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Preface

The method of averaging is a classical tool that allows to study the dynamics of
the nonlinear differential systems under periodic forcing. The method of averaging
has a long history that starts with the classical works of Lagrange and Laplace,
who provided an intuitive justification of the method. The first formalization of
this theory was done in 1928 by Fatou [36]. Important practical and theoretical
contributions to the averaging theory were made in the 1930’s by Bogoliubov and
Krylov [8], in 1945 by Bogoliubov [7], and by Bogoliubov and Mitropolsky [9]
(English version 1961). For a more modern exposition of the averaging theory see
the book of Sanders, Verhulst and Murdock [86].

Every orbit of a differential system is homeomorphic either to a point, or to
a circle, or to a straight line. In the first case it is called a singular point or an
equilibrium point and in the second case it is called a periodic orbit . The third
case does not have a name. These notes are dedicated to study analytically the
periodic orbits of a given differential system.

We consider differential systems of the form
% = Fo(t,x) +eFi(t,x) + e R(t,x,¢), (1)

with x in some open subset D of R®, F;: R x D — R” of class C? for i = 1,2,
R: R x D x (—&g,e0) — R™ of class C? with €9 > 0 small, the functions F; and R
are T—periodic in the variable t. Here the dot denotes derivative with respect to
the time t.

In general to obtain analytically periodic solutions of a differential system is
a very difficult problem, many times a problem impossible to solve. As we shall see
when we can apply the averaging theory this difficult problem for the differential
systems (1) is reduced to find the zeros of a nonlinear function of dimension at
most n, i.e. now the problem has the same difficulty of the problem of finding the
singular or equilibrium points of a differential system.

An important problem for studying the periodic solutions of the differential
systems of the form

x = F(t,x), or x=F(x), (2)

using the averaging theory is to transform them in systems written in the normal

form of the averaging theory , i.e. as a system (1). Note that systems (2), in general,
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are not periodic in the independent variable ¢ and do not have any small parameter
€. So we must find changes of variables which allow to write the differential systems
(2) into the form (1) where Fy eventually can be zero.

These notes are divided in three chapters. Chapter 1 is dedicated to the
averaging theory of first order, we present in it three main results for studying the
periodic solutions of the differential systems, see Theorems 1.1.1, 1.3.1 and 1.5.1.
We do four applications of Theorems 1.1.1, namely to van der Pol equation, to the
Liénard differential system, to study the zero—Hopf bifurcation in R", and to a
class of Hamiltonian systems. We present three applications of Theorem 1.3.1, in
the first we study the Hopf bifurcation of the Michelson system, in the second the
periodic solutions of a third—order differential equation, and in the third we analyze
the periodic solutions of the Vallis system which models “El Nino” phenomenon.
Finally we do an application of Theorem 1.5.1 to a class of Duffing differential
equation.

In Chapter 2 we present the averaging theory for studying the periodic so-
lutions of a differential system in R™ at any order in the small parameter. This
theory is developed using the weaker assumptions. This is the more theoretical
chapter of this work.

In the last chapter, Chapter 3, we present some applications of the averaging
theory of order higher than one. Thus using the averaging theory of second order
we study the periodic solutions of the Hénon-Heiles Hamiltonian, and using the
averaging theory of third order we study first the limit cycles of the quadratic poly-
nomial differential systems, and of the linear with cubic homogeneous nonlineari-
ties polynomial differential systems; and finally we analyze the periodic solutions
of the generalized Liénard polynomial differential equations.



Chapter 1

Introduction. The classical
theory

1.1 A first order averaging method for periodic orbits

We consider the differential system
%X = eF(t,x) + *R(t, %, €), (1.1)
with x € D C R", D a bounded domain, and ¢ > 0. Moreover we assume that
F(t,x) and R(t,x,¢) are T—periodic in t.
The averaged system associated to system (1.1) is defined by

y =ef(y), (1.2)

where

1

0 _* o
Py =7 ; F(s,y)ds. (1.3)

The next theorem says under which conditions the singular points of the av-
eraged system (1.2) provide T—periodic orbits of system (1.1). The proof presented
here comes from [94].

Theorem 1.1.1. We consider system (1.1) and assume that the vector functions F,
R, DyF, D2F and DR are continuous and bounded by a constant M (independent
of €) in [0,00) X D with —ep < € < g9. Moreover, we suppose that F' and R are
T—periodic in t, with T independent of €.

(a) If p € D is a singular point of the averaged system (1.2) such that
det( D/ (p) 0. (1.4

then for |e| > 0 sufficiently small, there exists a T—periodic solution x(t,¢)
of system (1.1) such that x(0,€) — p as e — 0.
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(b) If the singular point'y = p of the averaged system (1.2) has all its eigenvalues
with negative real part then, for |e| > 0 sufficiently small, the corresponding
periodic solution x(t,e) of system (1.1) is asymptotically stable, and if one
of the eigenvalues has positive real part x(t,e) is unstable.

Theorem 1.1.1 is proved in section 1.6, before its proof we shall present some
applications of it in section 1.2.

For each z € D we denote by x(+,z,¢) the solution of (1.1) with the initial
condition x(0,z,e) = z. We consider also the function ¢ : D x (—gg,g9) — R"
defined by

T
((z,e) = /0 [eF(t,x(t,z,€)) + e R(t,x(t, z,¢€),€)] dt. (1.5)

From (1.1) it follows for every z € D that
((z,e) =x(T,z,¢) — x(0,2,¢). (1.6)

The function ¢ can be written in the form
((z,¢) = ef(2) + O(?), (1.7)

where f° is given by (1.3). Moreove,r under the assumptions of Theorem 1.1.1 the
solution x(t, ), for |e| sufficiently small, satisfies that z. = x(0, ) tends to be an
isolated zero of ((-,¢) when & — 0. Of course, due to (1.6) the function ¢ is a
displacement function for system (1.1), and its fixed points are initial conditions
for the T—periodic solutions of system (1.1).

1.2 Four applications

We recall that a limit cycle of a differential system is a periodic orbit isolated in
the set of all periodic orbits of the system.

1.2.1 The van der Pol differential equation
Consider the van der Pol differential equation
iP+x=c(l-aHi,

which can be written as the differential system

T =y,
=—x+e(l—a?)y. (1.8)

In polar coordinates (r,0) where = r cosf, y = rsinf, this system becomes

= er(l —r? cos? 0) sin? ,
0 =—1+¢ecosf(1 —1r?cos?f)sindb,
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or equivalently
dr

b= —er(1 — 7?2 cos? ) sin? 0 + O(£?).
Note that the previous differential system is in the normal form (1.1) for applying
the averaging theory described in Theorem 1.1.1 if we take x =r, t =6, T = 2«
and F(t,x) = —r(1 — 72 cos? #) sin? 6.

From (1.3) we get that

0 Lo 2 2y 2 L o
INGES o7 J, r(1 — 7% cos” 0) sin” 0dh = 8r(r 4).
The unique positive root of fO(r) is r = 2. Since (df°/dr)(2) = 1, by statement
(a) of Theorem 1.1.1, it follows that system (1.8) has for |e| # 0 sufficiently small
a limit cycle bifurcating from the periodic orbit of radius 2 of the unperturbed
system (1.8) with e = 0. Moreover since (df°/dr)(2) = 1 > 0, by statement (b) of
Theorem 1.1.1, this limit cycle is unstable.

1.2.2 The Liénard differential system

The following result is due to Lins, de Melo and Pugh [58]. Here we provide an
easy and shorter proof with respect to the initial proof given by the mentioned
authors.

Proposition 1.2.1. The Liénard differential systems of the form
=y —celarx+ -+ apz™),
y = -,

with € sufficiently small and a,, # 0 have at most [(n—1)/2] limit cycles bifurcating
from the periodic orbits of the linear center & =y, y = —x, and there are examples
with exactly [(n — 1)/2] limit cycles. Here || denotes the integer part function.

Proof. We write system
t=y—celaz+--+ apa™), Yy =—u,

in polar coordinates (r,6) where x = rcosf, y = rsin 6, and we obtain

n

F=—c E apr® cosF 1o,

k=1
n
0=—1+esinf Z apr® 1 cos” 6,
k=1
or equivalently
d n
d—; =—€ Z apr® cost T O + O(e?).

k=1
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n
Again takingx =r, t =6, T =27 and F(t,x) = — Z aipr® cos* 19, the previous
k=1
differential system is in the normal form (1.1) for applying the averaging theory
described in Theorem 1.1.1.

We have that

n

2
€
akrk/o cos" 10 dg = ~5- E apbrr® = p(r),

k=1
kodd

~
o
—
=
<
I
|
o
ﬂ"_'
bl
HM:
i

27
where b, = / cos"10d # 0 if k is odd, and by, = 0 if k is even. Now we

0
apply Theorem 1.1.1, since the polynomial p(r) has at most [(n — 1)/2] positive
roots, and we can choose the coefficients a; with & odd in such a way that p(r)
has exactly [(n — 1)/2] simple positive roots, the proposition follows. O

1.2.3 Zero—Hopf bifurcation in R"

In this example we study a zero-Hopf bifurcation of C?3 differential systems in R"
with n > 3. The results on this example come from Llibre and Zhang [66].

We assume that these systems have a singularity at the origin, whose linear
part has eigenvalues ea 4+ bi with b # 0 and ec; for £k = 3,...,n, where ¢ is
a small parameter. Since the eigenvalues of the linearization at the origin when
e =0 are +bi # 0 and 0 with multiplicity n — 2, if an infinitesimal periodic orbit
bifurcates from the origin when ¢ = 0 we call such a kind of bifurcation a zero—Hopf
bifurcation. Such systems can be written into the form

t=car—by+ Y ai. ,xy22? . 2+ A,

i1+t =2 )

y=bx +ecay + > biy i, xty2zd 2 4+ B, (1.9)
i1 tin=2 :

. k . . . .

2k = ecpzg + > cgli)“inx“y”’zg?’...z;" +Ck, k=3,...,n

i1t i =2
k
where a;, . 4,5 biy. i, cgl.)..i7L, a, b and ¢j are real parameters, ab # 0, and A, B

and Cj are the Lagrange expression of the error function of third order in the
expansion of the functions of the system in Taylor series.

Theorem 1.2.2. There exist C3 systems (1.9) for which | € {0,1,...,2" =3} limit
cycles bifurcate from the origin at e = 0, i.e. for € sufficiently small the system has
exactly | limit cycles in a neighborhood of the origin and these limit cycles tend to
the origin when & \ 0.
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As far as we know in Theorem 1.2.2 was the first time that it is proved
that the number of limit cycles that can bifurcate in a Hopf bifurcation increases
exponentially with the dimension of the space. We recall that a Hopf bifurcation
takes place when one or several limit cycles bifurcate from an equilibrium point.

From the proof of Theorem 1.2.2 it follows immediately the next result.

Corollary 1.2.3. There exist quadratic polynomial differential systems (1.9) (i.e.
with A = B = Cj, = 0) for which | € {0,1,...,2" 3} limit cycles bifurcate from the
origin at € = 0, i.e. for € sufficiently small the system has exactly l limit cycles in
a neighborhood of the origin and these limit cycles tend to the origin when € \ 0.

Proof of Theorem 1.2.2. Doing the cylindrical change of coordinates
xr=rcosh, y=rsnb, z =z, i=3,...,n, (1.10)
in the region r > 0 system (1.9) becomes

r=ear + > (@iy...ip, cOSO + by, .. 4, sinB)(r cos 9)1'1 (rsin 9)i22§3 Sz 4 0(3),
i Tin=2

.1 ) o )
0= - br + > (biy...in, cOSO — a4y .5, SINO)(r cos )" (rsin )2z ... z;» +0(3) |,
i1 Fin=2

Zr= €cpzr + > ) (rcos)(rsin@)223 ... zin +0(3), k=3,...,n,

i Figm2 LT
(1.11)
where O(3) = Os(r, 23, ..., 2n)-

As usual Z, denotes the set of all non—negative integers. Taking agoe,; =
booe;; = 0 where ¢;; € 21_2 has the sum of the entries equal to 2, it is easy to
show that in a suitable small neighborhood of (r,zs,...,2,) = (0,0,...,0) we
have 6 # 0. Then choosing 6 as the new independent variable system (1.11) in a
neighborhood of (7, z3,...,2,) = (0,0,...,0) becomes

r | ear + > (@iy...ip, cOSO + by i, sin0)(r cos 0)’1 (rsin 9)’2 2;3 LozZin 4+ 0(3)

dr i1 4. Fin=2

deo br + > (biy...in cO80 — ai; .. 4, sin@)(rcos 0)%1 (rsin 0)2 2;3 .. sz" + O(3)
i14. . Fin=2

r <80k2k + . Z_; zcgl;?”in (r cos 0)'1 (r sin 0)i2z;3 coozin 4 O(3)>
i1+ tin=
o br+i . 24;1 2(bi1...in cos 0 — aiy...ip sin@)(r cos 0)1 (r sin 0)i2z§3 cozin g 0(3)’
i1+ Fin=

de

(1.12)
for k = 3,...,n. We note that this system is 27 periodic in the variable 6.

In order to write system (1.12) in the normal form of the averaging theory
we rescale the variables

(ryzg, ..., 2n) = (PE,N3E, . .., MRE). (1.13)
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Then system (1.12) becomes

d
£ = €f1(97pan3a"'777n) +5291(9,p,773,--~777n>5),

d (1.14)
% :6fk(07p7773,~..;nn)+Ezgk(0,p,n3,...,’l’]n75)7 k: 37..',71,

where

fi= % (ap + > (s, ...i,, cOSO 4+ bs, .4, sin@)(pcos 9)1‘1 (psin 9)1‘2 233 .. sz) ,
i1 tin=2

fr = 1 (cnk + > cgf) ;. (pcosf)(psin@)2zi ... z,i") .
b i1 Fin=2 o
We note that system (1.14) has the form of the normal form (1.1) of the aver-
aging theory with X:(pa n3,... 77771)’ tze? F(9a97 n3,... ann):(fl(eapa n3,... ann)7
f3(0,0,m3, - smn)s -y fn(0,0,m3, ... ,mn)) and T = 2w. The averaged system of
(1.14) is
g=ef'y),  y=(pms....m) €Q, (1.15)

where €2 is a suitable neighborhood of the origin (p,ns,...,n,) = (0,0,...,0), and

@) =W, ). fr ),

with
1 2

fzo(y) = 27 fi(97P77737~--a77n)d9a 1= 1u37"'an'
™ Jo

After some calculations we have that
f{):ip 2a+i(a106~+b01e')7}'
2b = J i/ )

1 k k k
f]g = % 2Ck77k + (0(202371—2 + 65)2)011_2) p2 +2 Z CE)O)eijninj ; k= 33 s, N,

3<i<j<n

where e; € Zi_Q is the unit vector with the jth entry equal to 1, and e;; € Zi_Q
has the sum of the ith and jth entries equal to 2 and the other equal to 0.

Now we shall apply Theorem 1.1.1 for studying the limit cycles of system
(1.14). Note that these limits after the rescaling (1.13) will become infinitesimal
limit cycles for system (1.12), which will tend to origin when € \, 0, consequently
they will be bifurcated limit cycles of the Hopf bifurcation of system (1.12) at the
origin.

From Theorem 1.1.1 for studying the limit cycles of system (1.14) we only
need to compute the non—degenerate singularities of system (1.15). Since the trans-
formation from the cartesian coordinates (r,zs,...,z,) to the cylindrical ones
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(psM3y ..., M) is not a diffecomorphism at p = 0, we deal with the zeros having the
coordinate p > 0 of the averaged function f°. So we need to compute the roots of
the algebraic equations

2a + Y (aioe; + boe,; )nj =0,
i=3

k k
2ckny + (Cgoﬁﬂ , T 0622),14) pPP+2 C(()O)e,;jn’inj =0, k=3,....,n.
3<i<j<n ’
(1.16)

Since the coefficients of system (1.16) are independent and arbitrary. In order to
simplify the notation we write system (1.16) as

a+zaj77j:0, ()p2+0k77k+ Z U 77177]—07 k=3,....,n, (1.17)
j= 3<i<j<n

(k)

(k) ;
where aj, ¢y, ¢, and ¢;;° are arbitrary constants.

Denote by C the set of algebraic systems of form (1.17). We claim that there
is a system belonging to C which has exactly 2”2 simple roots. The claim can be
verified by the example:

a+asnz =0, (1.18)
c((J )p + c3n3 + Z ZJ nmj 0, (1.19)
3<z<]§n
e+ Y c Wy =0, k=4,...,n, (1.20)
3<i<j<k

with all the coefficients non—zero. Equations (1.20) can be treated as quadratic
algebraic equations in 7. Substituting the unique solution 73y of 13 in (1.18) into
(1.20) with k& = 4, then this last equation has exactly two different solutions 74
and 149 for 74 choosing conveniently ¢4. Introducing the two solutions (730, 14:),
i =1,2, into (1.20) with k¥ = 5 and choosing conveniently the values of the coeffi-
cients of equation (1.20) with k = 5 and (n3,n4) = (130, 74:) We get two different
solutions 75;1 and 75;2 of n5 for each i. Moreover playing with the coefficients of
the equations, the four solutions (130, 74i,7si;) for ¢,j = 1,2, are distinct. By in-
duction we can prove that for suitable choice of the coefficients equations (1.18)

and (1.20) have 273 different roots (73, ...,7n,). Since 3 = 139 is fixed, for any

given c( ) there exist values of c3 and cés) such that equation (1.19) has a positive

solutlon p for each of the 2" 3 solutions (3, . .., n,) of (1.18) and (1.20). Since the
2n=3 solutions are different, and the number of the solutions of (1.18)-(1.20) is the
maximum that the equations can have (by the Bezout Theorem, see for instance
[88]), it follows that every solution is simple, and consequently the determinant of
the Jacobian of the system evaluated at it is not zero. This proves the claim.
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Using the same arguments which allowed to prove the claim, we also can
prove that we can choose the coefficients of the previous system in order that it
has 0,1,...,2" "3 — 1 simple real solutions.

Taking the averaged system (1.15) with f© having the convenient coefficients
as in (1.18)-(1.20), the averaged system (1.15) has exactly k € {0,1,...,2" 3} sin-
gularities with the components p > 0. Moreover the determinants of the Jacobian
matrix 9f°/0y at these singularities do not vanish, because all the singularities
are simple. In short. by Theorem 1.1.1 we get that there are systems of form (1.9)
which have k € {0,1,...,2"73} limit cycles. This proves the theorem. O

1.2.4 An application to Hamiltonian systems
The results of this subsection come from the paper of Guirao, Llibre and Vera [41].
We consider the following class of Hamiltonians in the action—angle variables

H(I1, .o 1,01, 00) = Ho(L) + eHa(Dns oo IO, 6,), (L21)

where ¢ is a small parameter. For more details on the action—angle variables see
for instance [1].

As usual the Poisson bracket of the functions f(I,...,1,,01,...,6,) and
g(Il, ...,In,ﬁl,. 79n) is

N~ [0f 0g Of 0g
{f,9} = ; (agi@[i )7 aei> )

The next result provides sufficient conditions for computing periodic orbits
of the Hamiltonian system associated to the Hamiltonian (1.21).

Theorem 1.2.4. We define

27

1
(Hy1) = f/Hl(Il,...,In,Gl,...,Gn)d91,
2
0

and we consider the differential system

dl; {L;, (H1)} )
e WY e L 6e . 0,) =2, ..m,
b~ R ) 2 ) "

—e—_"1-
by Hy(Hg' (k)

(1.22)

:6fi+n—2(12a"'alna927"'7971) t=2,...,m,

restricted to the energy level H = h* with h* € R. The value h* is such that the
function 7-[61 in a neighborhood of h* is a diffeomorphism. System (1.22) is a
Hamiltonian system with Hamiltonian € (H1). If € # 0 is sufficiently small then
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for every equilibrium point p = (I19,...,19,09,...,0%) of system (1.22) satisfying
that

det 8(f17"'7f2n72) #07
8(12a"'a17“927"'70") (I25In,02,...,00)=(19,...,12,69,...,69)

ino

there exists a 2w—periodic solution ve (0, ..., I,(01,€),02(01,¢), ..., 0,(01,¢)) of the
Hamiltonian system associated to the Hamiltonian (1.21) taking as independent
variable the angle 01 such that v-(0) — (Hg'(h*),19,...,19.609, ...,09) when
e — 0. The stability or instability of the periodic solution ~.(01) is given by the
stability or instability of the equilibrium point p of system (1.22). In fact, the
equilibrium point p has the stability behavior of the Poincaré map associated to the
periodic solution 7. (61).

Now we clarify some of the notations used in the statement of Theorem 1.2.4.
We have that the function Hg is only function of the variable I, i.e. Ho: J — R
where J is an open subset of R (the domain of definition of Hy), and consequently
Ho(I1) € R. Therefore H{, means derivative with respect to the variable I.

The differential system (2) is defined on the energy level H(I1,. .., I, 01,...,0,)
= h* with 2* € R, and we assume that the value h* is such that the function ;' in
a neighborhood of h* is a diffeomorphism. Therefore the expression Hy(Hg ' (h*))
is well defined.

On the other hand, every periodic solution of a differential system has defined
in its neighborhood a return map F' usually called the Poincaré map. The periodic
solution provides a fixed point of the map F'. The stability or instability of this
fixed point for the map F' is what we call the stability behavior of the Poincaré
map associated to the periodic solution in the statement of Theorem 1.2.4. For
more details on the Poincaré map see for instance [84].

Theorem 1.2.4 will be proved later on.

The next objective of the present work is to study the periodic orbits of the
Hamiltonian system with the perturbed Keplerian Hamiltonian of the form

1
V@3 + Q3+ Q}

Note that the perturbation is symmetric with respect to the Q3—axis. It is easy to
check that the third component K = Q1 P> — Q2 P; of the angular momentum is a
first integral of the Hamiltonian system associated to the Hamiltonian (1.23). We
use this second first integral to simplify the analysis of the given axially symmetric
Keplerian perturbed system.

1
H:§(P12+P22+P??)— +eP1(QF + Q3,Q3). (1.23)

In the following we use the Delaunay variables for studying easily the peri-
odic orbits of the Hamiltonian system associated to the Hamiltonian (1.23), see
[24, 79] for more details on the Delaunay variables. Thus, in Delaunay variables
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the Hamiltonian (1.23) has the form

H = +eP(l,9,k,L,G,K) = +¢eP(l,g9,L,G,K), (1.24)

1 1

212 2L2
where [ is the mean anomaly, g is the argument of the perigee of the unperturbed
elliptic orbit measured in the invariant plane, k is the longitude of the node, L
is the square root of the semi-major axis of the unperturbed elliptic orbit, G
is the modulus of the total angular momentum and K is the third component
of the angular momentum. Moreover, P is the perturbation obtained from the
perturbation P; using the transformation to Delaunay variables, namely

Q1 =7 (cos(f + g)cosk —csin(f + g)sink),
Q2 = r(cos(f + g)sink + csin(f + g) cos k), (1.25)
Qs = rssin(f +g),

with
K2
= — 2=1-—=.
c=50 8 62
The true anomaly f and the eccentric anomaly E are auxiliary quantities defined
by the relations

G
\/176213, r=a(l —ecosE), l=F—esinFE.
) av1—e2sinFE a(cos E —e)
sinf=———7—, cos f = ————,
r T

where e is the eccentricity of the unperturbed elliptic orbit.

