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1. Totally Monotone Skew-product Semi-flows

(X × Y, R) = (X × Y, Πt):

Πt(x, y) = (u(x, y, t), y · t), t ≥ 0,

−− (Y, R) is a. p. minimal.

−− ∃ a total ordering “≥” on X s.t.

x1 > x2 ⇒ u(x1, y, t) > u(x2, y, t)

∀ y ∈ Y, t > 0.
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• Example (parabolic PDE in one space dimension)






ut = uxx + f(u, ux, x, t), t > 0, 0 < x < 1

ux(0, t) = ux(1, t) = 0, t > 0,

where f is smooth and a. p. in t.

– The equation generates a totally monotone skew-product

semiflow Π = (X × H(f), R+), where X →֒ C1(0, 1):

Using zero number property (Matano (1982), Angenent (1988), X.

Y. Chen (1995)), define “≥” on X × {g}:

(U1, g) > (U2, g) ⇐⇒ u(U1, g, 0, t) > u(U2, g, 0, t) for t ≫ 1.

– The scalar ODE u′ = f(u, t), u ∈ R1 is a special case.

– If f is T -periodic in t, then all ω-limit set of Π is periodic

minimal with period T (Chen & Matano (1989), Brunovský,

Polác̆ik & Sandstede (1992)).



• Theorem (Shen & Yi, 1994-1996): Consider the a. p. totally

monotone skew-product semiflow Πt.

1) (ω-limit set) Each ω-limit set contains at most two minimal set;

2) (a. a.) Each minimal set is a. a.;

3) (module containment) The frequency module of any a. a. orbit

is contained in that of f ;

4) (ergodicity) A minimal set E is uniquely ergodic iff the residual

set Y0 ⊂ H(f) has full Haar measure. Moreover, If E is ergodic,

then (E, R) ≃ subflow of (R1 × H(f), R);

5) (a. p.) An ω-limit set or a minimal set is a. p. if one of the

following holds:

– It is uniformly stable;

– It is hyperbolic;

– fu ≤ 0.



• ‘Proof’ for scalar ODE:

u̇ = f(u, t), u ∈ R1

⇐⇒ Π = (R1 × H(f), R).

Proof of 2): Let E ⊂ R1 × H(f) be a minimal set

p : R1 × H(f) → H(f)

Consider h : H(f) → 2E : g 7→ E ∩ p−1(g).

h upper semi-continuous =⇒ Y0 = {g ∈ H(f)|h is continuous at g}

is residual in H(f).

Denote

a(g) = max h(g), b(g) = min h(g), g ∈ Y0.

Let tn → ∞ be such that

u(a(g), g, tn) → b(g).



Lower-semicontinuity =⇒ ∃ (un, g) ∈ E ∩ P−1(g) s. t.

u(un, g, tn) → a(g).

u(a(g), g, tn) ≥ u(un, g, tn) =⇒

b(g) ≥ a(g) =⇒ E ∩ P−1(g) = {singleton}.

Proof of 4): Let µ -Haar measure on H(f).

If µ(Y0) = 1, then (E, R) is uniquely ergodic.

If µ(Y0) = 0, define va,b ∈ C(E, R)
′

va(f) =

∫

H(f)

f(a(g), g)dµ,

vb(f) =

∫

H(f)

f(b(g), g)dµ,

=⇒ va 6= vb, and va, vb are invariant.



• a. a. dynamics as intermittency of bifurcations:

ẋ = x2 − λ + a(t)

where a(t) is a. p.

−− Skew-product flows: πλ = (R1 × H(a), R).

−− ∃!λ0 s. t.
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2. Strongly Monotone Skew-product Semiflows

• Strong monotonicity: (X × Y, R+) = (X × Y, Πt):

Πt(x, y) = (u(x, y, t), y · t), t ≥ 0,

is strongly monotone if ∃ a partial ordering “≥” on X s.t.

x1 > x2 ⇒ u(x1, y, t) ≫ u(x2, y, t)

∀ y ∈ Y, t > 0.
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• Examples:

−− Cooperative system of ODEs and FDEs with a. p. time

dependence

−− Parabolic PDE in higher space dimension with a. p. time

dependence






ut = ∆u + f(u,∇u, x, t), x ∈ Ω, t > 0,

u|∂Ω = 0 or ∂u
∂n

|∂Ω = 0, t > 0.

=⇒: Strongly monotone skew-product semiflow (X × H(f), R+),

where X →֒ C1(Ω̄).



• Theorem (Shen & Y. 1998): Consider the a. p. strongly

monotone skew-product semiflow (X × Y, R+).

1) (a. a.) Each linearly stable minimal set E is a. a. and in fact an

almost N -cover of Y for some N ;

2) (a. p.) Each uniformly stable minimal set is a. p.;

3) (module containment) NM(E) ⊂ M(Y ) for some N .

4) (spatial homogeneity) Assume that f ≡ f(u,▽u, t) and the

Neumann boundary condition on a convex domain Ω. Then any

linearly stable a. a. solution ug is spatially homogenous and

satisfies

u
′

= g(u, 0, t).

