delay equations arise in mechanical systems…

… by the information system (of control), and 

by the contact of bodies.

- Linear stability & subcritical Hopf bifurcations

- Force control and balancing – human and robotic

- Contact problems

Shimmying wheels (of trucks and motorcycles)

Machine tool vibrations
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Position control

1 DoF models  ⇒ x

Blue trajectories:
Q = 0

Pink trajectories:
Q = – Px – Dx

.

Force control

Desired contact force:
Fd = kyd ;

Sensed force: 
Fs = ky

Control force: Q = – P(Fd – Fs) – DFs + Fs or d

.

Stabilization (balancing)

Control force:

Q = – Px – Dx

Special case of force control:  with  k < 0

.
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Alice’s Adventures in Wonderland

Lewis Carroll (1899)

Digital position control

Equation of motion

Position error:  

Stability        ⇔
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Modeling sampling

Time delay τ and

zero-order-holder

Dimensionless time

Equation of motion
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Checking |µ1,2,3|<1 algebraically

Routh-

Hurwitz
Routh-Hurwitz

Stability chart

Stability conditions: p > 0, H2 > 0 (= 0 ⇒ Hopf)

Maximum gain:

Minimum position error

Self-excited vibration frequency: 0 < f < fsampling/6
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The low-frequency vibrations Force control

Desired contact force:
Fd = kyd ;

Sensed force: 
Fs = ky

Control force: Q = – P(Fd – Fs) – DFs + Fs or d

.

Force control – motivation

- Polishing turbine blade

(Newcastle/Parsons robot)

- Rehabilitation robotics

(human/machine contact)

- Coupling force control (CFC)

(between truck and trailer)*

- Electronic brake force control

(added to ABS systems)*

* Knorr-Bremse
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Digital force control

Equation of motion:

Equilibrium: 

Force error:                                               (Craig ’86)

Stability for                           ,                       ⇒
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Modeling sampling

Time delay τ and

zero-order-holder

(ZOH)

Dimensionless time

τ/tT =

Modeling sampling

Sampling time is τ, the  j th sampling instant is tj = jτ

Natural frequency: 

Sampling frequency:                          time: T = t/τ

Dimensionless equations of motion:

x(j), x’(j) ⇒ B1,B2

( ) ),[),()()( τττ +∈−+−−−≡ jjjdj ttttkyFtkyPtQ

)2/(/)2/( ππω mkf nn ==

τ/1=sf

)1()1()()()()( 22 −−=+′′ jxPTxTx nn τωτω

)1,[ +∈ jjT

=+= )()()( TxTxTx ph

)1()1()sin()cos( 21 −−++ jxPtBtB nn ωω

Stability of digital force control

⇒ ⇒

⇔ stability

Parameters:                                        and
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Checking |µ1,2,3|<1 algebraically

Routh-Hurwitz

Stability chart of force control

Vibration 

frequency: 

0 < f < fs/2

Maximum

gain:

Minimum

force error:

CF )3/2(min, ≥∆

5.1max =P
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Conclusions on digital force control 

- All the 3 kinds of co-dimension 1 bifurcations 

arise in digital force control

(Neimark-Sacker, flip, fold)

- Application of differential gain leads to loss of 

stable parameter regions

- Force derivative signal can be filtered with the 

help of sampling, but stability properties do not 

improve

- Do not use differential gain in force control

Stability problems along the blade

Turbine blade polishing Mechanical model of polishing

mr = 2500 [kg]  br = 32 [Ns/mm]  C = 150 [N]

ms =  0.95 [kg]  bs =  2 [Ns/m(!)] ks = 45 [Ns/mm]

me =  4.43 [kg]  be =  3 [Ns/m(!)] ks = 13 [Ns/mm]

Fd = 50 [N]

Experimental stability chart The quasi-periodic oscillation
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Time-history and spectrum Human-robotic force control

Human-robotic 

force control

video

Delay and vibrations

Delay and vibrations Outer-loop force control in RehaRob

Sampling time at outer loop with    τ ≈ 60 [ms]

Sampling time at force sensor with ∆t ≈ 4 [ms]

Fd ≡ 0 Fe,n ∆xd,n

xn-1

xd,n

Σ

DSP (or PC)

xn-L Fm,n

force control
robot -

controller

robot arm +

teaching-in device

force / torque

acquisition

deadtime

360ms !
= 6τ
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Robotic rehabilitation Force control model with large delay r∆t

Constant gain case

Steady force error

Act-and-wait
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Physical meaning of act & wait
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Physical meaning of act & wait

we wait we act again
we acted

We know 

the result 

of our 

previous 

action!

5

4

=

=

k

r

rjt −

Physical interpretation of act & wait

“Good memory causes trouble”

Regulating the shower temperature

large delay – small gains

small delay – large gains

Better solution for large delay –

regulate taps with large gain 

then wait, and act, and wait, etc...
cold

hot

sensor

sensorsensor

Linear MIMO system with act & wait

[ )
DCHHxw

BwAxx

==

+∈−+=

where),()(

1,),()()(

jgj

jjtrjtt

j

&

BRQRwQxx
AAA

∫
−==−+=+

1

0

dee,ewith),()()1( srjjj
s



 ∈=

=
otherwise0

,if1 Zhhkj
g j

43421

M

4444 34444 21
L

MOM

L

L

L

4434421

M

jj

j

j

rj

j

j

j

g

rj

j

j

j

z

w

w

w

x

G

0I00

00I0

000H

R00Q

z

w

w

w

x























−

−

−























=























+−

−

+

+

)(

)2(

)1(

)(

)1(

)1(

)(

)1(

1

0011

1 ,

zGGGz

zGz

K−

+

=

=

kk

jjj

… and again, step-by-step solution:

Thus,

Linear MIMO system with act & wait

The structure of the coefficient matrices:
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Algebraic structure of the map
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Feedback history is eliminated…

Stability is determined by the n-dimensional

matrix: RHQ ++1r
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Force control model with large delay r∆t

Constant gain case

Steady force error

Act-and-wait
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MIMO force control model – digital effects
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Discrete state space formulation
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Checking |µj|<1 algebraically

Routh-Hurwitz

Continuous vs. act-and-wait control

Theoretical 

predictions

r = 1,  k = 2

Increase of

stability limit

Experiments

Hirata (MB-H180-500)

P = 3P = 4P = 4.5P = 5

Experiments – constant gain controller

P = 11P = 12

Experiments – act-and-wait controller Experiments – quasi-periodic oscillations

P = 11P = 11

Different vibration 

frequencies exist 

close to each other
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I Robot