Note that the angular variable k is a cyclic variable for the Hamiltonian
(1.24), and consenquently K is a first integral of the Hamiltonian system as we
already knew.

The family of Hamiltonians (1.24) is a particular subclass of the Hamiltonians
(1.21) with H; = P. We denote by (P) the averaged map of P with respect to the
mean anomaly [, i.e.,

2m

27
(Py = %/P(l,g,L,GﬂK)dl = QL/P(E— esinFE,g,L,G,K)(1 —ecos E)dE.
™ ™
0 0

We remark that the map (P) only depends on the angle g and the three action
variables L, G, K. We claim that Hj(Hy'(h*)) = (—2h*)3/2. Indeed Ho(L) =
—1/(2L2) = h*, so Hy ' (h*) = (—=2h*)'/2. Since H}(L) = 1/L>, the claim follows.
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We also have from the definition of Poisson parenthesis that

9GO(P)  O(P)

{G,(P)} = *%Tg = *Tga
(0.(P = 2 OEL =200,

Then, by Theorem 1.2.4 at the energy level H = h* with h* < 0 (because Ho(L) =
—1/(2L?)) and with angular momentum K = k*, the differential system (1.22)
with respect to the mean anomaly [ is

i ___{G,(P)}

0 (P)
— = = —g(—2p*)3/2 1L — _ G K

dg _ __{9(P)} _ 329 (P) _
@ =y ey M e = oo GO (120
dk __ {k(P)}

2 (P)
haiddt _ WA L op*\3/27 N
yT 767—[6(7—[51@*)) = g(—2h*)3/2 T =ef3(9,G,K).

Note that we do not write the differential equation dK/dt = 0 because we are
working in the invariant set H = h* and K = k*.

Now we are ready to state a corollary of Theorem 1.2.4 which provides suf-
ficient conditions for the existence and the kind of stability of the periodic orbits
in the perturbed Kepler problems with axial symmetry.

Corollary 1.2.5. System (1.26) is the Hamiltonian system taking as independent
variable the mean anomaly | of the Hamiltonian (1.23) written in Delaunay vari-
ables on the fived energy level H = h* < 0 and on the fized third component of the
angular momentum K = k*. If € # 0 is sufficiently small then for every solution
p = (g0, Go, k*) of the system fi(g,G,K) =0 fori=1,2,3 satisfying that

) #£0, (1.27)
(9,G,K)=(g0,Go,k*)

and all ko € [0,27) there exists a 2m—periodic solution v:(I) = (g(l,¢),k(l,¢),
L(l,e),G(l,e),K(l,e) = k*) such that v:(0) — (go, ko, vV—2h*,Go,k*) when
e — 0. The stability or instability of the periodic solution ~y.(1) is given by the
stability or instability of the equilibrium point p of system (1.26). In fact, the equi-
librium point p has the stability behavior of the Poincaré map associated to the
periodic solution v¢(1).

a(f17f2af3)
det( (g, G, K)
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We remark that the fact that we have a periodic solution for every ko € [0, 27)
with the same initial conditions for all the other variables, means that we really
have a 2-dimensional torus foliated by periodic solutions.

There are many articles studying the periodic orbits of different perturbed
Keplerian problems, see for instance [45, 49, 87] and the papers quoted therein.

In what follows we shall study the spatial generalized van der Waals Hamilto-
nian system modeling the dynamical symmetries of the perturbed hydrogen atom.

The generalized van der Waals Hamiltonian system was proposed in the
paper [3] via the following Hamiltonian with 5 € R

1
——
V@7 + Q3+ QF

Note that this Hamiltonian is of the form (1.23). For more references on this
Hamiltonian system see the ones quoted in [40].

H = %(P1+P2+P3) e(QI+Q3+5%Q3).  (1.28)

Theorem 1.2.6. On every energy level H = h* < 0 and for the third component
of the angular momentum K = k*, the spatial van der Waals Hamiltonian system
associated to the Hamiltonian (1.28) for € # 0 sufficiently small has:

(a) For K = k* = 0 two 2m—periodic solution v=(I) = (g(l,¢),k(l,¢€)), L(l,¢),
G(l,e),K(l,¢)) such that

7E(1)(0) — (i arccos( 252“%),%,\/%,\/%,0) when € — 0,

for each ko € [0,27) if f € (—o0,—2) U (—1/2,1/2) U (2, 00). These periodic
orbits have a stable manifold of dimension 2 and an unstable of dimension 1
if B € (=1/2,1/2), and have a stable manifold of dimension 1 and an unstable
of dimension 2 if 8 € (—o0,—2) U (2,00). Consequently these periodic orbits
are unstable.

(b) For K = k* # 0 four 2m-periodic solutions v>*(1) = (g(l,¢),k(l,¢)),
L(l,e),G(l,e),K(l,€)) such that

g m 11 5 1 | 5(1—4p%)
=(0 +-.k - T\ h 0
727 (0) = ( 2 "0 T 9\ Tape Ty oh (1 - 32 when € — 0,

for each ko € [0,27) if B € (—1,-1/2) U(1/2,1).

Theorem 1.2.6 is proved later on.

The result of statement (a) of Theorem 1.2.6 was already obtained using
cylindrical coordinates in [40].

The stability or instability of the four periodic orbits of statement (b) of
Theorem 1.2.6 can be determined analyzing the eigenvalues of the corresponding
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Jacobian matrices, but since the expression of these eigenvalues are huge and
depend on the two parameters h* and f, this study is a long task that we do not
do here.

We remark that when (82 —1)(8% —4)(8% — 1/4) = 0, i.e. for the values that
the averaging theory for finding periodic orbits do not provide any information,
it is known that for those values of § the van der Waals Hamiltonian system is
integrable, see [35]. Therefore, the averaging method when cannot be applied for
finding periodic orbits provides a suspicion that for such values of the parameter
the system could be integrable.

The Hamiltonian system associated to the Hamiltonian (1.21) can be written
as

E = 6{[177'[1} = —¢ 891 1= 1a , 1,

d@l _ _ aHl .

dt _E{ei,Hl}_EaIi Z_27"'7{”‘7 (129)
df / / OH

ditl = Ho(Il) +5{017H1} = HO(Il) +e€ alll .

Lemma 1.2.7. Taking as new independent variable the variable 61 we have in the
fized energy level H = h* < 0 that the differential system (1.29) becomes

dl; {I;, H1}
= ’ + O 2 b - 27 b
oy~ “H(HG (b)) (%), 3 "
b {0, M) (1.30)

a6y~ " H(Hy (b))

with Iy = Hy *(h*) 4+ O(e) if Ho(Hy *(h*)) # 0.
Proof. Taking as new independent variable 61, the equations (1.29) become

dl; _ e{li,H1} *5”“7-[1}
dbh  Ho(I1) + {01, Hi} Ho (1)
do; e{0;,H1} {0, My}

- / =& ’
df, HO(I1)+€{91,H1} Ho(ll)

+0(?) i=1,...,n,

+0(?) i=2,...,n.

Fixing the energy level of H = h* < 0 we obtain h* = Ho([1) +eH1([1, ..., In, b1,
..., 0,). Using the Implicit Function Theorem and the fact that H,(#g (h*)) # 0,
for e sufficiently small, we get I; = Hy ' (h*)+O(¢), and the equations are reduced
to (1.30). O

Proof of Theorem 1.2.4. The averaged system in the angle 6; obtained from (1.30)
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is )
dI,' o _i 3 67’[1
déy 21 Hy (Mg (R)) ) 06,

dt91 i=2,...,n,

on (1.31)
do; _ 1 {0iHi} [0H:

d91 i=2,...,n.

Since )
O(Hy) 1 [O0H) .
06, 2n 89id91 1=2,...,n,
0
o) 1 [oH
) 1 1 -
o1, 72%/8& oy, i=2,...,n,
0
the differential system (1.31) becomes
ar; 3 OHy) _ {6, (Ha)} .
- T a7 1 =& 1 Z—2,...,n,
by Ho(Hqy (h) 00; Ho(Hy (h))
db; € O(H1) {0, (Hi)} i—9 n

o, — Hy(HgH(h)) 0L Ho(Ho ' (h))

which coincides with the system (1.22).

Once we have obtained the averaged system (1.22) it is immediate to check
that it satisfies the assumptions of Theorem 1.1.1, then applying the conclusions
of this theorem to the averaged system (1.22) the rest of the statement of Theo-
rem 1.2.4 follows immediately. O

Proof of Theorem 1.2.6. For the generalized van der Waals Hamiltonian system
the function P(FE, g, h, G, K) is equal to

(B?°G* + G* + K? — K?8?) (ecos E — 1)?L*

2G?
LYG? — K*)(B? — 1)(e — cos E)? cong+
2G?
LY(G? — K?)(B% — 1)(e — cos E)?sin’ g
2G?
2L3(G? — K%)(8? — 1)(e — cos E) cos g sin E'sin g
- G
-F%LQ(G2 — K%)(8% — 1) cos? gsin® E
1

—-~L*(G? — K?)(B* — 1) sin® E'sin® g.
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Its averaged function with respect to the mean anomaly is

2m

1 B
(P) = %/P(E,g,h,G,K)(l —ecos B)dE = yTeik
0

where B = L?(5(G? — K?)(G? — L?)(8% — 1) cos(2g) — (3G?* — 5L?)(G* + K* +
(G2~ K2)%).

The equations (1.26) are the averaged equations of the Hamiltonian system
with Hamiltonian (1.28)

dG  5(1+2h*G?)(G? — K?)(B% — 1) sin(2g)

@ _ =— K

a = c 2622k =N, 6. %),

dg C

—_—= —— = K

i~ ageyar P0G,

dk  K(B%—1)(—5—6h*G* 4 5(1 + 2h*G?) cos(2g))

E_E QGQ\/% _Ef3(g7G7K)a

where C' = 5K2(3% — 1) + 6h*G*(8? + 1) — 5(2h*G* + K?)(B? — 1) cos(2g) here
L = 1/v/=2h* + O(g). The equilibrium solutions (go, Go, k*) of this averaged
system satisfying (1.27) give rise to periodic orbits of the Hamiltonian system
with Hamiltonian (1.28) for each H = h* < 0 and K = k*, see Theorem 1.1.1.
These equilibria (go, Go, k*) are

< 1 (3(52+1)) 1 > ( 1/ 5(1 — 48?) )
+— arccos , , -, = , .
2 5(82-1) ) v/=2n*’ 272 —2h* —2h*(1 — B2)

The first two equilibria exist if 3(3% + 1)/(5(8% — 1)) ie. if g €
(=00, —2]U[-1/2,1/2] U [2, 00).

The Jacobian (1.27) of the first equilibrium is equal to J = 16y/—2h*(3% —1)
(8% —4)(B? —1/4). So each of these equilibria when 3 € (—o0, —2)U(—1/2,1/2)U
(2,00) provides one periodic orbit of the Hamiltonian system with Hamiltonian
(1.28) for each H = h* < 0 and K = k* = 0. Since k* = 0 these periodic
orbits bifurcate from an elliptic orbit (go # 0) of the Kepler problem living in
the plane of motion of the two bodies of the Kepler problem. Moreover, since the
eigenvalues of the Jacobian matrix at these equilibra are +2./(82 — 4)(432 — 1)
and v/—2h*(3% — 1), these periodic orbits have a stable manifold of dimension 2
and an unstable of dimension 1 if 8 € (—1/2,1/2), and have a stable manifold of
dimension 1 and an unstable of dimension 2 if 5 € (—o0, —2) U(2, c0). This proves
statement (a) of the theorem.

The last four equilibria exist if 8 € (—1,—1/2] U [1/2,1) and have Jacobian
equal to J = —15v/—=2h*(3% — 1)(48% — 1). So, for each value of k € [0,2m)
these four equilibria when 8 € (—1,—1/2) U (1/2,1) provide four periodic orbits
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of the Hamiltonian system with Hamiltonian (1.28) for each H = h* < 0 and

1 [ 5(1—4p?)
K=k =+ —————
4\ —2h*(1 — 3?)
from elliptic orbits (go # 0) of the Kepler problem which are not in the plane of
motion defined by the two bodies. This proves statement (b) of the theorem. O

# 0. Since k* # 0 these periodic orbits bifurcate

1.3 Other first order averaging method for periodic
orbits

We consider the problem of the bifurcation of T—periodic solutions from the dif-
ferential system

%X = Fy(t,x) + el (t,x) + 2 R(t, x, ), (1.32)
with ¢ = 0 to € # 0 sufficiently small. Here the functions Fy, F}: R x D — R™ and
R: R x D x (—eg,&0) — R" are C? functions, T-periodic in the first variable, and
D is an open subset of R™. One of the main assumptions is that the unperturbed
system

x' = Fy(t,x), (1.33)

has a submanifold of periodic solutions.

Let x(t, z) be the solution of the unperturbed system (1.33) such that x(0, z)
= z. We write the linearization of the unperturbed system along the periodic
solution x(t,z) as

y' = Dy Fo(t,x(t,2))y. (1.34)

In what follows we denote by M, (t) some fundamental matrix of the linear dif-
ferential system (1.34), and by ¢: R* x R"~* — R* the projection of R™ onto its
first k coordinates; i.e. £(x1,...,2y) = (21,...,Zk).

The next result goes back to Malkin [77] and Roseau [84]. Here we shall
present the shorter proof given in [13].

Theorem 1.3.1. Let V C RF be open and bounded, and let By: CL(V) — R™"F be
a C? function. We assume that

(i) 2 = {20 = (o, fo(@)), aeClV)} C Q and that for each z, € Z the
solution x(t,zs) of (1.33) is T—periodic;

(ii) for each z, € Z there is a fundamental matriz M,_(t) of (1.34) such that
the matriz M, *(0) — M, *(T) has in the right up corner the k x (n —k) zero

matriz, and in the m’ght&down corner a (n — k) x (n — k) matriz A, with
det(A,) # 0.

We consider the function F: CI(V) — RF

T
Fla)=¢ ( /0 Mz;(t)Fl(t,x(t,za))dt> . (1.35)
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If there exists a € V with F(a) = 0 and det ((dF/da) (a)) # 0, then there is a
T —periodic solution x(t, ) of system (1.32) such that x(0,e) — z, as e — 0.

Theorem 1.3.1 is proved in section 1.7. In the next section we provide some
applications of this theorem.

We assume that there exists an open set V with Cl(V) C Q such that for
each z € CI(V), x(t, z,0) is T—periodic, where x(t, z,0) denotes the solution of the
unperturbed system (1.33) with x(0,z,0) = z. The set C1(V) is isochronous for
the system (1.32); i.e. it is a set formed only by periodic orbits, all of them having
the same period. Then, an answer to the problem of the bifurcation of T—periodic
solutions from the periodic solutions x(t,z,0) contained in Cl(V') is given in the
following result.

Corollary 1.3.2 (Perturbations of an isochronous set). We assume that there exists
an open and bounded set V. with CI(V) C Q such that for each z € ClI(V), the
solution x(t,z) is T—periodic, then we consider the function F: CI(V) — R"

Flz) = /OT Mt 2)Fy (t,x(t,2))dt. (1.36)

If there exists a € V with F(a) = 0 and det ((dF/dz) (a)) # 0, then there exists a
T —periodic solution x(t,€) of system (1.32) such that x(0,e) = a as e — 0.

Proof. 1t follows immediately from Theorem 1.3.1 taking k = n. ]

1.4 Three applications

In this section we shall do three applications of Theorem 1.3.1 and of its Corollary
1.3.2.

1.4.1 The Hopf bifurcation of the Michelson system
The Michelson system

2
2 €T

T=vy, Yy==2, Z=c Y5 (1.37)
with (z,y,2) € R® and the parameter ¢ > 0, was introduced by Michelson [80] in
the study of the travelling wave solutions of the Kuramoto—Sivashinsky equation.
It is well known that system (1.37) is reversible with respect to the involution
R(z,y,2) = (—z,y, —2) and is volume—preserving under the flow of the system. It
is easy to check that system (1.37) has two finite singularities S; = (—v/2¢,0,0)
and Sy = (v/2¢,0,0) for ¢ > 0, which are both saddle-foci. The former has a 2
dimensional stable manifold and the latter has a 2-dimensional unstable manifold.

For ¢ > 0 small numerical experiments (see for instance Kent and Elgin
[53]) and asymptotic expansions in sinus series (see Michelson [80] in 1986 and
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Webster and Elgin [95] in 2003) revealed the existence of a zer0—Hopf bifurcation
at the origin for ¢ = 0. But their results do not provide an analytic proof on the
existence of such zero-Hopf bifurcation. By a zero—Hopf bifurcation we mean that
when ¢ = 0 the Michelson system has the origin as a singularity having eigenvalues
0, +4, and when ¢ > 0 sufficiently small the Michelson system has a periodic orbit
which tends to the origin when ¢ tends to zero. The analytic proof of this zero—
Hopf bifurcation has been proved in [67] by Llibre and Zang. Now we state this
result and reproduce its proof.

Theorem 1.4.1. For ¢ > 0 sufficiently small the Michelson system (1.37) has a
zero—Hopf bifurcation at the origin for c = 0. Moreover the bifurcated periodic orbit
satisfies x(t) = —2ccost + o(c), y(t) = 2esint + o(c) and z(t) = 2ccott + o(c) for
c > 0 sufficiently small.

Proof. For any € # 0 we take the change of variables © = €7, y = €y, 2 = £Z and
¢ = ed, then the Michelson system (1.37) becomes

1
T=vy, y=2z, Z= fy+5d2755:1:2, (1.38)
where we still use x, y, z instead of T, 7, Z. Now doing the change of variables x = x,

y =rsinf and z = rcos 6, system (1.38) goes over to

& =rsing, 7= %(2612 —a?)cosh, 6=1 242 — 2?)sing.  (1.39)

3
,g(

This system can be written as

; (1.40)
l = E 2 g2 2
7 2(2d x?)cos O + e fa(l,1,¢),

where f; and fo are analytic functions in their variables.

For arbitrary (zg,ro) # (0,0), system (1.40).—¢ has the 2r—periodic solution
z(0) =ro +xo —rocost, r(0)=ro, (1.41)

such that z(0) = z¢ and r(0) = ro. It is easy to see that the first variational
equation of (1.40).—¢ along the solution (1.41) is

dy1

a0 _( 0 sind Y1
Q0 0 Y2 )’
do

It has the fundamental solution matrix

1 1-—cos@
M = < 0 1 ), (1.42)
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which is independent of the initial condition (zg, 7). Applying Corollary 1.3.2 to
the differential system (1.40) we have that

2
1 1 (2d% — 2?)sin? 0
‘F(anTO)_i/M < (2d2—$2)C0S9
0

Then F(xo,70) = (91(z0,70), g2(20,70)) With
1

de.

(1.41)

1
g1(xo,10) = 1 (4al2 — 57’(2) — 6roxg — 2x(2)) . g2(zo,7m0) = 57"0(3”0 +70).

We can check that F = 0 has a unique non—trivial solution g = —2d and
ro = 2d, and that det DF(20,70)|,,=_94.,g=2d = d?. Hence by Corollary 1.3.2 it
follows that for any given d > 0 and for |¢| > 0 sufficiently small system (1.40) has a
periodic orbit (x(0,€), r(0,¢)) of period 2, such that (x(0,¢),7(0,¢)) — (—2d, 2d)
as € — 0. We note that the eigenvalues of DF(x0,70)|,,— 94, =24 are £di. This
shows that the periodic orbit is linearly stable.

Going back to system (1.37) we get that for ¢ > 0 sufficiently small the
Michelson system has a periodic orbit of period close to 2w given by z(t) =
—2ccost + o(c), y(t) = 2csint + o(c) and z(t) = 2ccost + o(c). We think that
this periodic orbit is symmetric with respect to the involution R, but we do not
have a proof of it. O

1.4.2 A third-order differential equation

Using Theorem 1.3.1 in the next result we present a third—order differential equa-
tion having as many limit cycles as we want.

Proposition 1.4.2. We consider the third—order differential equation
T —F+2—x=ccos(z+t). (1.43)

Then for all positive integer m there is €,, > 0 such that if € € [—ep,, €] \ {0} the
differential equation (1.43) has at least m limit cycles.

Proof. If y = & and z = &, then system (1.43) can be written as

T =y,
U=z, (1.44)
i=x—y+tztecos(v+t)=x—y+z+eF(t,z,y,2).

The origin (0,0,0) is the unique singular point of system (1.44) when € = 0. The
eigenvalues of the linearized system at this singular point are 44 and 1. By the
linear invertible transformation (X,Y, Z)T = C(x,y, 2)T, where

1 -1 0

c=(0 -1 1],
10 1
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we transform the differential system (1.44) in another such that its linear part is
the real Jordan normal form of the linear part of system (1.44) with € = 0, i.e.

X =-Y,
Y =X +eF(X,Y,Z,1), (1.45)
Z=272+eF(X,Y, Z,t),

where

_ X-Y42Z -X-Y4Z -X+Y+2
F(X,Y,Z,t)—F< 2+ , : tz +2 + ,t>.

Using the notation introduced in (1.32) we have that x = (X,Y, Z), Fy(x,t) =
(=Y, X, Z), Fi(x,t) = (0, F, F) and Fy(x,t) = 0. Let x(t; Xo, Yo, Zo, ) be the so-
lution of system (1.45) such that x(0; Xo, Yy, Zo,e) = (Xo, Yo, Zp). Clearly the
unperturbed system (1.45) with e = 0 has a linear center at the origin in the
(X,Y)-plane, which is an invariant plane under the flow of the unperturbed sys-
tem, and the periodic solution x(¢; X, ¥p,0,0) = (X (¢),Y(¢), Z(t)) is

X(t) = Xgcost — Yysint, Y(t) =Ypcost+ Xgsint, Z(t)=0. (1.46)

Note that all these periodic orbits have period 2.

For our system the V' and the « of Theorem 1.3.1 are V = {(X,Y,0) : 0 <
X2 +Y? < p} for some arbitrary p > 0 and o = (X, Yp) € V.

The fundamental matrix solution M (¢) of the variational equation of the
unperturbed system (1.45).—¢ with respect to the periodic orbits (1.46) satisfying
that M (0) is the identity matrix is

cost —sint 0
M(t) = sint cost O
0 0 et

We remark that it is independent of the initial condition (Xg, Yy, 0). Moreover an
easy computation shows that

0 0
MY 0)-M'2r)= 0 0
0 0 27

0

0
1—e"
In short we have shown that all the assumptions of Theorem 1.3.1 hold. Hence

we shall study the zeros oo = (Xo,Yy) € V of the two components of the function
F(a) given in (1.35). More precisely we have F(a) = (Fi(a), Fo(a)) where

27
Fila) = / sin £ P (x(t: Xo, Yo, 0,0), £)dt
0
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/QWSintF (X(t)—Y(t) Xt +Y(t) —X(t)+Y(t) t) "
0 2 ) 2 b 2 b b

2m
]-'2(04):/ cos tF(x(t; Xo, Y, 0,0),t)dt
0

:/QWCOStF (X(t)—Y(t) X(t)+Y() —X(t)—&—Y(t)’t) .
0

2 T 2 ’ 2

where X (), Y (t) are given by (1.46).
First we consider the third—order differential equation (1.43). For this equa-
tion we have that

2

(Xo — Yy) cost — (Xo + Yo) sint)> dt
5 :

27 .