Moreover, M(ug) ⊂ M(f).

5) (global attractor) If there is a δ > 0 such that fu ≤ −δ and if

bounded solution exists, then ∃| a. p. solution u(U0, f, ·, t) which

attracts all bounded solutions, and moreover, M(u) ⊂ M(f).



– Related works: Novo-Obaya-Sanz 05, Novo-Obaya 04, Shen-Zhao

04, Hetzer-Shen 02, 05, Jiang-Zhao 02, Chuechov 01 ...

• Theorem (Huang & Y. 2008): Each a. a. minimal set in both

totally monotone and strongly monotone cases has zero topological

entropy.

3. Algebraic Theory of Topological Dynamics

Let (X, Πt) be a compact flow. For any t ∈ R,

Πt : X → X

is a homeomorphism.

• Ellis semigroup: E(X) = cl{Πt} – pointwise topology.

– E(X) is a sub-semigroup of XX under composition of maps.

– Πt induces a flow Π̃t on E(X): Π̃tγ = Πt ◦ γ.



• Minimal ideal: I ⊂ E(X) is an ideal if E(X)I ⊂ I. It is a

minimal ideal if it does not contain any non-empty proper subideal.

• Idempotent: u ∈ E(X) such that u2 = u.

• Ellis Theorem:

1) I ⊂ E(X) is a minimal ideal iff I is a minimal set of (E(X), Π̃t);

2) For any minimal ideal I ⊂ E(X),

– the set J(I) of idempotent points of I is non-empty,

– ∀u ∈ J(I), uI is a group with identity u,

– I =
⋃

u∈J(I)

uI.



• Proximal and distal:

– x1, x2 ∈ X is distal if

inf
t∈R

d(Πtx1, Π
tx2) > 0.

Otherwise, x1, x2 is said to be proximal.

– x ∈ X is a distal point if it is only proximal to itself.

• Point-distal flow: A flow is point-distal if it is minimal and

contains a distal point.

– An a. a. minimal flow is point-distal.

• Distal flow: A flow is distal if all points in it are distal points.

– (X, T) is distal iff E(X) is a group.

– An a . p. minimal flow is distal.

– One can define positive, negative distal and distal pairs, as well

as positive and negative distal flows.



• Proximal relation:

P (X) = {(x1, x2) ∈ X × X : x1, x2 are proximal}.

– P (X) need not be an equivalence relation;

– If P (X) is an equivalence relation, then any two proximal pair is

both positive and negative proximal;

– For an a. a. minimal flow, P (X) is a closed equivalence relation.

• Theorem (Sacker-Sell 74). If (X, R) is either positive or negative

distal, then it is distal.



Proof: Suppose (X, T) is negatively distal. Then α(e), where e is

the identity of E(X), is compact invariant. Hence it contains a

minimal set I, i.e., a minimal ideal of E(X).

– I is a group: ∀u = limtn→−∞ Πtn ∈ J(I), x ∈ X , denote x∗ = ux.

We have

(x∗, x∗) = (ux, ux∗) = u(x, x∗),

i.e., x, x∗ are negatively proximal. Hence

x = x∗ = ux =⇒ u = e =⇒ I = eI is a group.

– E(X) = I: E(X) = E(X)e ⊂ E(X)I ⊂ I.



4. Application of Topological Dynamics

Consider the a. p. strongly monotone skew-product semiflow

(X × Y, R+).

• Theorem: Each linearly stable minimal set E is a. a. and in fact

an almost N -cover of Y for some N .

Proof: Consider the proximal relation P (E) and the order relation

O(E) = {(x1, y), (x2, y) ∈ E : x1, x2 are ordered}.

– O(E) is a closed relation;

– P (E) is an equivalence and invariant relation;

– O(E) ⊂ P (E): Strong monotonicity =⇒ ∃Y0 ⊂ Y such that

∀y ∈ Y0 no two pointed on p−1 ∩ E are ordered. Let

((x1, y), (x2, y)) ∈ O(E) \ P (E). Take y0 ∈ Y0 and tn → +∞ such

that y · tn → y0. WLOG, let u(xi, y, tn) → x∗

i , i = 1, 2.



(x1, y), (x2, y) distal =⇒ x∗

1 6= x2
2. (x1, y), (x2, y) are ordered =⇒

(x∗

1, y0), (x
∗

2, y0) are also ordered, a contradiction.

– P (E) ⊂ O(E): Linear stability =⇒ any two points on the same

fiber of P (E) \ P (O) are negatively distal - a contradiction because

P (E) is an equivalence relation and any two proximal points are

negatively proximal;

– Let Y ∗ = E/P (E) = E/O(E). Then (E, R) induces a minimal

distal flow on Y ∗.

– Y ∗ is an N -cover of Y for some N , hence a. p. minimal.

– E is an almost 1-cover of Y ∗, hence a. a.

• Theorem: Each uniformly stable minimal set E is a. p.

Proof: Uniform stability =⇒ E is negatively distal, hence distal.

Therefore, E = Y ∗.
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