Xo — Yo) cost — (Xo + Yo) sint

fl(XO7YO):/ sint cos (t+( 0 — Yo)cost — (Xo + Yp) sin ))dt,
0

27
f2(Xo, Yo) :/ cost cos <t+
0

To simplify the computation of these two previous integrals we do the change
of variables (Xo, Yy) — (r, s) given by

Xo—Yy=2rcoss, Xg+Yy= —2rsins, (1.47)

where r > 0 and s € [0, 27). From now on and until the end of the paper we write
fi(r, s) instead of

f1(X0,Yo) = fi(r(coss —sins), —r(cos s + sin s)).

Similarly for fa(r,s).

We compute the two previous integrals and we get

fi(r,s) = —mwJo(r) sin 2s,

fa(r,s) =27 (ijl(r) — To(r) cos? S) ’ (1.48)

where J; and J, are the first and second Bessel functions of first kind . For more
details on the Bessel functions see [2]. These computations become easier with the
help of an algebraic manipulation as Mathematica or Maple.

Using the asymptotic expressions of the Bessel functions of first kind it follows
that Bessel functions Ji(r) and Ja(r) have different zeros. Hence f;(r,s) = 0 for
¢ = 1,2 imply that either s € {0,7/2,7,3w/2}. Therefore we have to study the
zeros of

fa(r,0) = fo(r,m) =27 (iJl(r) — JQ(T‘)) , (1.49)

fa(r,m/2) = fa(r,37/2) = 277TJ1(7’). (1.50)
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We claim that function (1.49) has also infinite zeros for r € (0, 00). Note that
if p is sufficiently large, and we choose r < p also sufficiently large, then

2
Jn(r) = \/ - cos (r—%—%) for n=1,2,

are asymptotic estimations, see [2]. Considering (1.49) for r sufficiently large we

obtain that
2 2w 3T i
fa(r,0) = ;\/7 (cos (r — 4> + rcos (r - 4))

— 2ﬁ((r— 1) cosr+ (r+ 1)sinr).

r
The above function has infinite zeros because the equation

1—r
r+1

tanr =

has infinitely many solutions.

For every zero rg > 0 of the function (1.49) we have two zeros of system
(1.48), namely (r,s) = (r9,0) and (r,s) = (rg, 7).
We have from (1.48) that

’M _ A (Jo(ro)ro — 2J1(r0)) (Jo(ro)ro + (1§ — 2)J1(r0))
0(r;8) 1(r9)=(ro.0) o
= %JZ(TO)(Jl(TO)To — J2(r0)), (1.51)

where we have used several relation between the Bessel functions of first kind, see
[2]. Clearly it is impossible that (1.49) and (1.51) are equal to zero at the same
time. Therefore by Theorem 1.1.1 there is a periodic orbit of system (1.43) for
each (rp,0), that is for each value of (Xo,Yy) = (1o, —70)-

In an analogous way there is a periodic orbit of system (1.43) for each (rg, 7),
that is for each value of (Xo,Yy) = (—7rg,70). In fact, the periodic orbit with this
initial conditions and the previous one with initial conditions (Xg, Yy) = (ro, —70)
are the same.

Similarly since J; (r) has infinitely many zeros (see [2]), the function (1.50) has
infinitely many positive zeros r1. Every one of these zeros provides two solutions
of system (1.48), namely (r,s) = (r1,7/2) and (r,s) = (r1,37/2).

Moreover we have from (1.48) that

"M
a(r, s)

:ﬁiﬁwg¢0 (1.52)

(r,8)=(r1,7/2) ™
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Therefore by Theorem 1.1.1 there is a periodic orbit of system (1.43) for each
(r1,7/2), that is for each value of (Xo,Yy) = (—r1, —r1).

In an analogous way there is a periodic orbit of system (1.43) for each
(r1,37/2), that is for each value of (Xo,Yp) = (r1,71). In fact, the periodic
orbit with this initial conditions and the previous one with initial conditions
(Xo,Yy) = (—ry, —r1) are the same.

Taking the radius p of the disc V = {(Xy,Yp,0) : 0 < X2 + Y2 < p} in
the proof of Theorem 1.3.1 conveniently large we include in it as many zeros
of the system f1(Xo,Yy) = f2(Xo,Yo) = 0 as we want, so from Theorem 1.3.1,
Proposition 1.4.2 follows. O

1.4.3 The Vallis system (El Nino phenomenon)

The results of this section come from the paper of Euzébio and Llibre [34].

The Vallis system, introduced by Vallis [93] in 1988, is a periodic non—
autonomous 3-dimensional system that models the atmosphere dynamics in the
tropics over the Pacific Ocean, related to the yearly oscillations of precipitation,
temperature and wind force. Denoting by z the wind force, by y the difference of
near—surface water temperatures of the east and west parts of the Pacific Ocean,
and by z the average near—surface water temperature, the Vallis system is

d

d—f = —az + by + au(t),
d

% =—z—zy+1

dt - Y i

where u(t) is some C! T—periodic function that describes the wind force under
seasonal motions of air masses, and the parameters a and b are positive.

Although this model neglects some effects like Earth’s rotation, pressure field
and wave phenomena, it provides a correct description of the observed processes
and recovers many of the observed properties of El Nino. The properties of El
Nino phenomena are studied analytically in [91] and [93]. More precisely, in [93]
it is shown that taking w = 0, it is possible to observe the presence of chaos
by considering a = 3 and b = 102. Later on, in [91] it is proved that exists a
chaotic attractor for system (1.53) after a Hopf bifurcation. This chaotic motion
can be easily understanding if we observe that there exist a strong similarity
between system (1.53) and Lorenz system, which becomes more clear under the
replacement of z by z + 1 in system (1.53).

Now we shall provide sufficient conditions in order that system (1.53) has
periodic orbits, and additionally we characterize the stability of these periodic
orbits. As far as we know, the study of the periodic orbits in the non—autonomous
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Vallis system has not been considered in the literature, with the exception of the
Hopf bifurcation studied in [91].
We define
T
I= / u(s)ds.
0
Now we state our main results.
Theorem 1.4.3. For I # 0 and a # b the Vallis system (1.53) has a T—periodic
solution (x(t),y(t), z(t)) such that

(@00, ~ (7o T )

Moreover this periodic orbit is stable if a > b and unstable if a < b.

We do not know the reliability of the Vallis model approximating the Nino
phenomenon, but it seems that for the moment this is one of the best models
for studying the Nino phenomenon. Accepting this reliability we can said the
following.

The stable periodic solution provided by Theorem 1 says that the Nino phe-
nomenon exhibits a periodic behavior if the T-periodic function u(t) and the pa-
rameters a and b of the system satisfy that I # 0 and a > b. Moreover Theorem
1 states that this periodic solution lives near the point

(@,9.2) = (T(;I— b)’T(;l1 b)’1>'

Since the periodic solutions found in Theorems 3, 4 and 5 are also stable,
we can provide a similar physical interpretation for them as we have done for the
periodic solution of Theorem 1.

Theorem 1.4.4. For I # 0 the Vallis system (1.53) has a T-periodic solution
(z(t),y(t),2(t)) such that

(@000 ~ (=5~ 1)

Moreover this periodic orbit is always unstable.

Theorem 1.4.5. For I # 0 the Vallis system (1.53) has a T—periodic solution
(x(t),y(t), 2(t)) such that

(00,00 ~ (7 71)

Moreover this periodic orbit is always stable.
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Theorem 1.4.6. For I # 0 the Vallis system (1.53) has a T—periodic solution
(z(t),y(t),2(t)) such that

Moreover this periodic orbit is always stable.

In what follows we consider the function

and note that J(7T') = I. So we have the following result.

Theorem 1.4.7. Consider I =0 and J(t) # 0 if 0 <t < T. Then the Vallis system
(1.53) has a T—periodic solution (x(t),y(t),z(t)) such that

a

T
(z(t),y(1), 2(t)) = (—/ J(s)ds, 0, 1) :
T Jo
Moreover this periodic orbit is always stable.

Proof of the results

The tool for proving our results will be the averaging theory. This theory
applies to periodic non—autonomous differential systems depending on a small
parameter €. Since the Vallis system already is a T—periodic non—autonomous
differential system, in order to apply to it the averaging theory described in section
3 we need to introduce in such system a small parameter. This is reached doing
convenient rescalings in the variables (z,y, z), in the parameters (a,b) and in the
function wu(t). Playing with different rescalings we shall obtain different result on
the periodic solutions of the Vallis system. More precisely, in order to study the
periodic solutions of the differential system (1.53), we start doing a rescaling of the

variables (z,y, z), of the function u(t), and of the parameters a and b, as follows
r=emX, y = em2Y, s=emz,

(1.54)
u(t) =e™U(t), a=cec"A, b=e"DB,

where € always is positive and sufficiently small, and m; and n; are non-—negative
integers, for all 4,57 = 1,2,3. Then in the new variables (X,Y,Z) system (1.53)
writes

dX

E = —mAX + g—mitmatns By + 5—m1+n1+n2AU(t)’

(%/ =Y 4 gm—matms X 7 (1.55)
A

— =—Z —gMmTm2ms XY 4 g™Ms,
dt "
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Consequently, in order to have non—negative powers of € we must impose the
conditions

mg=0 and 0<mg<my <L, (1.56)

where L = min{ms + n3,n1 + na}. So system (1.55) becomes

dX

i = e AX + €*m1+m2+n3BY + €*m1+n1+n2AU(t)’

dY

ooy pemmeXxyg, (1.57)
dt

dzZ

=17 —egmtmayy,

dt

Our aim is to find periodic solutions of system (1.57) for some special values
of m;, nj, 4,7 = 1,2,3, and after we go back through the rescaling (1.54) to
guarantee the existence of periodic solutions in system (1.53). In what follows we
consider the case where ny and ng are positives and ms = mq < ny + ng. These
conditions lead to the proofs of Theorems 1.4.3, 1.4.4 and 1.4.5. For this reason
we present these proofs together in order to avoid repetitive arguments. Moreover,
in what follows we consider

K= /OT U(s)ds.

Proofs of Theorems 1, 2 and 3: We start considering system (1.57) with ne and
ng positive and ms = mq < ni + na. So we have

dX

e —e™AX + " BY 4 et AT (),

dY

— =Y+ XZ 1.58
7 +XZ, (1.58)
9 _ g _omxy,

dt

Now we apply the averaging method to the differential system (1.58). Using the
notation of section 1.5 we have x= (X,Y, Z)T and

0
Ftx)y=| -Y+XZ |. (1.59)
1-Z
We start considering the system

% = Fy(t, x). (1.60)
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Tts solution x(¢,2,0) = (X (¢),Y (¢), Z(t)) such that x(0,2,0) = z = (Xo, Yo, Zo) is

t) = (1 — e*t(l —+ t))XO —+ eith + eittX()Zo,
1—et+e tZ.

In order that x(t,2,0) is a periodic solution we must choose Yy = X and Z; = 1.
This implies that for every point of the straight line X = Y, Z = 1 passes a
periodic orbit that lies in the phase space (X,Y, Z,t) € R? x S'. Here and in what
follows St is the interval [0, T'] identifying T with 0.

Observe that, using the notation of section 1.5, we haven =3, k=1, a = X
and (Xo) = (Xp,1), and consequently M is an one-dimensional manifold given
by M = {(Xo, Xo,1) € R3: Xy € R}. The fundamental matrix M, (t) of (1.60),
satisfying that M,(0) is the identity of R?, is

1 0 0
1—cosht+sinht et e %Xy |,
0 0 et

and its inverse matrix M, *(¢) is

1 0 0
1—et e —eltX,
0 0 et

Since the matrix M, 1(0) — M, }(T) has an 1 x 2 zero matrix in the upper right

z
corner and a 2 x 2 lower right corner matrix

1—eT TTX,
A_< 0 1—6T>’

with det(A) = (1 — eT)? # 0 because T # 0, we can apply the averaging theory
described in section 1.5.

Let F be the vector field of system (1.58) minus Fy given in (1.59). Then the
components of the function M, 1 (t)F(t,x(t,z,0)) are

g1 (Xo, t) = —€n2AX0 + e BXy+ 57m1+n1+n2AU(t)’
g2(Xo,t) = e2™elt X3 + (1 — e)g1(Xo, 1),
g3(Xo,t) = —e?miet X2,

In order to apply averaging theory of first order we need to consider only
terms up to order €. Analysing the expressions of g1, g2 and g3 we note that these
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terms depend on the values of m; and n;, for each j = 1,2, 3. In fact, we just need
to study the integral of g; because k = 1. Moreover studying the function g; we
observe that the only possibility to obtain an isolated zero of the function

f1(Xo) = /0 g1(Xo, t)dt

is assuming that ny + ny — m; = 1. Otherwise, the only solution of f;(Xy) = 0
is Xo = 0 which correspond to the equilibrium point (Xo, Yy, Zo) = (0,0,1) of
system (1.60). The same occurs if ny and ns are greater than 1 simultaneously.
This analysis reduces the existence of possible periodic solutions to the following
cases:

(p1) na =1 and n3 = 1;

(p2) n2 >1and ng=1;

(p3) mg =1and nz > 1.

In the case (p1) we have M, (t)Fy(t,x(t,2,0)) = —AXo+ BXo+ AU (t), and then
f1(Xo) = (A + B)TXo + AK.

Consequently, if A # B, then f;(Xo) = 0 implies

AK
Xo= T(A-B)

So, by Theorem 1.3.1, system (1.58) has a periodic solution (X (¢,¢),Y (¢,¢), Z(t,¢€))
such that

(X(075)7Y(075)7Z(075)) — (X(),Yo,ZO) = (T AK AK 1)

(A—B) T(A-B)’

when ¢ — 0. Note that the point (Xo, Yy, Zp) is an equilibrium point of system
(1.58). Then, if we take ny = ng = n3 = 1 and going back through the rescal-
ing (1.54) of the variables and parameters, we obtain that the periodic solution
of system (1.58) becomes the periodic solution (z(t),y(t),z(t)) of system (1.53)
satisfying that

Indeed, we observe that

(ae™H(Ie™Y)  al
Te=Y(a—b) T(a—1b)

ro=eXg=¢

Moreover, we note that fi(zo) = ef{(Xo) = —a + b # 0, so the periodic orbit
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corresponding to g is stable if @ > b, and unstable otherwise. So this completes
the proof of Theorem 1.4.3.

Analogously the function f; in the cases (p2) and (ps) is
f1(Xo) =TBXy + AK and f1(Xo) = -TAX, + AK,

respectively. In the first case the condition f1(Xy) = 0 implies

AK

Xp= — .
0 TB

Now we observe that we have ns > 1 and ng = 1. So, going back through the
rescaling we obtain

B _ (aeT™)(Iem™) al
o =eXo=¢ Tbe—1 T Themtna—2
and consequently, choosing ny = 0 and ny = 2, we get ©yp = —al/(Th). Note

also that f{(xg) = Tb > 0, then the periodic orbit corresponding to xg is always
unstable. Thus Theorem 1.4.4 is proved.

Finally, in the case (p3), f1(Xo) = 0 implies Xy = K/T. So, taking n; = 1
and going back through the rescaling, we have xg = eXy = eI/(Te) = I/T.
Additionally, we have that f{(xo) = —Ta < 0. Therefore the periodic solution
that comes from z¢ is always stable. This proves Theorem 1.4.5. ]

Proof of Theorem 1.4.6: As in the proofs of Theorems 1, 2 and 3 we start con-
sidering a more general case in the powers of ¢ in (1.57) taking ny > 0 and
mg < my < L. In this case the function Fy(t,x) of system (1.32) is

Ritx=| v |. (1.61)

Then the solution x(¢,z,0) of system (1.33) satisfying x(0,z,0) =z is
(X(1),Y(t),Z(t) = (Xo,e Yo, 1 —e t +e ' Z).

This solution is periodic if Yy = 0 and Z; = 1. Then for every point of the
straight line Y = 0, Z = 1 passes a periodic orbit that lies in the phase space
(X,Y,Z,t) € R3 x SL. We observe that using the notation of section 1.5 we have
n=3 k=1, a= Xy and B(a) = (0,1). Consequently M is an one-dimensional
manifold given by M = {(Xy,0,1) € R?: X € R}.



30 Chapter 1. Introduction. The classical theory

The fundamental matrix M, (¢t) of (1.34) with Fy given by (1.61) satisfying
M,(0) = Ids and its inverse M, !(t) are given by

1 0 0 1 0 0
M,t)=1 0 et 0 and M, '(t)| 0 e 0
0 0 et 0 0 e

Since the matrix M, 1(0) — M, T has an 1 x 2 zero matrix in the upper right
corner and a 2 x 2 lower right corner matrix

1—el 0
A‘( 0 1-¢ >

with det(A) = (1 — eT)? # 0, we can apply the averaging theory described in
section 1.5. Again using the notations introduced in the proofs of Theorems 1,
2 and 3, since k = 1 we will look only to the integral of the first coordinate of
F = (f1, f2, f3)- In this case we have

91(Xo, Yo, Zo,t) = —e™ AXq +€7m1+n1+n2AU(t).

Comparing this function g; with the same function obtained in the proof of The-
orems 1, 2 and 3, it is easy to see that this case correspond to the case (p3) of the
mentioned theorems. Then, in order to have periodic solutions, we need to choose
ny = 1 and ny + ny —my = 1. So, following the steps of the proof of case (p3) by
choosing n; = 1 and coming back through the rescaling (1.54) to system (1.53),
Theorem 1.4.6 is proved. O

Proof of Theorem 5: We start considering system (1.57) with ng = 2, ng > 0,
myp = n1 +ng and me < my < mg + nz. With these conditions system (1.57)
becomes

dXx

= —EAX fem TS BY 4 AU(1),

% =Y e metutna x 7 (1.62)
Z

Y2 _ | _ g _emrmimyy.

dt

Again we will use the averaging theory described in section 1.5. So considering
x = (X,Y, Z)T we obtain

AU(t)
Rtx)=| -v |. (1.63)
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Now we note that the solution x(¢,z,0) = (X(¢), Y (¢), Z(t)) such that x(0,z,0) =
z = (Xo, Yo, Zp) of the system
X = F()(t,x) (164)

t
X (t) = Xo +/ AU(s)ds, Y(t) = e*tYO, Z(t)=1- et 4 eitZO.
0

Since I = 0 and J(t) # 0 for 0 < ¢t < T, in order that x(¢,2,0) is a periodic
solution we need to fix Yy = 0 and Zy = 1. This implies that for every point in
a neighbourhood of Xy in the straight line Y = 0, Z = 1 passes a periodic orbit
that lies in the phase space (X,Y, Z,t) € R? x S

Following the notation of section 1.5, we have n = 3, k = 1, @« = X and
B(Xo) = (0,1). Hence M is an one-dimensional manifold M = {(X,,0,1) € R3:
Xo € R} and the fundamental matrix M, (t) of (1.64) satisfying that M,(0) is the
identity of R3 is

1 0 0
0 et 0
0 0 et

It is easy to see that the matrix M, 1(0) — M, *(T) has an 1 x 2 zero matrix in

z
the upper right corner and a 2 x 2 lower right corner matrix

1—e¢T 0
A( 0 1—eT>’

with det(A) = (1 —eT)? # 0. Then the hypotheses of Theorem 1.3.1 are satisfied.
Now the components of the function M, *(t)F(t,x(t,z,0)) are

91(Xo, 1) = —e™2 A (Xo + /0 t AU(s)ds) +AU(),

t
gg(Xo,t) = g~ matnitn2 (Xo +/ AU(S)dS) et,
0
g3(X05 t) = 0.

Taking n; and ns equal to one and observing that £k = 1 and n = 3, we are inter-
ested only in the first component of the function Fy = (Fyq, Fia, F13) described in
section 1.5. Indeed, applying the averaging theory we must study the zeros of the
first component of the function

T
F(Xo) = (f1(Xo), f2(X0), f3(X0)) = /o Myt z) i (¢, x(t, z))dt.
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Since ,
Fi1=-A (XO —|—/ AU(s)ds) ,
0

then

f1(Xo) = /OT —A (Xo + /t AU(s)ds) dt

= —ATX, — A? /O; (/Ot U(s)ds) ds.

Therefore, from f1(Xo) = 0 we obtain

on—ﬁ/OT (/OtU(s)ds>ds;é0.

So, using rescaling (1.54) we get

-1 T T
5 5 GE a
xg=e"Xog=—¢ / J(s)ds = ——/ J(s)ds.
el Jo T Jo

Moreover, since fi(zg) = —a/T < 0, because a and e are positive, the
T—periodic orbit detected by the averaging theory is always stable. This ends
the proof. O

1.5 Another first order averaging method for periodic
orbits

The next result proved in [63] extends the result of Theorem 1.3.1 to the case
n = 2m and when the matrix A, of the statement of Theorem 1.3.1 is the zero
matrix. Here £é1: R” = R™ x R™ — R™ is the projection of R onto its second
set of m coordinates; i.e. X (z1,...,Zn) = (Ting1,- s Tn).

Theorem 1.5.1. Let V. C R™ be open and bounded, let By: CL(V) — R™ be a
CF function and Z = {zo = (o, Bo(a))|a € CIV)} C Q its graphic in R?™.
Assume that for each z, € Z the solution x(t,2) of (1.32)c=¢ is T—periodic
and that there exists a fundamental matriz M,_(t) of (1.1) such that the matric
M 1(0) = M H(T)

(i) has in the upper right corner the m X m matriz 2, with det(Q,) # 0, and
(i) has in the lower right corner the m X m zero matriz.

Consider the function G: CL(V) — R™ defined by

T
Gla) =€+ </0 Mzal(t)Fl(t,x(t,za))dt> ) (1.65)



1.5. Another first order averaging method for periodic orbits 33

Suppose that there is ag € V' with G(ag) = 0, then the following statements hold
for € # 0 sufficiently small. If det((0G/0a)(ap)) # 0, then there is a unique
T-periodic solution x(t,€) of system (1.32) such that x(t,€) — x(t,2q,) as € — 0.

Theorem 1.5.1 is proved in section 1.8. In the next section we provide some
applications of this theorem.

1.5.1 A class of Duffing differential equations

Many different classes of Duffing differential equations have been studied by dif-
ferent authors. They are mainly interested in the existence of periodic solutions, in
their multiplicity, stability, bifurcation,... See for instance the survey of J. Mawhin
[78] and for the articles [28, 81].

In this section we shall study the class of Duffing differential equations of the
form
2" 4 cx’ + a(t)z + b(t)x® = h(t), (1.66)

where ¢ > 0 is a constant, and a(t), b(t) and h(t) are continuous T—periodic
functions. These differential equations were studied by Chen and Li in the papers
[17, 16]. Their results were improved in [5] by Benterki and Llibre, we present a
part of these improvements here as an application of Theorem 1.5.1.

Instead of working with the Duffing differential equation (1.66) we shall work
with the equivalent differential system

/I
‘r_ya

y' = —cy —a(t)r — b(t)x® + h(t). (1.67)

Theorem 1.5.2. For every simple real root of the polynomial

o(z0) = — (/OT b(s) ds> 28— (/OT als) ds) zo + /OT h(s) ds.

the differential system (1.67) has a periodic solution (x(t),y(t)) such that (2(0),y(0))
is close to (x9,0).

Proof. We start doing a rescaling of the variables (z,y), of the functions a(t), b(t)
and h(t) and of the parameter ¢ as follows

r=eX, y = €%y,
c=¢eC, a(t) = A(t), (1.68)
b(t) = e 1B(t), h(t) = e2H(t)

Then system (1.67) becomes

X =¢Y,

Y = —eCY — A()X — B()X? + H(t), (1.69)
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We shall apply the averaging Theorem 1.5.1 to system (1.69) and we shall
obtain Theorem 1.5.2. In what follows we shall use the notation of Theorem 1.5.1.
Thus x = (X,Y)7 and

Fy(t,x) = < _A(t)X—B(zt)X?’JrH(t) )
Fi(t,x) = < —gy )
mien=(4)

The differential system (1.69) with € =0 has the solution x(¢, z,0) = (X (t), Y (¢))T
such that x(0,z,0) = z = (Xo, Yy)?, where

X(t) = Xo,
t
Y(it)=Yy + / (=B(s)X§ — A(s)Xo + H(s)) ds.
0
In order that x(¢,z,0) be a periodic solution Xy must satisfy

/T (=B(s)X§ — A(s)Xo + H(s)) ds = 0, (1.70)
0

and Yj is arbitrary. Therefore we get

zo = (o, Bo(a)) = (Yo, Xo)

where X is a real root of the cubic polynomial (1.70). In short the unperturbed
system (i.e. system (1.69) with ¢ = 0) has at most three families of periodic
solutions because Y is arbitrary and Xj is a real root of the cubic polynomial
(1.70). Therefore, using the notation of Theorem 1.5.1, we have n =2 and m =1
for each one of these possible families of periodic solutions.

We compute the fundamental matrix My, (t) associated to the first varia-
tional system (1.34) associated to the vector field (Y, X) given by (1.69) with
e =0, and such that M,_(0) = Id of R?, and we obtain

t
2
M, (t) = 1 —/O (3B(s)X§ + A(s)) ds
0 1
The matrix

g 2
MN0) — MNT) = 0 —/0 (3B(s)X§ + A(s)) ds
0 0
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has a non-zero 1 x 1 matrix in the upper right corner if the real root X, of the
cubic polynomial (1.70) is simple, and a zero 1 x 1 matrix in its lower right corner.
Therefore the assumptions of Theorem 1.5.1 hold, then by applying this theorem
we study the periodic solutions which can be prolonged from the unperturbed
differential system to the perturbed one. Since for our differential system we have
¢4(Y, X) = X, then we must compute the function G(a) = G(Yp) given in (1.2),
ie.

T T
G(Yy) =&t (/O Mhl(t)Fl(t,x(t,za,O))dt> = —/0 CYy = —CTY,.

Theorem 1.5.1 says that for every simple real root Yy = 0 of the polynomial
G(Yp) the differential system (1.69) with ¢ # 0 sufficiently small has a periodic
solution (X (¢),Y(¢)) such that (X(0),Y(0)) tends to (Xo,0) when e — 0, being
Xy a simple real root of the cubic polynomial (1.70).

Now it is easy to check that the cubic polynomial (1.70) after the change of
variables (1.68), i.e.

=z Yy _ h(t) _ _a(s)
X=2 v=4 Ho=" Bl =as), Al ="
becomes the polynomial ¢(xo). Hence the theorem is proved. O

1.6 Proof of Theorem 1.1.1

Proof of statement (a) of Theorem 1.1.1. The assumptions guarantee the existence
and uniqueness of the solutions of the initial valued problems (1.1) and (1.2) on
the time-scale 1/¢. We introduce

u(t, x) :/0 [F(s,x) — f°(x)]ds. (1.71)

Since we have subtracted the average of f(s,x) in the integrand, the integral is
bounded, i.e.
[lu(t,x)|| <2MT, t>0, xeD.

We now introduce a transformation near the identity
x(t) = z(t) + eu(t, z(t)). (1.72)

This transformation will be used for simplifying equation (1.1).
Differentiation of (3.15) and substitution in (1.1) yields

x=z+ 6gu(t z) + sgu(t z)Z
N ot " oz "

=cF(t,z +cu(t,z)) + *R(t,z + cu(t, z),€).
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Using (3.14) we write this equation in the form

(I + Eaazu(t,z)> zZ = 5f0(z) + .S,
with I the n x n identity matrix and where
S =cF(t,z +cu(t,z)) — eF(t,z) + e R(t,z + cu(t, z), €).

Since Ou/0z is uniformly bounded (as u) we can invert to obtain
d - 9
— =] —e— 2 > . 1.
(I—i—aazu(t,z)) I Eazu(t,z)—i—O(E ), t>0, zeD (1.73)

From the Lipschitz continuity of F(t,z) we have
[|F(t,z + eu(t,z)) — F(t,2)|| < Le||u(t,z)|| < Le2MT,

where L is the Lispchitz constant. Due to the boundedness of R it follows that for
some positive constant C', independent of ¢, we have

I|S|]| <e*C, t>0, zeD. (1.74)

From (1.73) and (1.74) we get for z that
Z :afo(z)+S—EQg—Zf0(z) +0(*), 2(0) =x(0). (1.75)

As S = O(g?) by introducing the time-like variable 7 = £t, we obtain that the
solution of

Y — ). () =2(0)

approximates the solution of (1.75) with error O(g) on the time-scale 1 in 7, i.e. on
the time-scale 1/ in t. Due to the near identity transformation (3.15) we obtain
that
x(t) —y(t) = O(e) (1.76)
in the time-scale 1/e.
Now we shall impose the periodicity condition after which we can apply the

Implicit Function Theorem. We transform x — z with the near identity transfor-
mation (3.15), then the equation for z becomes

7 =cf'(z) +£2S(t,z,¢). (1.77)

Due to the choice of u(t,z(t)), a T—periodic solution z(t) produces a T—periodic
solution x(t). For S we have the expression

S(t,z,e) = a—F(t,z)u(tz) — %

bz (t,2)f(2) + R(t,2,0) + O(e).
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This expression is T—periodic in ¢ and continuously differentiable with respect to
Z.

Equation (1.77) is equivalent with the integral equation

+s/f0 ds+5/Ssz

The solution z(t) is T—periodic if z(t + T') = z(t) for all ¢ > 0 which leads to the
equation

T
/ 1O(z(s))ds +5/ S(s,z(s),e)ds = 0. (1.78)
0

Note that this is a short—hand notation. The righthand side of equation (1.78) does
not depend on z(0) explicitly. But the solutions depend continuously on the initial
values and so the dependence on z(0) is implicitly by the bijection z(0) — z(x).

It is clear that h(p,0) = 0. If ¢ is in a neighborhood of € = 0, then equation
(1.78) has a unique solution x(t,e) = z(t,e) because of the assumption on the
Jacobian determinant (1.4). If ¢ — 0 then z(0,e) — p. This completes the proof
of statement (a). O

For proving statement (b) of Theorem 1.1.1 we need some preliminary results.
The first result is the Gronwall’s inequality.

Lemma 1.6.1. Let a be a positive constant. Assume that t € [tg,to + a] and

<61/ P(8)p(s)ds + 02, (1.79)

where Y(t) < 0 and p(t) < 0 are continuous functions, and 6; > 0 for i = 1,2.
Then t
P(t) < Goe® Jro V(&)

Proof. From (1.79) we get

o(t)
(51‘]; ) dS—‘r(Sg

Multiplying by 41t () and integrating we obtain

61¢() (s)
/Mt orydr 15,0 =0 ﬂ”

log (51/ P(s ds+52> 10g(52<61/ P(s

t L
W(8)p(s)ds + Gz < 8o’ Jio V()85
0

therefore

Hence

From (1.79) the lemma follows. O
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We consider the linear differential system

x = Ax, (1.80)
where A is a constant n x n matrix. The eigenvalues A1, ..., A, of system (1.80)
are the zeros of the characteristic polynomial det(A — \Id).
If the eigenvalues A\ are different with eigenvectors ey for k = 1,...,n, then
exe™t fork=1,...,n,

are n independent solutions of the system (1.80).

Assume now that not all eigenvalues are different, thus suppose that the
eigenvalue A has multiplicity m > 1. Then X\ generates m independent solutions
of system (1.80) of the form

Py, Py(t)e, ... Pp_1(t)e,

where P;(t) for i =0,1,...,m — 1 are polynomial vectors of degree at most i.

With n independent solutions x1(t),...,z,(t) of system (1.80) we form a
matrix

O(t) = (x1(t), ..., zn(t)),

called a fundamental matriz of system (1.80). Every solution x(t) of system (1.80)
can be written x(t) = ®(t)c, where ¢ is a constant vector. Moreover the solution
x(t) such that x(tg) = xq is

x(t) = B(t)(ty) " 'xo. (1.81)

Usually we choose the fundamental matrix ®(t) in such away that ®(to) = Id.
From (1.81) and the explicit form of the independent solutions of system (1.80) it
follows easily the next result.

Proposition 1.6.2. We consider the linear differential system x = Ax, where A is
a constant n xXn matriz with eigenvalues A1, ..., A,. Then the following statements
hold.

(a) IfRelp <0 fork=1,...,n, then for each solution x(t) such that x(to) = X
there exist two positive constants C' and u satisfying

[[x()]] < C||xo|le ™ and tlim x(t) = 0.
—00
(b) If Rep <0 fork =1,...,n and the eigenvalues with ReA, = 0 are different,
then the solution x(t) is bounded for t > to. More precisely

Ix(®)|| < Clxol| with C > 0.



1.6. Proof of Theorem 1.1.1 39

(c) If there exists an eigenvalue Ay with ReX, > 0, then in each neighborhood of
x = 0 there are solutions x(t) such that

Jim [x(0)]| = oo.

Under the assumptions of statement (a) of Proposition 1.6.2 the solution
x = 0 is called asymptotically stable. Under the assumptions of statement (b) the
solution x = 0 is called Liapunov stable. Finally, nder the assumptions of statement
(c) the solution x = 0 is called unstable.

The next result is also known as the Poincaré-Liapunov Theorem.

Theorem 1.6.3. Consider the differential system
x = Ax+ B(t)x + f(t,x), x(to) = %o, (1.82)

where t € R, A is a constant n X n matrix having all its eigenvalues with negative
real part, B(t) is a continuous n X n matriz such that lim;_, ||B(t)|| = 0. The
function f(t,x) is continuous in t and x, and Lipschitz in x in a neighborhood of
x=0. If
lim 1(t,x)
llxl|=0 |||

=0 wuniformly in t,

then there exists a positive constants C, to,0 and p such that ||xo|| < § implies
[1x(OI] < Clixol[e™#*) for t > to.

The solution x = 0 is asymptotically stable and the attraction is exponential in a

d—neighborhood of x = 0.

Proof. By Proposition 1.6.2 we have an estimate for the fundamental matrix of
the differential system
D= AD, D(tg) = Id.

Since all the eigenvalues of the matrix A have negative real part, there exist positive
constants C' and pg such that

|B(t)|| < Cemrolt=to) — for t > t,.

From the assumptions on f and B for §; > 0 sufficiently small there exist a
constant b(dy) such that if ||x|| < §p then

[Lf (& x)]] < b(do)|[x]|  for £ > 1o,
and if ¢y is sufficiently large

IB@I < b(%),  fort > to.
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The existence and uniqueness Theorem states that in a neighborhood of x = 0
the solution of the initial problem (1.82), exists for to < ¢t < t;. It can be shown
that this solution is defined for all ¢ > tg.

We claim that the initial problem (1.82) is equivalent to the integral equation

x(t) = ®(t)xo + / O(t — s+ tg)[B(s)x(s) + f(s,x(s))]ds. (1.83)

to

Now we prove the claim. The fundamental matrix ®(¢) of the differential system
%X = Ax can be written as ®(t) = eA(*"t) We substitute x = ®(¢)z into the
differential system (1.82) and obtain
dd(t)
dt

Since d®(t)/dt = AD(t) we get

2+ ®(t)z = AD(t)z + B(t)®(t)z + f(t, D(t)z).

7z =®t) ' B(t)®(t)z + ®(t) " f(t, d(t)z).

Integrating this expression between to and ¢ and multiplying by ®(t) we get the
integral equation (1.83). So the claim is proved.

Using the estimates for @, B and f we have
@) < [[@@)]l][xoll + /t: (1@t = s + to) [[[IB(s)IIl[x()I] + [1f (s,%(s))[[} ds
< Cemolt=to)| x| + /t Ce Pot=9)2p||x(s)||ds
to
for tg <t <ty < t1. Therefore
e8| |x(t)]| < Cffxol| + /t Cemrols=10)2b||x(s)|ds,
to

for tg <t <ty where t5 is determined by the condition ||x|| < dy. Using now the
Gronwall’s inequality (Lemma 1.6.1 with ¢(s) = 2Cb) we obtain

e 1ol x(B)]] < Of o |2,

or
[1x(£)]] < Clfxo||emHo) o),

If § and consequently b are sufficiently small, we have that y = po—2Cb is positive,
and the inequality of the statement of the theorem follows for ¢ € [to, to].

Finally if we choose ||xo|| such that ||xq|| < do, then ||x(t)|| decreases, con-
sequently the solution x = 0 is asymptotically stable and the attraction is expo-
nential in a d—neighborhood of x = 0. |
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Now we shall consider linear differential systems of the form
x = A(t)x, (1.84)

where A(t) is a continuous T—periodic n X n matrix, i.e. A(t +7T) = A(t) for all
t € R. For these systems we can define again a fundamental matriz putting in each
column of this matrix an independent solution of the system (1.84).

The next result usually called the Floquet Theorem says that the fundamental
matrix of system (1.84) can be written as a product of a T-periodic matrix and a
non—periodic matrix in general.

Theorem 1.6.4. Consider the linear differential system (1.84) with A(t) a continu-
ous T'—periodic n x n matriz. Then each fundamental matriz ®(t) of system (1.84)
can be written as the product of two n X n matrices

®(t) = P(t)e?,
where P(t) is T—periodic and B is a constant matriz.

Proof. Since ®(t) is a fundamental matrix of system (1.84), ®(¢t + T') is also a
fundamental matrix. Indeed, define 7 =t + T, then

= A(r = T)x = A(T)x.

Therefore ®(7) is also a fundamental matrix.

The fundamental matrices ®(t) and ®(t+7') are linearly dependent, i.e. there
exists a non-singular matrix C' such that ®(¢t +T) = ®(¢)C. Let B be a constant
matrix such that C = eBT. We claim that the matrix ®(¢)e~5! is T-periodic.
Write ®(t)e~ 5t = P(t). Then

Pt +T)=0(t+T)e BT = o(t)Ce BTe Bt = ®(t)e Bt = P(t).
This completes the proof of the theorem. ]

Remark 1.6.5. The matriz C' introduced in the proof of Theorem 1.6.4 is called
the monodromy matriz of system (1.84). The eigenvalues py of the matriz C are
called the characteristic multipliers. Each complex number \j, such that py = e7
18 called a characteristic exponent. The characteristic multipliers are determined
uniquely. We can choose the exponents A\, that they coincide with the eigenvalues
of the matrix B.

Proposition 1.6.6. Consider the differential system
x = A(t)x + f(t,x), (1.85)

in R™ with A(t) a T-periodic continuous matriz, f(t,x) continuous int € R and
in X in a neighborhood of x = 0. Assume that

ft,%)

1m
IIx[|=0 |[x]]

=0 uniformly in t.
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If the real parts of the characteristic exponents of the linear periodic differential
system

y =At)y, (1.86)
are negative, the solution x = 0 of system (1.85) is asymptotically stable.

Proof. By remark 1.6.5 and Theorem 1.6.4 we use the change of variables x =
M (t)z being M (t) the periodic fundamental matrix solution of the system (1.86).
Then the differential system (1.85) becomes

%= Bz + M(t)"' f(t, M(t)z).

The constant matrix B has all its eigenvalues with negative real part. The solution
z of the previous system satisfies the assumptions of the Theorem 1.6.3 from which
the proposition follows. |

Proposition 1.6.7. Consider the differential system
x = Ax + B(t)x + f(t,x) witht > to, (1.87)

in R™ where A is a constant n X n matriz having at least one eigenvalue with
positive real part, B(t) is a continuous n X n matriz such that lim;_, o ||B(t)|| = 0.
The function f(t,x) is continuous in t and x, and Lipschitz in x in a neighborhood
of x=0.If
)
llxl=0 |||

=0 wuniformly in t,

then the solution x = 0 is unstable.

Proof. Doing the change of variables x = Sy where S is a non—singular constant
n X n matrix the system (1.87) becomes

¥ =S1ASy + S~ B(t)Sy + S~'f(t, Sy). (1.88)

While the solution x(¢) is real, in general the solution y(¢) will be complex. The
instability for the solution y = 0 of system (1.88) implies the instability for the
solution x = 0 of system (1.87). We assume that the matrix S can be take in such
a way that the matrix S~'AS is diagonal, otherwise the proof is similar, or see
chapter 13.1 of [22].

Assume that
Re(Aj) >0 >0fori=1,...,k and Re(\;) <0 for i=k+1,...,n

Let

k n
R? = Z yil> and 1 = Z lyil*.
i=1

i=k+1
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From system (1.88) we shall compute the derivatives of R? and r? with respect to
t. First we have
dlyl*  dlyy) . _ .
dt - dt = YiY; + YiY;
= 2ReXilyi|* + (ST B(1)Sy)7; + (ST B(t)Sy):

+ (ST, Sy)i¥; + yi(STf(E, Sy )i

We can choose € > 0, dg and § such that for ¢t > ¢y and ||y|| < ¢ we have
[STIB()Syli <elyl,  |(STUf(tSy)il < elyil-

Therefore

1d(R?2 —r2 k
5% >3 (Redi —o)yil® = Y (Redi + )|yl
=1 i=k+1

Taking 0 < € < 0/2 we obtain
Re\i—e>oc—e>cfori=1,...,k, Re\j+e>cfori=k+1,...,n.
Then
1d(R2—T2)
2 dt

Taking the initial conditions in such a way that (R —r?),—, = k > 0, from (1.89)
we get that

> e(R?* —r?) fort>tg and ||y|| < 6. (1.89)

||y||2 > R2 - T2 > k625(t7t0).

Hence this solution leaves the ball ||y|| < 4. Consequently the solution y = 0 is
unstable. g

Proof of statement (b) of Theorem 1.1.1. We linearize equation (1.1) in a neigh-
borhood of the periodic solution x(¢, ). After translating x = z+x(¢, ), expanding
with respect to z, omitting the nonlinear terms and renaming the dependent vari-
able again by x, we get the linear differential equation with T—periodic coefficients

x = cA(t, e)x, (1.90)

where

0
Alt2) = 5 [F(1,%) + =R( %, o )

We define the T—periodic matrix
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and from statement (a) we have lim._,o A(t,e) = B(t). We also define the matrices

:7/ t)dt and C(t) = /OT[B(S)BO]ds.

Note that B° is the matrix of the linearized averaging system. The matrix C(t)
is T—periodic and its average is zero. The near—identity transformation x — y
defined by y = (I — eC(t))x provides
y = —eC(t)x + (I —eC(t)x
= —eB(t)x +eBx + (I — eC(t))eA(t, e)x
= [eBY 4+ ¢(A(t,e) — B(t)) — 2C(t)]A(t,e)](I — eC(t))*
=eB% +¢(A(t,e) — B(t))y + £25(t, e)y.

(1.91)

The function S(t,¢) is T—periodic and bounded. We note that A(¢,e) — B(t) — 0
when € — 0, and also that the characteristic exponents of differential system (1.91)
depend continuously on the small parameter . Therefore, for € sufficiently small,
the sign of the real parts of the characteristic exponents is equal to the sign of the
real parts of the eigenvalues of the matrix B°. The same conclusion holds, using
the near—identity transformation, for the characteristic exponents of differential
system (1.90).

Applying now Proposition 1.6.6 we obtain the stability of the periodic so-
lution in the case of negative real parts. If at least one real part is positive, the
Floquet transformation and the application of Proposition 1.6.7 provides the in-
stability of the periodic solution. |

1.7 Proof of Theorem 1.3.1

Proof of Theorem 1.3.1. We consider the function f: D X (—eg,&0) — R", given
by
f(z,e) =a(T,z,¢e) — 2. (1.92)

Then, every (zc,¢€) such that
f(7er6) = 0 (1.93)

provides the periodic solution z(:, z, €) of (1.32).
We need to study the zeros of the function (1.92), or, equivalently, of

g(z,e) =Y YT, 2)f(z,¢e).

We have that g (z4,0) = 0, because z(+, zo,0) is T—periodic, and we shall prove

that
Go = % (24,0) = Y 1(0) — Y 1(T). (1.94)
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For this we need to know (0x/9z) (-, z,0). Since it is the matrix solution of (1.34)
with (82/02) (0,2,0) = I,, we have that (02/0z2)(t,2,0) = Y (t,2)Y (0, 2).
Moreover,

df _ Ox _ -1
a(z,O) =3, (T,2,0) - I, =Y (T,2)Y " (0,2) — I,
and
dg, i gy ! gy 1
L0 =y 0.0 -7 @+ (GG ST e0).
which, for z, € Z, reduces to (1.94).
We have 9 9
99 _y-1 gr
%% (2,0) =Y (T,2) 5 (T, z,0).

The function (9x/0¢) (-, z,0) is the unique solution of the initial value problem
y' = Do Fo(t,2(t,2,0))y + Fi(t, x(t, 2,0)), y(0) =0.

Hence
ox

g(t,z,O) = Y(t,z)/o Y (s, 2)Fy(s,2(s, 2,0))ds.

Now we have .
@(2,0) z/ Y_l(s,z)Fl(s,x(s,Z,O))ds,
Oe 0

Hence 5
(79) (20,0) = fr(o),

where f1 is given by (1.35). Applying Theorem 2.1, there exists a. € V such that
9(za.,€) = 0 and, further, f(z4.,c) =0, which assures that ¢(-,¢) = x(-, z4_,€) is
a T—periodic solution of (1.32). O

1.8 Proof of Theorem 1.5.1

Since the result of Theorem 1.5.1 is analogous to the result of Theorem 1.3.1, their
proofs are similar.

Proof of Theorem 1.5.1. Since Z is a compact set and x(¢,z,) is T-periodic for
each z, € Z, there is an open neighborhood D of Z in 2 and 0 < g1 < €¢ such that
any solution x(t,z, ) of (1.32) with initial conditions in Dx(—e1, 1) is well defined
in [0, 7]. We consider the function L: D x (—¢e1,&1) — R?*™, (z,¢) = x(T, z,¢) — z.
If (z,6) € D x (—¢e1,e1) is such that L(z,&) = 0, then x(t,2,£) is a T-periodic
solution of (1.32).—z. Clearly the converse is true. Hence the problem of finding
T-periodic orbits of (1.32) close to the periodic orbits with initial conditions in £
is reduced to find the zeros of L(x,¢).
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The sets of zeros of L(z,¢) and L(z,¢) = M, *(T)L(z,¢) are the same, since
M,(T) is a fundamental matrix. Moreover following the proof of Theorem 1.3.1

we can compute that

D,L(z,¢)= (M, ' (0)— M, (T))+D, (/OTMz_l(t)Fl(t, x(t,2,0))dt |e+O(g?).

(1.95)

We note that L=1(0) = (¢+ o L)=(0) N (€ o L)~1(0). From (1.95) we obtain
D, L(z4,0) = M, H(0)— M, H(T). If we write z € R*™ as z = (u,v) with u,v € R™,
then D, (€0 L)(2q,0) is the upper right corner of M;(0)—M, ' (T). Then from (a)
we can apply the Implicit Function Theorem, thus it follows that there exist an
open neighborhood U X (—¢2,e2) of CI(V) in £(D) x (—¢1,€1), an open neighbor-
hood O of By(C1(V)) in R™ and a unique C* function S(a,e): U X (—e32,62) — O
such that (£0L)~1(0)N(U x O x (—ea,£2)) is exactly the graphic of 8(a, ). Now if
we define the function §: U x (—e2,£2) — Roas §(a, €) = (£LoL) (e, B(wv, €),€), then
§ is a function of class C* and L=1(0)N(UxOx (=g, e2)) = {(, B(a,e),€) | (a,€) €
671(0)}. Therefore for describing the set L~1(0) in an open neighborhood of Z in
R"™ x (—&g, 9), it is sufficient to describe -1(0) in an open neighborhood of C1(V)
in R x (—eg,€0).

Since M, *(0) — M, *(T') has in the lower right corner the m x m zero matrix
and 6(c,0) = 0 in V x (—e2,e2), the function (e, €) can be written as J(«,¢) =
£G(a) +£2G(a, €) in V X (—£3, 2), where G(a) is the function given in (1.65), see
[13]. In addition if 6(cv, £) = G() + eG(a, &), then §-1(0) = 6-1(0).

If there is g € V such that &(ag,0) = G(ap) = 0 and det((8G/0a)(aw)) #
0, then from the Implicit Function Theorem there exist e3 > 0 small, an open
neighborhood V; of ag in V and a unique function of class C* a(e): (—e3,e3) — Vp
such that 6-1(0) N (Vg x (—e3,e3)) is the graphic of a(e), which also represents
the set 671(0) N (Vy x (—e3,€3)). This completes the proof of the theorem. O



Chapter 2

Averaging theory of arbitrary
order and dimension for finding
periodic solutions

In this chapter we shall study the periodic solutions of the systems of the form

k
Z'(t) = ZeiFi(t,x) + "Rt x,€), (2.1)
i=0

where Fj: Rx D - R" for i =0,1,2,--- ,k, and R: R x D x (—¢g,&0) — R" are
locally Lipschitz functions, and T—periodic in the first variable, being D an open
subset of R"; eventually Fjy can be the zero constant function.

The classical works using the averaging theory for studying the periodic so-
lutions of a differential system (2.1) usually only provide this theory up to first
(k =1) or second order (k = 2) in the small parameter &, moreover these theories
assume differentiability of the functions F; and R up to class C% or C3, respec-
tively. Recently in [15] this averaging theory for computing periodic solutions was
developed up to second order in dimension n, and up to third order (k = 3) in
dimension 1, only using that the functions F; and R are locally Lipschitz. Also
in the recent work [39] the averaging theory for computing periodic solutions was
developed to an arbitrary order k in € for analytical differential equations in di-
mension 1.

In this chapter we shall develop the averaging theory for studying the periodic
solutions of a differential system (2.1) up to arbitrary order k in dimension n, with
zero or non—zero Fy, and where the functions F; and R are only locally Lipschitz.
In fact this chapter is based in the results of the paper [61] by Llibre, Novaes and
Teixeira.
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An example that qualitative new phenomena can be found only when con-
sidering higher order analysis is the following. Consider arbitrary polynomial per-
turbations

b=yt > & fixy),

Jj=1

g=x+y gz,

Jj=1

(2.2)

of the harmonic oscillator, where ¢ is a small parameter. In this differential system
the polynomials f; and g; are of degree n in the variables x and y and the system
is analytic in the variables z, y and €. Then in [39] (see also Iliev [47]) it is proved
that system (2.2) for € # 0 sufficiently small has no more than [s(n—1)/2] periodic
solutions bifurcating from the periodic solutions of the linear center & = —y, y = =,
using the averaging theory up to order s, and this bound can be reached. Here [x]
denotes the integer part function of the real number x. So, to take into account
higher order averaging theory can improve qualitatively and quantitatively the
results on the periodic solutions.

In short, the goal of this chapter is to extend the averaging theory for com-
puting the periodic solutions of a differential system in n variables (2.1) up to an
arbitrary order k in ¢ for locally Lipschitz differential systems, using the Brouwer
degree.

2.1 Statement of the main results

We are interested in studying the existence of periodic orbits of general differential
systems expressed by

k
?(t) =) ' Fi(t,x) + M R(t 3, ¢), (2.3)
1=0

where F;: Rx D — R" for ¢ = 1,2,---,k, and R: R x D x (—ep,e09) — R" are
continuous functions, and T—periodic in the first variable, being D an open subset
of R™.

In order to state our main results we introduce some notation. Let L be a
positive integer, let * = (z1,...,2,) € D, t € R and y; = (yj1,...,Yjn) € R”
for j =1,...,L. Given F': R x D — R™ a sufficiently smooth function, for each
(t,z) € R x D we denote by 0L F(t,z) a symmetric L-multilinear map which is
applied to a “product” of L vectors of R™, which we denote as @le Y; € R"E,
The definition of this L—multilinear map is

L n
oL F(t,x)
L _ b
0" F(t,x) (jz: 1) vi = E CEY Y1y " YLy, - (2.4)

01,00 =1



2.1. Statement of the main results 49

We define d° as the identity functional. Given a positive integer b and a vector
y € R™ we also denote y* = O’_, y € R™.

Remark 2.1.1. The L-multilinear map defined in (2.4) is the L*" Fréchet derivative
of the function F(t,x) with respect to the variable x. Indeed, fized t € R, if we
consider the function Fy;: D — R™ such that Fy(x) = F(t, ), then OLF(t,z) =
FP(z) = 0L JoxL F(t,x).

Example 2.1.2. To illustrate the above notation (2.4) we consider a smooth func-
tion F: R x R? — R2. So for x = (z1,72) and y' = (y},yd) we have

OF
(t,x)yr + 5—(t,2)ys.

OF
1_
OF (t,x)y = D23

3x1
Now, for y* = (yi,y3) and y* = (yi,y3) we have

O?F(t,x) 0?F(t, )

2 12y ) 12 ) 12

OF(t, )y y°) = 000, Y T arom, N2
O?F(t, ) 1 9 0?F(t,) 19
83326%‘1 291 aanxQ Yot

Observe that for each (t,x) € R x D, OF(t,x) is a linear map in R? and 0*F(t,x)
is a bilinear map in R? x R2.

Let (-, 2): [0,t,] = R™ be the solution of the unperturbed system,
2/ (t) = Fo(t, ) (2.5)

such that (0, 2) = z.
For i = 1,2,...,k, we define the Averaged Function f;: D — R™ of order i

Yi T7Z
fi(z): (Z' ), (26)
where y;: R x D — R™, for i = 1,2,...,k — 1, are defined recurrently by the

following integral equation

as

yi(t, z) = “/Ot (Fi(sa@(&z))

i l
1 L b,
#3309 Qe as, (2)
=1 5 j=

where 5 is the set of all I-tuples of non—negative integers (b1, b, - - - , b;) satisfying
b1+2b2++lbl:l, andL:b1+b2+~-~+bl.
In Section 2.3 we compute the sets 5; for [ = 1,2,3,4,5. Furthermore, we

make explicit the functions fi(z) up to k = 5 when Fy = 0, and up to k = 4 when
Fy #0.
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Related to the averaging functions (2.6) there exist two cases of (2.3), essen-
tially different, that must be treated separately. Namely, when F; = 0 and when
Fy # 0. It can be seen in the following remarks.

Remark 2.1.3. If Fy =0, then ¢(t,z) = z for each t € R. So

¢ T
yl(t,z):/o Fi(t,z)ds, and fl(t,z):/o Fi(t,z)dt

as usual in averaging theory (see for instance [5]).

Remark 2.1.4. If Fy # 0, then

t
nlt2) = [ Fi(spls2) + O0F (s.ols N mls,2)ds. (28)
0
The integral equation (2.8) is equivalent to the following Cauchy Problem
u(t) = F1 (¢, 0(t, 2)) + 0Fy (t, ¢(t,2)) v and u(0) =0, (2.9)

i.e, y1(t, z) = u(t). If we denote

¢
nt2) = [ 0Fu(s.os,2)ds (2:10)
0
s0 ,
y1(t,z) = e”(t’z)/ e A By (s, 0(s, 2))ds (2.11)
0
and

hi(z) = /OT e TP (t (t, 2))dt.

Moreover, each y;(t, z) is obtained similarly from a Cauchy problem. The formulae
are giwen explicitly in section 2.3.

In the following, we state our main results: Theorem 2.1.5 when Fy = 0,
and Theorem 2.1.6 when Fy # 0. The Brouwer degree dg, which is defined in
Appendix B, is used.

Theorem 2.1.5. Suppose that Fy = 0. In addition, for the functions of (2.3), we
assume the following conditions.

(i) For eacht € R, Fi(t,-) € C*7% fori=1,2,--- ,k; O*'F; is locally Lipschitz
in the second variable for i = 1,2,--- ,k; and R is continuous and locally
Lipschitz in the second variable.

(ii) Assume that f; =0 fori=1,2,....,7r —1 and f, # 0 with r € {1,2,...,k}
(here we are taking fo = 0). Moreover, suppose that for some a € D with
fr(a) =0, there exists a neighborhood V. C D of a such that f.(z) # 0 for all
z € V\{a}, and that dg (f-(2),V,a) # 0.
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Then, for |e| > 0 sufficiently small, there exists a T—periodic solution x(-,€) of
(2.3) such that x(0,e) — a when € — 0.

Theorem 2.1.6. Suppose that Fy # 0. In addition, for the functions of (2.3), we
assume the following conditions.

(j) There exists an open subset W of D such that for any = € W, ¢(t,z) is
T —periodic in the variable t.

(jj) Foreacht € R, Fi(t,) € C*7 fori =0,1,2,--- , k; O* ' F; is locally Lipschitz
in the second variable for i = 0,1,2,--- . k; and R is continuous and locally
Lipschitz in the second variable.

(3ij) Assume that f; =0 fori=1,2,...,r —1 and f, # 0 with r € {1,2,...,k}.
Moreover, suppose that for some a € W with f.(a) =0, there exists a neigh-
borhood V. C W of a such that f.(z) # 0 for all z € V \ {a}, and that

dp (fr(2),V,a) #0.
Then, for |e| > 0 sufficiently small, there exists a T—periodic solution z(-,€) of
(2.3) such that x(0,e) — a when € — 0.
Theorems 2.1.5 and 2.1.6 are proved in section 2.2.
Remark 2.1.7. When f; fori=1,2,... k (defined in (2.6)) are C' functions the
hypotheses (ii) and (jjj) become:
(k) Assume that f; =0 fori=1,2...,r—1 and f. # 0 with r € {1,2,...,k}.
Moreover, suppose that for some a € W with f.(a)=0 we have that f.(a)# 0.

In this case, instead Brouwer degree theory, the Implicit Function Theorem could
be used to prove Theorems 2.1.5 and 2.1.6.

‘We emphasize that our main contribution to the advanced averaging theory is
based on Theorems 2.1.5 and 2.1.6. In fact, we provide conditions on the regularity
of the functions, weaker than those given in [39].

2.2 Proofs of Theorems 2.1.5 and 2.1.6

Let g: (—e0,€0) = R™ be a function defined on a small interval (—eg,gg). We say
that g(g) = O(e*) for some positive integer ¢ if there exists constants e; > 0 and
M > 0 such that ||g(e)|| < M|e’| for —e; < & < 1. The symbol O is one of the
Landau’s symbol (see for instance [86]).

To prove Theorems 2.1.5 and 2.1.6 we need the following lemma.

Lemma 2.2.1 (Fundamental Lemma). Under the assumptions of Theorems 2.1.5
or 2.1.6 let x(-,z,e): [0,t,] = R™ be the solution of (2.3) with x(0,z,¢) = z. If
t, =T, then
QRTAGE
w(t,z6) = p(t,2) + Y P Z b o1,
P i!

where y;(t,z) fori=1,2,...,k are defined in (2.7).



52 Chapter 2. Averaging theory for arbitrary order and dimension

Proof of Lemma 2.2.1. By continuity of the solution (¢, z, &) and by compactness
of the set [0,7] x V x [—¢1,e1], there exits a compact subset K of D such that
x(t,z,e) € K for all t € [0,T), 2 € V and ¢ € [—ey,¢&1]. Now, by the continuity
of the function R, |R(s,z(s,z,¢€),e)| < max{|R(t,z,¢)|,(t,x,e) € [0,T] x K x
[—€1,€1]} = N. Then

¢ T
/ R(s,xz(s, z,€),e)ds| < / |R(s,z(s,z,€),e)|ds =TN,
0 0

which implies that
t
/ R(s,2(s,2,€),)ds = O(1). (2.12)
0

Related to the functions z(t, z, ) and ¢(t, z) we have the followings equalities

k t
otz e) =2+ & / Fi(s,2(s,2,))ds + O(e**1),  and
i=0 70 (2.13)

ot z) =z —l—/o Fo(s, (s, 2))ds.

Moreover x(t, z,€) = ¢(t,2) + O(e). Indeed, Fy is locally Lipschitz in the second
variable, so from the compactness of the set [0,T] X V x [—¢&q, go] and from (2.13)
it follows

|$(t72,€) —go(t,z)\ S/ |F0(S,$(S,Z7€)) _FO(SvSD(SVZ)”dS
0
+|g|/O IFy(s, (s, 2,2))|ds + O(2)

t
< |5|M—|—/ Lo|z(s, z,€) — ¢(s,2)|ds < |e|MeTto.
0

Here Lg is the Lipschitz constant of Fy on the compact K. The first and second
inequality was obtained similarly to (2.12). The last inequality is a consequence
of Gronwall Lemma (see, for example, Lemma 1.3.1 of [86]).

In order to prove the present lemma we need the following claim.
Claim. For some positive integer m let G: R x D — R™ be a C™ function. Then

G(t,z(t, 2,¢))
1 1 1 1
= / )\;"71/ )\5"72 . / /\m,l/ [8mG(t,€m 0lm—_10---0ly(x(t, z,s)))
0 0 0 0

— I™G(t, (t, z))} AA A1 - - dA1 - (x(t, 2, €) — o(t, 2))™

+ i 8LG(t, Lp(t,Z)) (‘T(ta Z’E>I; (P(t’ Z))L7
L=0 ’

where £;(v) = Av + (1 — \)(t, z) for v € R™.
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We shall prove this claim using the principle of finite induction on m.
For m =1, G € C*. Let {1(A\1) = G(¢,41(z(t, 2,¢€))). So

G(t,z(t,z,€)) =G(t, o(t, z)) + T1(1) — 31(0) = G(t, ¢(t, 2) / T dN
=G(t,0(t,2)) —l—/o OG(t, 1 (x(t, z,€)))dA1 - (z(t, z,€) — @(t,2))

1
= [ [0t (ot 2.00) = 06ttt D] s - (el 2.0) = o 2)
G(t,p(t,2)) + 0G(t, (t, 2))(x(t, z,&) — p(t, 2)).

Given an integerﬁ% > 1 we assume as the inductive hypothesis (I1) that the
claim is true for m = k — 1.
Now for m =k, G € C* € C*~1. So from inductive hypothesis (I1),

1 _ 1 _ 1 1 _
G(t,x(t,z,s)):/o /\’f‘2/0 )\’5‘3--~/0 AE_Q/O [a’“—lG(t,eg_lozg_go

o ly(z(t, 2,¢))) — 3E—1G(t7 o(t, z))} dAp_1dXg_ o d\

’ (.%‘(t, 2, 5) - (p(t7 Z))E_l

k—1
+ Z 8LG(t, @(t, Z)) (J?(t, Z7E)I; @(t7 Z))L
L=0 '

(2.14)
Let $(A\;) = 0F LG (t, b0 b5, 0+ 0 by (a(t, 2,€))). So

1
| vo0ax = 10) -10)
= 3%_1G(t,€gfl oly_yo0---0li(x(t, z,€))) — O"G(t, ¢(t, 2)).

(2.15)
The derivative of J(Ar) can be easily obtained as
i’()%) X Ao A0 G(t lpoly_jo---0li(z(t z,¢)))(x(t, z,8) — o[t 2)).
/ TOn A A, --)\1/ [Fa(t oty 000 bi(alt.20)))
0

— R Gt (1, 2)) | drg - (2l 2) = ot 2)

F A AT MORG(t p(t, 2) (L, 2,€) — (1, 2)).
(2.16)
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Hence, from (2.14) and (2.16) we conclude that

G(t,z(t, z,¢))
/ Ak 1/ Ab—2. / T 1/ Gt byoly_o--oli(a(t ze)))
— OFG(t, o(t, z))} dizdMp_ - -dAy - (2(t 2, 2) — ot 2))F

E x(t,z,e) — )L
+25LG(fas0(t,z))< (t,z, )L' p(t, 2))
L=0 !

This completes the proof of the claim.

Given a non—negative integer m, we note that for a C™ function G such that
0™G@G is locally Lipschitz in the second variable, the claim implies the following
equality

G(t,x(t,z,€)) = 7 OFG(t, o(t, 2)) (z(t, Z’S)L’! pt2)" | O(em+y. (2.17)

Indeed, for m = 0 G is a continuous function locally Lipschitz in the second
variable, so

|G(t,x(t, 2,¢)) — G(t,p(t, 2))| < Lglz(t,z,€) — o(t,2)| < |e|LaMeTFo.
Here L¢ is the Lipschitz constant of the function G on the compact K. Thus
G(t,x(t, z,€)) = G(t,¢(t, 2)) + O(e).

Moreover for m > 1 the claim implies (2.17) in an similar way to (2.12).

Again we shall use the principle of finite induction, now on k, to prove the
present lemma.

For k =1, Fy € C! and the functions OF, and F) are locally Lipschitz in the
second variable. Thus from (2.17), taking G = Fy and G = F, we obtain

Fo(tsa(t,2,0)) = Folt, o(t,2)) + DFo (b o(t, 2)(w(t2,¢) — p(t,2)) + O(c?)  and
Fl(tvx(tv 2,5)) = Fl(ta Qo(tv Z)) + O(E)’
(2.18)

respectively. From (2.13) and (2.18) we compute

% (gj(t’ 2 6) - QO(L Z)) :6F0(t7 90(757 Z)) (x(ta 2 5) - (p(t, Z))+EF1 (t’ (p(t, Z))+0(52)

(2.19)
Solving the linear differential equation (2.18) with respect to z(t, z,¢) — @(t, 2)
for the initial condition x(0, z,&) — (0, z,&) = 0 and comparing the solution with
(2.11) we conclude that

x(t,z,e) = p(t, 2) +eyi(t, 2) + O(?).
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Given an integer k we assume as the inductive hypothesis (I12) that the lemma
is true for k =k — 1.

Now for k =k, F; = C*~ for i =0,1,...,k and OF—iF, is locally Lipschitz
in the second variable for ¢ = 0,1, ..., k. So from (2.17)

Fi(t,x(t, 2,2)) Z oL F, )(I(t’z’g)L_' ot 2)" O(F=+1), (2.20)

fori=0,1,...,k.
Applying the inductive hypothesis (12) in (2.20) we get

Fi(t,z(t, z,¢)) = Fi(t, p(t, 2))

k—i k—i—L+1 vi (t 2) o _
YRt ) | Y e + 0"
L=1 i=1
(2.21)
for i = 1,2,...,k. Now using the Multinomial Theorem (see for instance [42],
p. 186) in (2.21) we obtain
Fi(t,z(t,z,€)) = Fi (t,¢(t,2))
k—i k—i ol k-1
+ > ——————0"Fi (t,0(t,2)) (D y;(t, 2)"
I—1 I=L szl bl' bg!Z!b2 s bE—ll(k — 1)' k—1 =1
+ O(Fity,
for i = 1,2,...,k. Here Si', 1s the set of all n—tuples of non—negative integers
(b1,b2,...,bn) satlsfylng b1+2b2+ -4nb, =land by +by +---+b, =L. We
note that if n > [ then bj41 = bj420 =--- = b, = 0. Hence
Fz<t7 SL‘(t,Z,S ) = Fi (ta (p(t7 Z))
k—i k—i ol l
+ Z byl bg!21b2 - - 1[I0 O"Fi (¢, ¢(t, 2) @ Y (2.22)
L=1 =L st j=1
+ O(gk—i—&-l

fori=1,2,...,k, because k —i > 1

Finally, doing a change of indexes in (2.22) and observing that UZL:PS'IZ’L =5,
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we may write
Fi(t, x(t, z,¢)) = Fi (K, 0(t, 2))

l

k—1
1
l L b,
+ IX:E ; NI ..~bl!l!bza Fi(t, ot 2) (D y;(t, )" (2.23)
=1 ,

j=1

+ O(EE_H_l),
fori=1,2,... k.
Following the above steps we also obtain
Folt,a(t,2,)) = Fy (£, p(t, 2)) + OFp(t, ot 2)) (w(t, 2,€) — (. 2))

k

+ZE{Z bllbzlglbz. b, lilbr O"Fy (t: ¢ (t, 2) @yJ (t,2) (2.24)

=1

— OFy(t, (¢, z))y’(;’z)] O,

Now from (2.13) we compute

d
@ (I(tv Z, 5) - W(ta Z)) = FO(ta ‘T(ta 2, 5))
k _ B
— Fo(t,o(t,2)) + Y ' Fi(t,a(t, z,€)) + O(*H).
i=1
(2.25)
Proceeding with a change of index we obtain from (2.23) that
k
7 _ 7 L
Zsthtzz—: 725 Zzbl'b2'2'b2- blwbla i1 (£, 0(t, 2))
=1 S (2.26)

~

Oyt 2) + 0.

Jj=1

Substituting (2.24) and (2.26) in (2.25) we conclude that

D @t 20) — (1, 2)) = OFu(t, (1, 2) (a(t, 2,) — o(t,2))

dt
Z ZZ b1|b2|2|b2. by O"F, i1 (t,(t, 2))

=1 =0 S;

!
Qyj(s,z)bf—aFo(t,w(t,z)) (f!’) +O(F),

(2.27)
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Solving the linear differential equation (2.27) with respect to z(t, z,&) — (¢, z) for
the initial condition z(0, z,&) — ¢(0, z) = 0 we obtain

EYite) g
z(t, z,€) = p(t, 2) + 251127" + O(Ek-ﬂ)7
=1 :

where

Yi(t, z) =
t i ) l
_ t,z —n(s,z & L . b;
_ ol >/0 o >lzzbl!bQ!mbz._.blmma Fioi (s,0(s,2) (D (s, 2)
=0 S; j=1

— OFy(s, (s, 2))yi(s, z)] ds.

The function 7(t, z) was defined in (2.10). Hence

d

%Yg(t, z) = OFo(t, ¢(t, 2))Yi(t, 2)

) . l
i! L b,
20 i g e (t,w(t,z))qyj(t,Z)
=

=0 S;
- a1'710(ta C)O(tv Z))yl(tv Z)dS

Computing the derivative of the function y;(t, z) we conclude that the func-
tions y;(t,2) and Yi(t,z) are defined by the same differential equation. Since

Y;(0,2) = 4;(0,z) = 0 it follows that Y,.(t,2) = y,(t, 2) for every i = 1,2,... k. So
we have concluded the induction, which completes the proof of the lemma. O

In few words the proof of Theorem 2.1.5 is an application of the Brouwer
degree (see Appendix B) to the approximated solution given by Lemma 2.2.1.

Proof of Theorem 2.1.5. Let x(-, z,£) be a solution of (2.3) such that (0, z,¢&) = z.
For each z € V, there exists 1 > 0 such that if ¢ € [—e1,&1] then z(-, 2, £) is defined
in [0,7]. Indeed, by the Ezistence and Uniqueness Theorem of solutions (see, for
example, Theorem 1.2.4 of [86]), x(-, 2, ¢) is defined for all 0 < ¢ < inf (T,d/M(¢)),
where

k
M(e) > ZsiFi(t,x) +e"R(t, x,¢)
i=1

for all ¢ € [0, 7], for each = with |z — 2| < d and for every z € V. When ¢ is suffi-
ciently small we can take d/M () sufficiently large in order that inf (T, d/M(g)) =
T for all z € V.

We denote
ef(z,e) = (T, z,6) — z.
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From Lemma 2.2.1 and equation (2.12) we have that
f(z8) = fi(2) + efalz) + €2 f3(2) + - + " ful(z) + £7O(1),

where the function f; is the one defined in (2.6) for ¢« = 1,2,--- , k. From the
assumption (ii) of the theorem we have that

flzoe) =" (2) 4+ -+ fu(2) + FO(1),

Clearly z(-, z,¢) is a T—periodic solution if and only if f(z,&) = 0, because
x(t, z,¢) is defined for all ¢ € [0, 7.

From the Brouwer degree theory (see Lemma 2.6.3 of the appendix B) and
hypothesis (ii) we have for |¢| > 0 sufficiently small that

dp (fT(Z),V, a) =dp (f(zga),V,a) # 0.

Hence, by item (i) of Theorem 2.6.1 (see Appendix B), 0 € f(V,¢) for |e] > 0
sufficiently small, i.e, there exists a. € V such that f(a.,e) = 0.

Therefore, for |e| > 0 sufficiently small, x(¢, a.,¢) is a periodic solution of
(2.3). Clearly we can choose a. such that a. — a when ¢ — 0, because f(z,¢) # 0
in V'\ {a}. This completes the proof of the theorem. O

For proving Theorem 2.1.6 we also need the following lemma.

Lemma 2.2.2. Let w(-,z,¢): [0,£,] — R™ be the solution of the system

’U}/(t) = Z Ei ([D2<P(ta w)]_l Fz(ta <p(t7 ’U)))) + Ek+1 [D2¢(t7 w)]_l R(ta @(t ’lU), E)a

- (2.28
such that w(0,z,e) = z. Then ¥(-,z,€): [0,t,] — R"™ defined as ¥(t,z,e) =
© (t,w(t, z,€)) is the solution of (2.3) such that ¥(0,z,¢) = z.

Proof. Given z € D, let M(t) = Day(t,z). The result about differentiable de-
pendence on initial conditions implies that the function M (t) is given as the fun-
damental matrix of the differential equation v’ = 0F,(t, ¢(t, z))u. So the matrix
M (t) is invertible for each ¢ € [0,T]. From here, the proof follows immediately
from the derivative of ¥ (¢, &, ) with respect to ¢. |

Proof of Theorem 2.1.6. Let x(-, z,€) be a solution of (2.3) such that (0, z,&) = z.
For each z € V, there exists 1 > 0 such that if ¢ € [—&1,&1] then (-, 2, €) is defined
in [0, 7). Indeed, from Lemma 2.2.2, z(t,2,¢) = ¢ (t,w(t, z,¢)) for each z € V,
where w(, z,€) is the solution of (2.28). Moreover for |e1| > 0 sufficiently small,
w(t,z,e) € W for each (t,2,¢) € [0,T] x V x [~¢1,e1]. Repeating the argument
of the proof of Theorem 2.1.5 we can show that £, = T for every z € V. Since
©(+, 2) is defined in [0,T] for every z € W, it follows that {, = T, i.e. z(-,2,¢) is
also defined in [0, 7.
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Now, denoting
f(Z,(‘:) = ﬂf(T,Z,E) -z

the proof follows similarly of Theorem 2.1.5. ]

2.3 Computing formulae

In this section we illustrate how to compute the formulae of Theorems 2.1.5 and
2.1.6 for some k£ € N. In 3.1 we compute the formulae when Fy = 0 for Theorem
2.1.5 up to k = 5. In 3.2 we compute the formulae when Fyy # 0 for Theorem 2.1.6
up to k = 4.

First of all from (2.7) we should determine the sets S; for I =1,2,3,4,5.

Sl = {1}5

Sy = {(071)3(2»0)}7

53:{(0707 )7(1717 ),( ;0 )}

542{(070, ,1),(1, ,1,0), (2,1,0 O) (072,0,0),(4,0,0,0)}.

To compute S; is conveniently to exhibit a table of possibilities with the value
b; in the column i. We starts it from the last column.

Clearly the last column can be only filled by 0 and 1, because 5b5 > 5 for b5 >
1. The same happens with the fourth and the third column, because 3bs, 4by > 5,
for b3, by > 1. Taking b; = 1, the unique possibility is by = by = b3 = by = 0, thus
any other solution satisfies b5 = 0. Taking b5 = 0 and b4 = 1, the unique possibility
is by = 1 and by = b3 = 0, thus any other solution must have b, = b5 = 0. Finally,
taking b5 = by = 0 and b3 = 1, we have two possibilities either by = 2 and by, = 0,
or by =0 and by, = 1. Thus any other solution satisfies b3 = by = b5 = 0.

Now we observe that the second column can be only filled by 0, 1 or 2,
since 2by > 5 for by > 2; and taking b3 = by = b5 = 0 and by = 1 the unique
possibility is by = 3. Taking b3 = by = b5 = 0 and by = 2 the unique possibility
is by = 1, thus any other solution satisfies by = b3 = by = b5 = 0. Finally, taking
by = b3 = by = bs = 0 the unique possibility is by = 5. Therefore the complete
table of solutions is

by | ba | b3 | ba | b5
ojlo]olo]1
1lolo]1]o0
011|010
5= 0100
3/1]0/0]0
1/2l0]0]o0
5100010

Now we can use the (2.7) and (2.6) to compute the expressions of y; and f;.
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2.4 Fifth order averaging of Theorem 2.1.5

We assume that Fy = 0. From (2.7) we obtain the functions y;(¢,2) for k& =
1,2,3,4, 5.

yi(t, 2) = /Ot Fy(s,2)ds,
ya(t, 2) = /Ot (QFQ(S, z) + 2%(3,2)2/1(5, z)) ds,

ys(t,z) = /0 <6F3(s7z) + 6%(3,2)1/1(15, z)

8°F, . OR
+ 3@(& 2)yi(s,2)” + 367(8’ 2) ya(s, Z)>d87

¢ OF3
ya(t, z) = / (24F4(s7z) + 24a—(s,z)y1(s,z)
0 xXr
0 F,
+ 1273562 (
O?F,
+ 128721(87 Z)yl(sa Z) © y?(su Z)

PR . R
+4W(s,z)y1(s,z) +4ax(s,z)y3(s,z)>d8,

OF:
5 2)1(5,2)” + 1272 (s, 2)y(s, 2)

t OF,
ys(t,2) = / (120F5(s,z) + 120%(3,2)341(572
0

2

0*F:
+ 6075 (5, 2)ya (5, 2)°

2

8F3 0 F2
+ 60%(& 2)y2(s, 2) + 60@(372)2/1(87 2) © ya(s, 2)
3

O3 F,
20—
+ Ox3
0*Fy
20———
+ Ox?
2

OF:
(Sa Z)yl(sa Z)3 + 2087;(87 Z)yg(S, Z)

(S’ Z)yl(sa Z) © y3(8a Z)
0°F, 03

155 (5, 2)2(5,2)° + 30755 (5, )y 5,2)° © s, 2)

4

1

ol 31 4 _OF
W(s,z)yl(s,z) +5&c(s,z)y4(s,z)>ds.

+5



2.5. Fourth order averaging of Theorem 2.1.6 61

So from (2.6) we have that
fO(Z) =0,
T
fl(Z) :/ Fl(t,Z)dt,
0

T
R = [ (Rt + G o) )

A = [ (P + G2

10%F,

+ 5 (92 + 55 () )

i) = [ (i) + S,

19%F.

+ 550 (b2 (t2) +
10%F,
2 92
10°Fy 5 10F

+ 5 I + g (e )

3o (12 (t,2)

-5 (L 2)y1(t, 2) © ya(t, 2)dt

o) = [ (Bt + S,

10%Fy
X
1 9% F,
2 Ox2
103 F,
6 0a3
10%F,
6 Ox2
2
+ ;88121 (t, 2)ya(t, 2)% +
1 0*F
ﬂ Ozt

10F;3
(t, 2)y(t,2)* + 3 r

(t,2)y1(t, 2) © y2(t, 2)

2t 2)ya(t, 2)
+

3, L0Fy
(t,Z)yl(t7Z) +6 Or

(t, 2)y1(t, z) © ys(t, z

(t7 z)y?)(t’ Z)

_|_

L 2,2 © el 2)

(t, 2)y(t, 2)* + Z%(t 2)ya(t, z)) dt.

2.5 Fourth order averaging of Theorem 2.1.6

Now we assume that Fjy Z 0. First a Cauchy problem, or equivalently an integral
equation (see Remark 2.1.4), must be solved to compute the expressions y; (¢, z)
fori=1,2,..., k. We give the integral equations and its solutions for k = 1,2, 3, 4.
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Let n(t, z) be the function defined in 2.10 and let M(z) = (T, z). Hence,
from (2.7) and (2.6) we obtain the functions y; (¢, 2) and f;(2):

nit.) = [ (Filspls.2) + G200l ds

SO
t
n(t2) = 1) [ IODE (s, (s, 2))ds,
0
and
T
) = M) [ eI ()
0
Similarly, the functions y»(t, z) and fa(z) are given by:
K oF
nlt.2) = [ (2Pl s, 20) 4 25 s (s, D)
0
02 Fy ,  OF,
ol 5.2+ G0l D (o) )
SO
o) [ gmnis) on
yg(t,Z) =e" e M 2F2(S,(p(5,2))+2%($,(p(8,2))y1(872)
0
0?F, )
W(SW(S’Z))ZH(S:Z) ) ds,
and

1

T
) =M ) [0 (Faftote ) + G el e 2)

19°F,
2 Ox2

(1, olt, ) (, z>2) dt,

The functions ys(t, z) and f3(z) are given by

y3(tv Z) :/O <6F3(3’ QO(S’ Z)) + 6%(57 90(3’ Z))yl(SVZ)

0?Fy , O
+ 3@(8’ ©(s,2))y1(s,2)" + 3%(57 ©(s,2)) y2(s, 2)

0*F,
+ 3%20(5’ o(s,2)y1(s, z) © ya(s, 2)
0% F,

+ ox3

(5065, Dm (509 + G2 o006, (s 2) ) s,
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SO

t }72

nlt2) =) [0 (0F(s,o(5,2) + 052 (o .2
0

0?Fy ) oF,
35 (5,05, 2))y(5,2) + 3= (5,0(5,2)) va2(5, 2)
O*F,
* 3%20(57 @(s,2))y1(s,2) © ya(s, 2)
PR ,
al,go (Sa QD(S, Z))y1(5, Z)d) ds7

+

and

A =M [ e (Faftpte2) + G2 0ol e 2)

5 (bl D (12)2 + 5 5 (6ot 2) st 2)

2 Ox
19%F,
xr
10%F,
6 Ox3

(t, W(t7 z))yl (t7 z) ® y2(t7 Z)

( so(t,z»yl(t,z)?’) ds,

Finally, the functions y4(t, z) and f4(z) are given by

yalt,2) = / (24F4<s,so<s,z>> + 249 (4 (s, 2 (5, 2)

Ox
O?F. OF:
+ 128722(57 90(3’ Z))yl(sa Z)Z + 1272(& 90(87 Z))y2(57 Z)

ox
+ 12%(57 ©(8,2))y1(8,2) © ya(s, 2)
PR
ox3
+ 4%(3’ (s, 2))y1(s, 2) © ys(s, z)

62F0 9 83F0
+3 o2 (5,¢0(8,2))y2(s,2)"ds +6 928

O*Fy
Oxt

(52005 2))w (5, 2)° + 4252 (5, 0(s, 2))ya(s, 2)

4
+ ox

(Sa (p(s, Z))yl (5’ Z)2 © y2(57 Z)

(57 90(57 Z))yl(sa Z)4 + %(57 90(57 Z))y4(sa Z)) ds.

+ ox
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SO

t
F:
nlt,2) =9 [0 (24F (s, (5,20) + 245 5005, 5,2
0

0?Fy OF.
+12 “r2 (S 90( ))yl(sa Z)2 + 1272(53 @(Sa Z))yQ(Sv Z)
ox ox
82
#1250 (5,005, 2D (5,2) O (s, 2)
foaa 5 0f
+4W(5,@(5az))yl(svz) +4%(s,¢(s,z))y3(s,z)
0*F,
#4572 5,005, 25, 2) © (s, 2)

9% F, ) P F, )
t35.7 > (s, 0(5,2))ya(s, 2) ds + 65 (5,9(5,2))y1(5,2)” O p2(s, 2)

0*Fy
G el (s 2)' ) ds.

and

T
1) =M [ e (Fepte. ) + G el D)

43 TR et (2 + 3 52l 2l 2)

2 Oz
2T ottt 2) @ 2)
103F, 10F;

L gt (20" + & Lot 2) ()

6 Ox
192F,
6 o2 (t,(p(t,Z))yl(t,Z) ®y3(t72’)

162F0 183F0
gw(t,w(t,z))yz(t,z) ds + 5
1 84F

(tv W(t’ Z))yl (t’ Z)2 © yQ(tv Z)

+

2.6 Appendix: Basic results on the Brouwer degree

In this appendix we present the existence and uniqueness result from the degree
theory in finite dimensional spaces. We follow the Browder’s paper [12], where are
formalized the properties of the classical Brouwer degree. We also present some
results that we shall need for proving the main results of this paper.
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Theorem 2.6.1. Let X = R"™ =Y for a given positive integer n. For bounded open
subsets V' of X, consider continuous mappings f: V. — Y, and points yo in Y
such that yo does not lie in f(OV') (as usual OV denotes the boundary of V). Then
to each such triple (f,V,yo), there corresponds an integer d(f,V,yo) having the
following three properties.

(i) If d(f,V,y0) # 0, then yo € f(V). If fo is the identity map of X onto Y,
then for every bounded open set V' and yo € V, we have

d(foly» Viyo) = *1.

(i) (Additivity) If f: V — Y is a continuous map with V a bounded open set in
X, and V1 and Vs are a pair of disjoint open subsets of V' such that

yo & F(V\(V1UV2)),

then,
d(f07v7y0) = d(f07V1uyO) +d(anV17y0> .

(iii) (Invariance under homotopy) Let V' be a bounded open set in X, and consider
a continuous homotopy {f; : 0 <t < 1} of maps of V in to Y. Let {y; : 0 <
t < 1} be a continuous curve in'Y such that y; ¢ f:(0V) for any t € [0, 1].
Then d(ft, V,yt) is constant in t on [0,1].

Theorem 2.6.2. The degree function d(f,V,yo) is uniquely determined by the con-
ditions of Theorem 2.6.1.

For the proofs of Theorems 2.6.1 and 2.6.2 see [12].

Lemma 2.6.3. We consider the continuous functions f;: V = R", fori=0,1,---,k,
and f,g,7: V X [g9,e0] = R", given by

9(~€) = [il) +efol) + 2 f3() + -+ (),

f(',é‘) = g(~’5) + 6kr("5)'

Assume that g(z,e) # 0 for all z € OV and € € [—eq, e0]. If for |e| > 0 sufficiently
small dp (f(-,€), V,yo) is well defined, then

dp (f(+,€),V,v0) = dp (9(-,€),V,%0) -

For a proof of Proposition 2.6.3 see Lemma 2.1 in [15].
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Chapter 3

Three applications of Theorem
2.1.5

The first application studies the periodic solutions of the Hénon—Heiles Hamilto-
nian using the averaging theory of second order. The other two examples analyze
the limit cycles of some classes of polynomial differential systems in the plane.
These last two applications use the averaging theory of third orden. More pre-
cisely these three applications are based in Theorem 2.1.5.

In the next section we summarize the results of Theorem 2.1.5 up to third
order, which are the ones that we shall use in the applications here considered.

3.1 The averaging theory of first, second and third or-
der

As far as we know the averaging theory of third order for studying specifically
periodic orbits was developed by first time in [15]. Now we summarize it here from
Theorem 2.1.5 which is given at any order.

Consider the differential system
i(t) = eFy(t,x) + 2 Fy(t, ) + 3 F3(t, x) + e*R(t, x, €), (3.1)

where Fy, Fy, F3: RxD — R, R: Rx D x (—¢f,e5) — R are continuous functions,
T—periodic in the first variable, and D is an open subset of R™. Assume that the
following hypotheses (i) and (ii) hold.

(l) Fl(t,') € CQ(D), Fg(t,') € Cl(D) for all t € R, Fl, Fy, F3, R, D?vFl,DmFQ
are locally Lipschitz with respect to x, and R is twice differentiable with
respect to €.
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We define Fio: D — R for k =1,2,3 as

1 T
Fio(2) :T/ Fy(s, z)ds,
0

T
Fyo(2) :% /0 [D.F1(s,z) - y1(s,2) + Fa(s, z)] ds,

1 O*F 10F
Fu(9) =7 [ [0 52 6 2m (e 2) + 5 55 m(s.2)

2 2
OF:

+ a—;(s, 2)(y1(s, 2)) + F5(s, z)} ds,

where

yl(s,z):/ Fi(t, z)dt,
0

ya(s,2) = /0 ) [a;;l(t,z) /0 R z)dr+F2(t,z)} dt.

(ii) For V. C D an open and bounded set and for each ¢ € (—¢es,e5) \ {0},
there exists a. € V such that Fig(a.) + eFyo(as) + €2F3p(a.) = 0 and
dp(Fio + eFo0 4 €% F30,V, ac) # 0.

Then for |e| > 0 sufficiently small there exists a T—periodic solution ¢(+,¢) of the
system such that ©(0,¢) = a..

The expression dg(Fig + eFy + £2F30,V,a.) # 0 means that the Brouwer
degree of the function Fig + eFpy + €2F39: V. — R™ at the fixed point a. is not
zero. A sufficient condition for the inequality to be true is that the Jacobian of
the function Fig + eFho + €2 F3 at a. is not zero.

If Fip is not identically zero, then the zeros of Fio + cFyo + c2F3g are mainly
the zeros of Iy for € sufficiently small. In this case the previous result provides
the averaging theory of first order.

If Fp is identically zero and Fs5 is not identically zero, then the zeros of
Fio + eFyy 4 €2 F3 are mainly the zeros of Fy for ¢ sufficiently small. In this case
the previous result provides the averaging theory of second order.

If Fig and F5 are identically zero and Fj3q is not identically zero, then the
zeros of Fig 4 eFyg + €2F3q are mainly the zeros of Fyg for ¢ sufficiently small. In
this case the previous result provides the averaging theory of third order.
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3.2 The Hénon—Heiles Hamiltonian

The results presented in this section have been proved by Jiménez and Llibre in
[56].

The classical Hénon—Heiles potential consist of a two dimensional harmonic
potential plus two cubic terms. It was introduced in 1964, as a model for studying
the existence of a third integral of motion of a star in an rotating meridian plane
of a galaxy in the neighborhood of a circular orbit [43]. The classical Hénon—Heiles
potential has been generalized by introducing two parameters to each cubic term

1 1
502 +py + 2% +y%) + Bay’ + S Ar”, (3:2)

such that B # 0, with z,y,pz,py € R. Then the classical Hénon-Heiles Hamil-
tonian system corresponds to A = —1, B = 1. The Hamiltonian system is given
by

T = P,
Pe = —z — (A2 + By?),

Y = Dy,
Dy = —Yy — 2Bxy.

(3.3)

As usual the dot denotes derivative with respect to the independent variable t € R,
the time. We name (3.3) the Hénon-Heiles Hamiltonian systems with two param-
eters, or simply the Hénon—Heiles systems.

The periodic orbits in the Hénon—Heiles potential have been numerically
studied and classified by Churchil et. al. [21], Davies et. al. [27] and others [11, 33,
82]. Maciejewski et. al. [76] did an analytical study of a more general Hénon—Heiles
Hamiltonians including a third cubic term of the form C 22y, which can be removed
by a proper rotation, and two more parameters associated with the quadratic
part of the potential. They proved the existence of connected branches of non—
stationary periodic orbits in the neighborhood of a given degenerate stationary
point.

Theorem 3.2.1. At every positive energy level the Hénon—Heiles Hamiltonian sys-
tem (3.3) has at least

(a) one periodic orbit if (2B —5A)(2B — A) <0 (see Figure 3.1),

(b) two periodic orbits if A+ B =0 and A # 0 (this case contains the classical
Hénon-Heiles system), and

(c) three periodic orbits if B(2B —5A) > 0 and A+ B # 0 (see Figure 3.2).

Proof. For proving this theorem we shall apply Theorem 2.1.5 to the Hamiltonian
system (3.3). Generically the periodic orbits of a Hamiltonian system with more
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B

Figure 3.1: Open region (2B — 54)(2B — A) < 0 in the parameter space (4, B)
where there is at least one periodic orbit with multipliers different from 1.

B

Figure 3.2: Open region B(2B — 5A) > 0 and A + B # 0 in the parameter space
(A, B) where there are at least three periodic orbits with multipliers different from
1. When A+ B = 0, there are at least two periodic orbits with multipliers different
from 1.

than one degree of freedom are on cylinders fulfilled of periodic orbits. Therefore
we cannot apply directly Theorem 2.1.5 to a Hamiltonian system, since the Ja-
cobian of the function f at the fixed point a will be always zero. Then we must
apply Theorem 2.1.5 to every Hamiltonian fixed level where the periodic orbits
generically are isolated.

On the other hand in order to apply Theorem 2.1.5 we need a small parameter
€. So in the Hamiltonian system (3.3) we change the variables (z,y,ps,py) to
(X,Y,px,py) where ¢ = ¢X, y = €Y, p, = epx and p, = epy. In the new
variables, system (3.3) becomes

X:an

px = —X —e(AX? + BY?),
7 p (3.4)
= Py,

py = —Y — 2:BXY.
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This system again is Hamiltonian with Hamiltonian
1 1
SPX Py + X4V e (BXY2 - 3AX3> . (3.5)

As the change of variables is only a scale transformation, for all £ different from
zero, the original and the transformed systems (3.3) and (3.4) have essentially the
same phase portrait, and additionally system (3.4) for ¢ sufficiently small is close
to an integrable one

First we change the Hamiltonian (3.5) and the equations of motion (3.4) to
polar coordinates for € = 0, which is an harmonic oscillator. Thus we have

X =rcosl, px =rsinf, Y =pcos(d+a), py = psin(d+ ).

Recall that this is a change of variables when r > 0 and p > 0. Moreover doing
this change of variables appear in the system the angular variables 6 and «. Later
on the variable 6 will be used for obtaining the periodicity necessary for applying
the averaging theory.

The fixed value of the energy in polar coordinates is

1 1
h= §(r2 +p°) +e¢ <3Ar3 cos® 0 4+ Brp? cos 0 cos? (0 + a)) , (3.6)

and the equations of motion are given by
7= —¢esind (Ar2 cos? 0 + B p® cos® (0 + @),
2
f=—-1—c¢ccosb (Arc052 0+ B cos?(0 + a)) ,
T

p = —eBrpcosfsin(2(0 + «)),
cos

d=¢ (Ar?cos® 0 + B(p* — 2r®) cos®(0 + @) .

However the derivatives of the left hand side of these equations are with respect
to the time variable ¢, which is not periodic. We change to the € variable as the
independent one, and we denote by a prime the derivative with respect to 6.
The angular variable o cannot be used as the independent variable since the new
differential system would not have the form (2.1) for applying Theorem 2.1.5. The
system (3.7) goes over to

ersin® (Ar? cos® § + Bp? cos®(0 + «))
r+e(Ar2cos® 6 + Bp?cosf cos?(0 + a))’
, e Br?pcosfsin(2(0 + «))
F=y e(Ar?cos® 0 + Bp? cosf cos?(0 + )’
ecost (B (p* — 2r?) cos?(0 + o) + Ar? cos? §)
7+ e(Bp? cosf cos?(0 + o) + Ar? cos3 0)

/

A=
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Of course this system has now only three equations because we do not need the
0 equation. If we write the previous system as a Taylor series in powers of ¢, we
have

7 = esinf(Ar? cos® 0 + Bp* cos*(0 + a))

< s1;1r29 (Ar?(1+ cos(20)) + Bp?(1 + cos(2(0 + a)))” + O(e?),

p' =eBrpcosfsin(2(0 + «))
—e%2Bpcos? 0sin(2(0 + a))(Ar? cos® 6 4+ Bp? cos?(2(0 + a))) + O(e%), (3.8)

cos

A= —¢

(Ar? cos® § + B(p* — 2r%) cos* (0 + a))

5 cos” 0 20

+e (Ar? cos? 0 + Bp? cos?(0 + «))

(Ar? cos® 0 + B(p* — 2r?) cos? (0 + ) + O(£%).

Now system (3.8) is 2w-periodic in the variable 6. In order to apply Theorem
2.1.5 we must fix the value of the first integral at h > 0, and by solving equation
(3.6) for p we obtain

B h—1r2/2—cAr3cos30/3 (3.9)
P= 1/2+eBrcosfcos?(0 +a) '

Then substituting p in equations (3.8), we obtain the two differential equations
7 = esinf(Ar? cos? 6 + B(2h — 1) cos? (0 + «))

_ o(sin2f 2
“( 8

(Ar?(1 4 cos(20)) + B (2h — 1) (1 + cos(2(0 + ))) )

r

2
+ §AB 73 sin 0 cos® 0 cos? (6 + )

+ 2B?hrsin(20) cos* (0 4 o) — B?r®sin(26) cos* (0 + a) ) +0(®), (3.10)

B
o =¢ <r(3r2 — 2h) cos 6 cos* (0 + a) — Ar cos® 0)
£2(A%r? cos® 0 + AB(Gh — 5r%) cos® 0 cos? (0 + «)
32
+ —z(r —2h)? cos? O cos* (0 + o) ) + O(?).
,

Clearly system (3.10) satisfies the assumptions of Theorem 2.1.5, and it has the
form (21) with F1 = (Fll,Flg) and Fg = (F217F22), where

Fiy =sin0(Ar? cos® 0 + B(2h — r?) cos®(0 + ),

Fip = §(37‘2 — 2h) cos 0 cos? (0 + a) — Arcos® 0,
T
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and

sin 260
8r

2
- §AB 73 sin 0 cos® 6 cos? (0 + a) — 2B*hr sin(26) cos* (6 + «)

Fy = —

(Ar2(1 4 cos(26)) + B (2h — r?) (1 + cos(2(6 + a))) )°

+ B%r35in(26) cos? (0 + a),

2
Foy = A*r? cos® 6 + gAB(6h — 5r%) cos® 0 cos? (0 + )
BQ
+ ﬁ(r2 —2h)? cos? B cos* (0 + a).

As r = 0 the functions F; and F5 are analytical. Furthermore they are 2m-periodic
in the variable 6, the independent variable of system (3.10). However the averaging
theory of first order does not apply because the average functions of F; and F5 in
the period vanish

fl(T,A) :/0 71'(,1'7‘117}‘_'12) d9 = (070) .

As the function f; of Theorem 2.1.5 is zero, we procede to calculate the
function fy by applying the second order averaging theory. We have that fo is
defined by

27
hmmZA Dy Ay (0,7, A).1 (0,7, A) + Fo(0, 7, A)] dO), (3.11)

where
0
yl(ﬁ,r,A):/ Fi(t,r, A)dt.
0

The two components of the vector y; are

6
Y11 = / Fll(t,’/‘,.A) dt
0

= % (B(2h—r2) sin2(9/2) (cos(2(9 +a))+2 cos(2a+9)—|—3) —Ar2(0053 0 — 1)) ,

and

0
912:/ Fia(t,r, A)dt
0

Ar .
= —5(9 sin 6 + sin 36)

B
+ %(3 sin(2a + 6) + sin(2a + 30) — 4 sin(2a) + 6sin b).

B
- —ZL(S sin(2a + 0)+sin(2a 4 30) — 4 sin 2« + 6sin 6)
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For the Jacobian matrix

0F11  0Fn1

DT.AFl (05 T, A) = or 04 ’
0F12 OFis
or 0A

we obtain

(247 cos? @ — 2Brcos?(0 + o)) sinf  —2B(2h — r?) cos(f + «) sin O sin(0 + «)

—Acos?® 0 + 6B cos?(0 + a) cos 0 —E(?ﬂ"2 —2h) cosfcos(f + ) sin(f + a) |
r

B
2 (3r% — 2h) cos®(6 + a) cos §

We can now calculate from Theorem 2.1.5 the function (3.11) and we obtain

fo = ( - %(GB — A)(r? — 2h) sin 24,
1

= (r2(547 = 12AB — 3B%) — 2B(A - 6B)(h — 1?) cos(2a) + 2Bh(6A - B)) ) .

We have to find the zeros (r*, A*) of f2(r,.A), and to check that the Jacobian
determinant

|Dr afa(r®, A%)| # 0. (3.12)

Solving the equation fa(r,.A) = 0 we obtain five solutions (r*, A*) with »* > 0,
namely

B(A - 6B) 2Bh [ 14Bh
2h, £ — /2 |.
(fh’ arcseC4Bz+6AB—5A2)’< 3B—A’O>’< 9B — 54’ ”/>

(3.13)

The first two solutions are not good, because for them we get from (3.9)

that p = 0 when ¢ = 0, and p must be positive. The third solution exists if

B(3B — A) > 0. The last two solutions exist if B(9B — 5A) > 0. The Jacobian
(3.12) of the third solution is

_ 5B*h*(A - 6B)(A - 2B)(A+ B)

3.14
9(A—-3B) ’ ( )
and for the last two solutions the Jacobian coincides and is equal to
7TB%h?(A - 6B)(5A —2B)(A—- B
(4 - 6B)( J(A-B) 5.15)

9(5A — 9B)
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Summarizing, from Theorem 2.1.5 the third solution of f2(r, A) = 0 provides
a periodic orbit of system (3.10) (and consequently of the Hamiltonian system (3.4)
on the Hamiltonian level h > 0) if B(3B— A) > 0, (A—6B)(A—2B)(A+ B) # 0,
and from (3.9) we get p = \/2(A — 2B)h/(A — 3B), we also need (2B — A)(3B —
A) > 0. The conditions B(3B—A) > 0 and (2B — A)(3B— A) > 0 can be reduced
to B(2B — A) > 0, where (A — 6B)(A — 2B) # 0 is included, but A+ B # 0 is
not. Then the third solution provides a periodic orbit when B(2B — A) > 0 and
A+ B #0.

In a similar way the last two solutions of f2(r,.A) = 0 provide two periodic
orbits of system (3.10) if B(9B—5A4) > 0, (A—6B)(5A—2B)(A—B) # 0, and from
(3.9) we get p = \/2(5A — 2B)h/(5A — 9B), we also need (2B—5A)(9B—5A) > 0.
The conditions B(9B — 5A4) > 0 and (2B — 5A4)(9B — 5A4) > 0 can be reduced
to B(2B — 5A4) > 0, where the condition (A — 6B)(5A — 2B)(A — B) # 0 is
included. Then the fourth and fifth solutions provide two periodic orbits whenever
B(2B —5A) > 0.

There is one periodic orbit if the third solution exists, and the last two
solutions do not. There are two periodic orbits if the two last solutions exist, and
not the third one, i.e. when A + B = 0. Finally there are three periodic orbits if
the third, fourth and fifth solutions exist. Now the statements of Theorem 2.1.5
follow easily.

The regions in the parameter space where periodic orbits exist are summa-
rized in Figures 3.1 and 3.2. ]

3.3 Limit cycles of polynomial differential systems

The results presented in this section come from Llibre and Swirszcz [65].

After the definition of limit cycle due to Poincaré [83], the statement of the
16-th Hilbert’s problem [44], the discover that the limit cycles are important in
the nature by Liénard [57],... the study of the limit cycles of the planar differen-
tial systems has been one of the main problems of the qualitative theory of the
differential equations.

One of the best ways of producing limit cycles is by perturbing the periodic
orbits of a center. This has been studied intensively perturbing the periodic orbits
of the centers of the quadratic polynomial differential systems see the book of
Christopher and Li [19], and the references quoted there.

It is well known that if a quadratic polynomial differential system has a limit
cycles this must surround a focus. Up to know the maximum number of known
limit cycles surrounding a focus of a quadratic polynomial differential system is
3, which coincides with the maximum number of small limit cycles which can
bifurcate by Hopf from a singular point of a quadratic polynomial differential
system, see Bautin [4]. But as far as we know up to now there are few quadratic
centers for which it is proved that the perturbation of their periodic orbits inside
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the class of all quadratic polynomial differential systems can produce 3 limit cycles.
These are the center whose exterior boundary is formed by three invariant straight
lines (see Zotadek [97]), three different families of reversible quadratic centers (see
Swirszez [92]), and the center & = —y(1+z), § = 2(1 4+ z) (see Buicii, Gasull and
Yang [3]). The study of the perturbation of this last center has been made through
the Melnikov function of third order computed using the algorithm developed by
Francoise [37] and Iliev [46]. Here we can provide a new and shorter proof of this
second result by using the averaging theory, see Theorem 3.3.1.

We study the limit cycles of the following two differential systems: the
quadratic systems

i =—y(1 + )+ ez + Az? + Bay + Cy?),

_ _ _ 3.16
y= xz(1+z)+e(\y+ Dz?+ Exy + Fy?), (3.16)

such that for € = 0 have a straight line consisting of singular points, and the cubic
systems of the form

3 3
i=—y(l—2®—y?) + 3 + Z e’ Z aiysxiy‘g*i,
s=1 1=0
o (3.17)
g= x(l—2®—y?) + 3Ny + Z e’ Z bisxiy®
s=1 =0

such that for e = 0 have a unit circle consisting of singular points. Note that the
perturbation of this cubic systems is inside the class of all polynomial differential
system with linear and cubic homogeneous nonlinearities.

We study for € # 0 sufficiently small the number of limit cycles of systems
(3.16) and (3.17) bifurcating from the periodic orbits of the centres of (3.16) and
(3.17) for e = 0, respectively. Our main results are the following.

Theorem 3.3.1. For convenient A\, A, B, C, D, E, F system (3.16) has 3 limit
cycles bifurcating from the periodic orbits of the center for e = 0.

Theorem 3.3.2. The following statements hold for system (3.17).

(a) Using the averaging theory of third order for € # 0 sufficiently small we can
obtain at most 5 limit cycles of system (3.17) bifurcating from the periodic
orbits of the center located at the origin of system (3.17) with € = 0.

(b) For convenient A, a; s, bis, i =0,1,2,3, s = 1,2,3 system (3.17) has 0, 1,
2, 3, 4 or 5 limit cycles bifurcating from the periodic orbits of the center for
e=0.

It is known that systems of the form & = —y + P3(x,y), ¥y = © + Qs(x,y),
with P3 and 3 homogeneous polynomials of degree 3 can have 5 small limit cycles
bifurcating by Hopf from the origin, see [89, 70].

We are going to use the following result due to Cherkas [18].
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Lemma 3.3.3. The differential equation

dr M4 a(p)rk

dp — 1+b(p)rk-t

after the change of variable

becomes the Abel equation

ZTZ — (k — 1)b(e)(Ab(p) — a(e))

+[(k = 1)(alp) = 2X0(p)) = V' (9)] p* + (k — 1)Ap,

7

Combining Lemma 3.3.3 with polar coordinates transformation we immedi-

ately get the next result.

Corollary 3.3.4. Let P(x,y) and Q(z,y) be homogenous polynomials of degree n.

Then the differential system

T =—-y+ X+ P,(z,y)
J=2+y+Qu(z,y)

can be transformed into the Abel equation

;LZ — (k= 1)B(¢)(AB(¢) — A(p))p°

+1(k = 1)(A(p) = 2AB(p)) = B'(9)] p* + (k = 1)Ap.

where

A(p) = cos pP,,(cos p, sin @) + sin @y, (sin ¢, cos @)

and

B(p) = cos ¢Qy,(cos @, sin p) — sin ¢ P, (sin ¢, cos ¢).

Proof. System (3.18) expressed in polar coordinates becomes

7= Ar+ A(p)r",
y=1+B(p)r".

Dividing 7 by ¢ and using Lemma 3.3.3 the proof of the corollary follows.

(3.18)

O
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Proof of Theorem 3.3.1. From Corollary 3.3.4 applied to system (3.16) it follows
that finding limit cycles of (3.16) is equivalent to finding periodic solutions of

1 L
%:(sin@)pZ—&—e —Ecosw((3A+C+E—4/\)COS§0
—C — E)cos3p

+ D+ F+ (B+ D — F)cos2p)sing)p® (3.19)
+C —2)\)cosp+ (A—C — E)cos3p
+

F)sinp + (B + D — F)sin3p)p® 4+ Ap|.

We are going to apply Theorem 2.1.5 to system (3.19). We first solve the
differential equation
d
£ = (sinp)p?,
with initial condition p(0) = R/(1 + R) and we get p(p, R) = R/(1 + Rcosy).
Thus Mg(p) in (1.35) will be a solution of a differential equation Mp(p) =

(2Rsing)/(1 + Rcosp), namely, Mg(p) = 1+ 2In(l + R) — 2In(1 + rcosy).
Thus formula (1.35) yields

2
R
— A
i /0 < E(e, R)
—cos (R cos p + 8cos(2p) + 3R cos(3¢p)) R?

+A —
42(p, R)
B (2R sin 2 + 8sin 3¢ + 3R sin 4¢p) R?
8E(p, R)
S 2 P2
_ ~cos p(3R C(:S @ +4)sin” R (3.20)
E(p, R)
N Dcos2 o(3R 008 ¢ + 4) sin o R?
E(p, R)
_ ECOS @(Rcos ¢ + 8cos2p + 3R cos 3p — 4) R?
42(p, R)
(5R cos ¢ + 8 cos 2¢ + 3R cos 3¢) sin pR? )
= dep,
42(p, R)

+ F

where Z(¢, R) = (Rcos ¢ +1)*(2log(R+1) — 2log(Rcos p+1) +1). Now observe
that the terms in front of B, D and F are odd m-periodic functions of ¢, thus their
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integrals from 0 to 27 are equal to zero. Therefore

2m
R
= )\7
A= [ e
—cos (R cos p + 8cos(2p) + 3R cos(3¢p)) R?

+A —

42(p, R)
_cos p(3R cos p + 4) sin? g R? (3.21)
+C —

E(p, R)
_A\R2

n 708 w(Rcosp+ 80(:8290—1— 3Rcos3p —4)R > dy

4E(p, R)
= Mi(R) + Af2(R) + Cf3(R) — Efs(R).

We claim that the four functions fy, f2, f3 and f4 are linearly independent.
Now we prove the claim. By straightforward calculation we obtain the following
Taylor expansions:

1
fi(R) = 5" (2615R* — 800R® + 312R* — 96 + 48) + O(R"),

1
f2(R) = ﬂﬂﬁ (313R* — 60, R — 18) + O(R°),

1
f3(R) = ﬂwRS (401R?* — 84R — 6) + O(R"),

fi(R) = fini" (43R* — 12R + 6) + O(R").

The determinant of the coefficient matrix of terms R?,..., R® is 7%/3 and the
claim follows.

A well-known classical result states that if a family n functions is linearly
independent, then there exists a linear combination of them with at least n — 1
zeroes. Thus Theorem 3.3.1 follows. ]

Proof of Theorem 3.3.2. First we prove statement (b). We shall use third order
averaging to show that the system

i=—y(l—2® —y?) + 3N
1
— ——(75Be + 108E + 19840)ex® + (j + 24)ex?y

1200
278 (81€ + 16480)c
304 _ 2 (26 (&1c + 1625U)e 2
+<4€ (A—4N\) +¢ <128 C)—f— 300 >wy

1
+ 55(2]’ + Ds)y?’7

(3.22)
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y= z(1—2"—y*) +°\y
3B> (81€ + 18080)5) )
_— X y

1
—(De — 2j)ex® 2c—-—
+5(Pe ‘7)”+(5< 128 300

1 .
— (j +40)exy® — 305 27E + 6560)cy?,
can have 0, 1, 2, 3, 4 or 5 limit cycles for an appropriate choice of the parameters
A, A, B,C,D and €. System (3.22) is clearly a special case of system (3.17), thus
once we show it, statement (b) will be proved.
Using Cherkas Transformation (Lemma 3.3.3) we transform system (3.22)

into the Abel equation

d

d—p =cF +e*F, + % F3, (3.23)

¥

where

=7 (5?;)(35 + 640) cos(4p) + 8(sin(2¢) — 2sin(4yp)) — ? cos(2cp)>

1
+ p? < - %(35 + 640) cos(4¢) — 8sin(2¢p) + 48 sin(4yp) + §6 Cos(2<p)>,

3

_p :
Fy = i [25(6400j + 5B + 432€ + 117760) cos(2¢)

— 75 cos(4¢) (72(j + 8)E + 15360(j + 8) — 258)
— 600 sin(2¢) (4005 + 25D + 12€ + 7360)

+ 480000(; + 8) sin(4¢) — 7200(€ + 80) sin(6¢)
+ 3(9€ + 1120)(9€ + 2720) sin(8¢)

—400(27& + 7360) cos(6¢) + 14400(3& + 640) cos(&p)]

+p? ((5’258 - c) cos(2p) — 1= Bcos(dp) + 3Dsin() cos(cp)),

F3 = —2)\p
+ p? ((A —4)X)(2cos(2¢) — 3cos(4p)) + A)

11 4D
+p3{ACOS4g@—A—6i3+QC—3+2)\

1
76800
— 96 cos(2¢)(25(2) — 7)B + 3200C — 6D(3€ + 640))

— 400 cos(4¢) (3(4 + 21)B + 128(3C + 2D + 6)))

+ sin(6p) (1152(3CE + 640C — 400D) — B(81€ + 23680))
— 96cos(6¢) (1758 — 640(5C + 18D) — 54DE)

+ [sin(2g@)(384(100(j + 4)D — 3C(3E + 640)) + B(513€ + 103040))
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+ 800 sin(4¢) (118 + 64(3D — 2C)) + 144B(3€ + 640) sin(8¢p)

+ 384008 cos(&p)] }

By straightforward calculation we verify that Fig = 0,

3

y(p,p) = ;m sin ((27€ + 4160) cos ¢ + 3(3(3& + 640) cos 3¢ — 800 sin 3¢))

P

600
and F20 = 0. Next

(25in(2¢)(27(3€ + 640) cos 2¢—800(9sin 2¢ + 1))+4800sin” ¢),

1
Ya(p, ) = —=p*(9B cos o + 12B cos(3p) 4 128C cos ¢ — 192D sin ) sin

T 128
8§ B 95 128\ .
3 —_— [ — R
+ {( 3 + 32 25 + R ) sin(2¢)
1
- %(4003' + 25D — 24€ + 1280) sin® ¢
9 8 48
— %jc‘f sin(4p) + 5(9] 4 494) sin® (2¢) — 3] sin(4¢p)
1 12 sin?(4 4 21
+ o7 Bsin(de) + 85+30(*”) — =Esin’(3p) + 2—565sm2(4¢)
63 3 9
- %5 sin(4¢) — 55 sin(6¢) + 35 sin(8¢p) — 64sin?(3¢p)

4 1472
+ —38508 sin?(4¢p) — —7?2 sin(4¢) — !

sin(6¢p) + 384 sin(8¢p)

24362 sin?(4¢) 1 29
Al T (21€ + 2480) sin? p + —Esin?(3
16000 o5 (21E + 2480) sin o + o5& sin”(30)

162, ., 1 . 27 .
— %5 sin®(4p) + %( 89& + 9920) sin(2¢p) + %5 sin(4y)

87 . . 27 . 1528
+ mé‘ sin(6p) — %5 sin(8p) —
2856 .

3056 10672
2 oYY @G
sin” (4¢) + 15 sin(4p) + 5

5 ((27€ + 4160) cos p+3(3(3€ + 640) cos(3¢) —800sin(3¢p)))? sin® ¢
e 60000

464
sin?(2¢) + % sin?(3¢)

sin(6p) — 288sin(8¢p)

and

2D
Fgo(p) = —2)\p+Ap2 - (A— B— ? — 2A> p3

918 ™D 4EN 9\ 5 s
(128 C+3 5>p+<D 5>p+6p.
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The coefficients of F5q are linearly independent (linear) functions of A\, A, B, C,
D and €. Therefore for any p1, p2, p3, P4, P5 € R there exist A\, A, B, C, D, £ such
that F30(p;) = 0 for i = 1,2,3,4,5. This ends the proof of statement (b).

Now we sketch the proof of statement (a). If instead of doing the computa-
tions of the proof of statement (b) for system (3.22) we did them for the general
system (3.17) we would obtain a function Fs¢(p) which again is a polynomial of
degree 6 in p without independent term. Thus the averaging theory of third order
can only produce for e # 0 sufficiently small at most 5 limit cycles of system (3.17)
bifurcating from the periodic orbits at the origin of system (3.17) withe =0. O

3.4 The generalized polynomial differential Liénard
equation

The results of this section have been prove by Llibre, Mereu and Teixeira in [60].

The second part of the Hilbert’s problem is related with the least upper
bound on the number of limit cycles of polynomial vector fields having a fixed
degree. The generalized polynomial Liénard differential equations

Z+ f(z)t 4+ g(z) =0, (3.24)

was introduced in [59]. Here the dot denotes differentiation with respect to the
time ¢, and f(x) and g(z) are polynomials in the variable = of degrees n and
m respectively. For this subclass of polynomial vector fields we have a simplified
version of Hilbert’s problem, see [58] and [88].

In 1977 Lins, de Melo and Pugh [58] studied the classical polynomial Liénard
differential equations (3.24) obtained when g(xz) = z and stated the following
conjecture: if f(x) has degree n > 1 and g(x) = x, then (3.24) has at most
[n/2] limit cycles. They also proved the conjecture for n = 1, 2. The conjecture for
n € {3,4,5} is still open. For n > 5 this conjecture is not true as it has been proved
recently by Dumortier, Panazzolo and Roussarie in [31], and De Maesschalck and
F. Dumortier [26]. Recently the conjecture has been proved for n = 3, see Chengzhi
and Llibre [69]. So at this moment only remains to know if the conjecture holds
or not for n = 4.

We note that a classical polynomial Liénard differential equation has a unique
singular point. However it is possible for generalized polynomial Liénard differen-
tial equations to have more than one singular point.

Many of the results on the limit cycles of polynomial differential systems have
been obtained by considering limit cycles which bifurcate from a single degenerate
singular point, that are so called small amplitud limit cycles, see [68]. We denote by
H (m,n) the maximum number of small amplitude limit cycles for systems of the
form (3.24). The values of H(m,n) give a lower bound for the maximum number

H(m,n) (i.e. the Hilbert number) of limit cycles that the differential equation
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(3.24) with m and n fixed can have. It is unknown the finitude of H(m,n) for
every positive integers m and n. For more information about the Hilbert’s 16th
problem and related topics see [48] and [56].

Now we shall describe briefly the main results about the limit cicles on
Liénard differential systems.

(i) In 1928 Liénard [59] proved if m = 1 and F(z) = [; f(s)ds is a continuous
odd function, which has a unique root at x = a and is monotone increasing
for x > a, then equation (3.24) has a unique limit cycle

(i) In 1973 Rychkov [85] proved that if m = 1 and F(z) = [ f(s)ds is an odd
polynomial of degree five, then equation (3.24) has at most two limit cycles.

(iii) In 1977 Lins, de Melo and Pugh [58] proved that H(1,1) = 0 and H(1,2) = 1.
(iv) In 1998 Coppel [25] proved that H(2,1) = 1.

(v) Dumortier, Li and Rousseau in [32] and [29] proved that H(3,1) =

(vi) In 1997 Dumortier and Chengzhi [30] proved that H(2,2) = 1.

Up to now and as far as we know only for these four cases ((iii)-(vi)) marked
with asterisks in Table 3.1 the Hilbert numbers H(m,n) are determined.

Blows, Lloyd and Lynch, [6], [69] and [72] have used inductive arguments in
order to prove the following results.

(I) If g is odd then H(m,n) = [n/2].
(IT) If f is even then H(m,n) = n, whatever g is.
(IIT) If f is odd then H(m,2n+ 1) = [(m —2)/2] + n.
(IV) If g(x) = = + ge(x), where g, is even then H(2m,2) = m.

Christopher and Lynch [20], [73], [74], [75] have developed a new algebraic
method for determining the Liapunov quantities of system (3.24) and proved the
following:

(V) ff(m 2) = [(2m +1)/3].
(VD) H(2,n) =[(2n+1)/3].
(VIT) H(m,3) = 2[(3m +2)/8] for all 1 < m < 50.
(VIIT) H(3,n) = 2[(3n + 2)/8] for all 1 < m < 50.
(IX) The values of Table 3.1 for H(4,k) = H(k,4), k = 6,7,8,9 and H(5,6) =
H(6,5).
~ In 1998 Gasull and Torregrosa [38] obtained upper bounds for H (7,6),
H(6,7), H(7,7) and H (4, 20).
In 2006 the values of Table 3.1 for H(m,n) = H(n,m), for n = 4, m =

10,11,12,13; n =5, m = 6,7,8,9; n = 6, m = 5,6 were given by Yu and Han in
[96].
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Table 3.1: The values of H(m,n) or H(m,n) for the Liénard systems in function
of the degrees m and n.

112345 (6[7]8|9]10(11]12]13 48 1 49 | 50
1 Of(1*| 1|2 |21(3[3|4|4]|5|5|6]6 24124 | —
2 1*|1%)1 2|13 [3[4|5|5 6|7 |7|8]9 32133 | —
3 1122|414 |6[{6]6 |8 |8 |8 |10[10|...]|36|38]38

10 5| 7| 8|10
11 5] 7|8 |11
12 6 | 8 |10 | 12

131 6 | 9 |10|13

20|10 | 13| 14|17

48 || 24 | 32 | 36

4911 24 | 33 | 38

500 4|4 |38
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By using the averaging theory we shall study in this work the maximum
number of limit cycles H(m,n) which can bifurcate from the periodic orbits of
a linear center perturbed inside the class of all generalized polynomial Liénard
differential equations of degrees m and n as follows:

T =y,

j=—a— 3 (fE )y + gh (@),

k>1

(3.25)

where for every k the polynomials g (x) and f¥(z) have degree m and n respec-
tively, and € is a small parameter, i.e. the maximal number of medium amplitude
limit cycles which can bifurcate from the periodic orbits of the linear center & = y,
y = —u, perturbed as in (3.25).

In fact we mainly shall compute lower estimations of H (m,n). More precisely
we compute the maximum number of limit cycles Hy,(m,n) which bifurcate from
the periodic orbits of the linear center & =y, y = —x, using the averaging theory
of order k, for k = 1,2,3. Of course Hy(m,n) < H(m,n) < H(m,n). Note that
up to now there were no lowers estimations for H(m,n) when

(a) m=4 and n > 13, or m > 20 and n = 4,

(by m=5andn>9,orm>9and n=>5,
(c) m=6andn>7, orm>7andn=6,
(d) m,n>T1.

After our results we will have lowers estimations of H (m,n) for all m,n > 1.
From these estimations we obtain that Hy(m,n) < H(m,n) for k = 1,2, 3 for the
values which H(m,n) is known.

Theorem 3.4.1. If for every k = 1,2,3, the polynomials f¥(z) and g% () have
degree n and m respectively, with m,n > 1, then for |e| sufficiently small, the
mazimum number of medium limit cycles of the polynomial Liénard differential
systems (3.25) bifurcating from the periodic orbits of the linear center & = vy,
y = —x, using the averaging theory

(a) of first order is Hy(m,n) = {g}}

(b) of second order is Ha(m,n) = rnax{ [”; 1] + 3], 5] } and

n+m-—1
—5 |

From Theorem 3.4.1 follows immediately Table 2.

(¢) of third order is Hs(m,n) = [
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Table 3.2: Values of ﬁg(m,n). The numbers written in the style 6 coincide with
the ones of Table 1. The numbers written in the style 6 are smaller than the
corresponding of Table 1. The numbers written in the style 6 are unknown in
Table 1.

n

1|23 |4 |5|6|7|8|9]10[11]12]13 48 | 49 | 50
1{fofl1]|1]|2|2|3[3|4|4|5|5]|6]|6 24|24 | >
2 1122|3384 4|5|5|6|6]7 24| 25| —
3122|884 4|5|5|6|6|7|7| |22
a4 \2le2|s|s|44|5|5]|6|6| 7|78 - |25[2]—
502138445 5|6|6|7|7]|8]8 26 | 26 | —
6 3134 |4|5|5|6|6|7|7|8|8]9 26 | 27 | >
T34 4|5|5|6|6|7|7|8|8|9]9 27 | 27 | >
m|8 | 4| 4|5|5|6|6|7|7|8|8|9]9] 10 27 | 28 | —
9 |l4a|5|5|6|6|7|7|8|8|9]|9]|10]10 28 | 28 | >
0|5|5|6|6|7|7[8|8|9|9|10[10[11|---|28|29]|—
156|677 7|8|8[9|9|10|10[11|11]---[29|29]—
120066778899 |10[10|11|11|12]---[29|30]—
13(6|7|7|8|8|9|9|10|10[12|11[12|12|---|30|30|—
20 10| 10| 11| 1712|1213 |13 14|14 |15 |15|16|--- |33 |34 | —
48 || 24| 24 | 25| 25|26 | 26|27 27|28 28|29 (29|30 |47 |48 | —
49 || 24 | 25| 25| 26|26 | 27|27 |28 |28 29|29 (30|30 - |48 |48 | >

L B R R N 7 I o A G B B A R N
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It seems that the numbers H (m,n) can be symmetric with respect m and
n. Some studies is this direction are made in [71]. We remark that in general
Hy(m,n) # Hg(n,m) for k = 1,2, but Hs(m,n) = Hz(n,m).

Proof of statement (a) of Theorem 3.4.1. We shall need the first order averaging
theory to prove statement (a) of Theorem 3.4.1.

In order to apply the first order averaging method we write system (3.25) with
k =1, in polar coordinates (r,0) where x = rcos, y = rsinf,r > 0. In this way
system (3.25) is written in the standard form for applying the averaging theory.

If we write f(x) = Zaixi and g(x) = Zbixi, then system (3.25) becomes
=0 i=0

=0

n m
= —c < E a;r" T cos? Osin? 6 + g b;r’ cos® 0 sin 9) ,
i=0

(3.26)

=0

n m
; € ; 4 i S
0=-1-— - (2% a;r cost T @ sin 6 + Z b;rt costtt 9) )
i=
Now taking 6 as the new independent variable system, (3.26) becomes

dr - T R - TR 2
d0—5<§azr cos’ 0 sin H—I—szr cos' fsind | + O(e?),

=0

and

1 /2 [ ) ) m S
Fio(r) = o /0 < E a;7" 1 cos® Osin? 0 + E b;r" cos' 8 sin 0) do.
i=0

=0

In order to calculate the exact expression of Fy we use the following formulas

2
/ cos? 1 9sin?0d0 =0, k=0,1,...
0
27
/ cos?¥ 0sin® 0d0 = ao, #0, k=0,1,...
0

2m
/ cos® fsinfdd =0, k=0,1,...
0

Hence
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Fio(r Z a;oqrtt (3.27)
Then the polynomial Fig(r) has at most [n/2] positive roots, and we can choose

the coeflicients a; with ¢ even in such a way that Fyo(r) has exactly [n/2] simple
positive roots. Hence statement (a) of Theorem 3.4.1 is proved. (|

Proof of statement (b) of Theorem 3.4.1. For proving statement (b) of Theorem
3.4.1 we shall use the second order averaging theory.

If we write fi(x Zalx fo(z Zc,x g1 (x Zb x* and go(z) =

Z d;z’, then system (3.25) with k& = 2 in polar coordinates (r,6), r > 0 becomes
=0

=—¢ (Z a;r" T cos? Hsin? 6 + Z b;r' cos® 0 sin 9) -
i=0

=0

n m
— g2 (Z c;r" 1 cos® Osin? 0 + Z d;r’ cos® 0 sin 9) ,

i=0 i=0

. £ . . s . .
g=—1—-2= i 41 1+10 iné bi 7 H—le _
. (Za r cos sin ¢ + Z 7 COS
2

n

i—0 i=0
5‘ n m

- — c;r T cos™ ! Osin 6 + E d;rtcos™ O | .
,

i=0

i=0
Taking 6 as the new independent variable system, (3.28) writes

d
dig = EF1(9, ’r) + €2F2(97T) + 0(83)7

(3.28)

S

where

n

Fi(0,r) = Z a;7" ! cos® O sin® 0 + Z b;rt cos’ @sin 0,

i=0 i=0
F(0,r) = (Z cir cos® sin” 6 + Z d;r* cos® 0 sin 6)
i=0 i=0

n m 2
— rsinfcosf (Z a;r’ cos’ fsin @ + Z bir ! cos! 9) .

i=0 i=0
Now we determine the corresponding function Fygy. For this we compute

n

d - o :
%Fl 0,r) = ;(z + 1)a;r’ cos’ fsin? 6 + ; ibsri ! cos® B sin 6,
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9
and / F1(¢,r)d¢ which is equal to
0

0,17”2 (0111 sin 6 + Q21 Sln(30)) +..
+ aprttt (all sin 0 + ag sin(30) + ... + Qs sin((I + 2)9)

+ aor (100 + azosin(20)) + . .. (3.29)

+ apr®t? (albﬁ + agsin(20) + ... + Q(bgay, sin(b + 2)0)
1
bo(1 —cos) + ...+ b,r™ (m—i—l(l — cos™ ™! 9)) ,
where [ is the greatest odd number less than or equal to mn, b is the greatest

even number less than or equal to n, and o;; are real constants exhibited during

the computation of foe cos’ ¢sin® ¢ d¢ for all i. We know from (3.27) that Fyo is
identically zero if and only if a; = 0 for all ¢ even. Moreover

2m
/ cos' O sin® 0df = 0, 1=0,1,...
0
2 )
/ cos’ sin® A sin((2k + 1)0)df = 0, ik=0,1,...
0
27 )
/ cos? 1 9 sin? 0do = 0, 1=0,1,...
0
27 )
/ cos? @sin? 0dh = Ag; # 0, 1=0,1,...
0
2m )
/ cos' Osin df = 0, i=0,1,...
0
27 )
/ cos? fsin Osin((2k + 1)0)d0 = BaFt! #£ 0, ik=0,1,...
0
2w )
/ cos® ! @ sin O sin((2k + 1)0)df = 0, i,k=0,1,...
0

So
2m d
7F =
| ro.nme.na

k . 2
1 o "
Z Z — Z —:_ T al-bjrlﬂ / cos’ It 9 sin? do+
. J 0

k l 2m
Z Z jaibjrti / cos’ §sin @ (oqi sinf + ...+ aits, sin((i + 2)9)) do =
. N 0 2
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7‘(0710(11()0 + (dlgalbg + 5[30&3[)0)7“2 + ... + Z dijaibjr”k_l),
i+j=l+k
hered--——ﬂA +j (0 BY + 9; B2 + ... + aies, BT?), for all i, j and
w iy = j+’L i+j+1 .7 1Dy 215 %z j ’ )J
k being the greatest even number less than or equal to m.
Moreover
27 b )
/ Fy(0,r) Z ”1/ cos® §sin” 0do
0 —
3 ;gn
k l 27
+ Z Z 2r H'Jaibj/ cos' Tt 9 sin? 0do
=0 i= 0
j even 1t d

= A()C()’I“ + ...+ AbeTb+1

+ 2<A2a1b0T+A4(a3b0 + a1l)2)7“3+. . .+Al+k+17”l+k Z aib]).
iti=ltk

Then Fy(r) is the polynomial

T(p10a1b0 + (p12a1b2 + p3oasbo)r® + (praaibs + pszasbs + psoasbo)r+ (3.30)

o+ plkalbkrl"‘k_l + Aoco + A2027’2 + ...+ Aberb),

where p;; = &y; + 244541 for all ¢,j. Note that in order to find the positive
roots of Fyy we must find the zeros of a polynomial in 72 of degree equal to the

l+k—-10 b n l+k—-1 n—1 m
max — 2} Wehavethat§ [5} and 5 —[ 5 }—I—[Q}.See

Table 3.3.

We conclude that Fyo has at most max{[(n — 1)/2] + [m/2], [n/2]} positive
roots. Moreover we can choose the coefficients a;, b;, ¢ in such a way that (3.30)
has exactly max{[(n —1)/2] + [m/2], [n/2]} simple positive roots. Hence the state-
ment (b) of Theorem 3.4.1 follows. O

Proof of statement (c¢) of Theorem 3.4.1. The proof of statement (c) of Theorem
3.4.1 is based in the third order averaging theory.

n n
If we write fi(z z:aZ Zcﬂ‘i, fs(@) = Zpil“i, g1(z) =
i=0 i=0

Zb x', go(x Zd 2z’ and g3(x) = Zqixi, then an equivalent system to
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Table 3.3: Values of (I + k — 1)/2 written using the integer part function.

n m | 1 | k (I+k-1)/2 [(n—1)/2] + [m/2]
odd |[even | n | m (n+m-—1)/2 (n—1)/24+m/2
even |even |nl| m | (n—1+m—1)/2 (n—1)—1)/2 +m/2
odd | odd | n |m-1| (n+m—-1-1)/2 (n—1)/2+ (m—1)/2
even | odd |-l |m-1|(n—14+4m—-1-1)/2|((n—1)—1)/2+ (m—1)/2

(3.25) with & = 3 will be found by considering polar coordinates (r, ). So

i =—sinf (eA+*B+£°0),

. P 3.31
f——1-2 (eA+e*B+£°C), (3.31)

where
n m
A= Z a;7" ' cos® Osin 6 + Z br cost 6,
i=0 i=0
n m
B = Z c;r T cos' Osin 6 + Z d;r’ cos' 6,
i=0 i=0
n m
C= Zpir”l cos'® §sin 6 + Z qir’ cos' 0.
i=0 i=0

Taking 0 as the new independent variable system (3.31) becomes

dr A% cosOsin 6
— =eAsinf +&* [ Bsinf — ————
do r
3 o i (3.32)
3 (A’cos®fsind 2ABcosfsind .
+e 5 — + Csind | .
r r

We know by (3.27) that Fyg is identically zero if and only if a; = 0 for all
i even, and by (3.30) we obtain that Fy is identically zero if and only if the
coefficients a;, b; and ¢y satisfy

1
Cp = Af Z Pij Qi bj (333)

Ho itj=p+1
i odd, j even
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where p is even, A, and p; ; are given in section 2.2.

In order to apply the third order averaging method we need to compute the
corresponding function Fig. So the proof of statement (c) of Theorem 3.4.1 will
be direct consequence of the next auxiliary lemmas.

The proof of the next lemma is straightforward and follows from some tedious
computations. It will be omitted.

Lemma 3.4.2. The corresponding functions y1(0,7) and y2(6,r) of third order av-
eraging method are expressed by (3.29) and

yo(0,7) = Co+ C1r+ Cor? + ...+ Car?,

respectively, where A = max{2n + 1,2m — 1} and

C2k+1 = Z C Qi + Z do b; b + Z e?jaibﬂ

i+i+=2k i+j=2k+2 i+i=2k+1
k+1
+ Z fzpjaiajﬁz + d2k+1 + corb + Z bzbj < Z agH_l COS(Qi + 1)9)
i+j=2k i+j=2k+2 i=0
k+1
+ ( Z a;a; + Z blb] + Z aibjﬁ + d2k+1> (ZagiJrQ COS(Qi + 2)9)
i+i+=2k i+j=2k+2 i+j=2k+1 i=0
k+1
+ Z aib <Z g4 SIN(20 + 1)9)
i+j=2k+1 1=0
k+1
+ ( Z a;bj + Z a;a;0 + CQk) (Z ab; o sin(2i + 2)9)),
i+j+=2k+1 i+j=2k i=0
Cow= Y chma;+ Y dibibj+ > elaibf
i+j+=2k—1 i+j=2k+1 i+j=2k
k+1
+ ( Z aiaj + Z blb] =+ Z aibj9> (Zbgl+1 COS(2i —+ 1)0)
i+j=2k—1 i+i=2k+1 i+j=2k i=0
k+1
+ ( <bj> (Z b9, cos(2i + 2)9)
i+j+=2k+1 =0
k+1
+ ( Z aibj + cop—1 + Z aib; 9> <Zb%i+l sin(2i + 1)9>
i+j=2k i+j=2k i=0
k+1
- ( -bj> (Zb;m) sin(2i+2)9)),
i+j+=2k i=0



3.4. The generalized polynomial differential Liénar equation 93

where ab; |, ab; 5, bhiy, abi o, ¢k, dl, el fLoare real constants for 1 = 1,2 and

177 iy Vg0 Jig

A
k=0,1,...,=.
07 k) ) 2
2m 2
. 1 8 Fl 2 . .
Lemma 3.4.3. The integral 3752 (s,r)(y1(s,7))*ds is the polynomial
0
7(Do + D17 + Dor® + ...+ Dr™) (3.34)

n+2m—1 if m>n+1 and m orn even,

n+2m—2 if m>n+1 and m andn odd,

where Kk =
3n+1 if m<n+1 and n even,
3n if m<n+1 and n odd,
and
1 1 1
D, = Z Bijraiajar + Z Vijk@ibjbr + Z 0;jxaia;br,
itj+k=x—1 it+jtk=x+1 i+j+k=x
for x =0,1,..., K where ﬁiljk, ’y}jk, 51'13'1@ are real constants.

Proof. We will denote

0*F
?21(577') = hl(r) + hQ(T)7
where .
hi(r) = Z i(i 4+ 1)a;r* "1 cos’ fsin’ 6,
i=1
ha(r) = Z i(i — 2)bir' ™2 cos’ O sin 0,
i=2
and ,
(ya(s,7))" = gi(r) + 291 (r)g2(r) + g3 (r),
with
g1(r) = s1(r) + s2(r),
where

51(r) =ayr? (a11sin @ + agy sin(36)) + . ..
+ azrl+1 (au sinf + ag; sin(30) + ... + aigay sin((1 + 2)9) 7
s2(1) =aor (108 + a9 sin(20)) + . ..
+ apr®™t <a1b9 + aopsin(20) 4+ ... + iy, sin(b + 2)9> 7
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94
and
1
= 1 — cos " ——(1—cos™t0) ).
ga(r) bo(1 —cosO) + ...+ byr (m n 1( cos 9))
Then
0?Fy 2 9 9
g2 (5:7) (Wi (s,7))" =i (r) (91(r) + 291 (r)g2(r) + 93(r))
+ha(r) (9 (r) +291(r)g2(r) + g3 (1)) -
From
2 )
/ cos? fsin? O sin(p16) sin(p26)dh = M, (2i, p1, p2) #0,  p1, pa odd,
0
27 )
/ cos? 1 9 sin? @ sin(p,0) sin(p26)df = 0, p1, p2 odd,
0
for i =1,2,... we have that
27 l b '
/ hi(r)si(r)?dd = Z Z Z C”kazajakr Lpitipktl
0 = i=
kkodd ]]odld % even
k+2 42
where () = Z Z 5p1p2' ; ap1+1jozpzT+1kM1(i7p1;P2)7 with
=1 p'=1
podd p; odd
ik _ 1 if p1 = py and j =k,
pips 2 ifP175,020T.7'75k‘

Thus Hq(r fo hi(r)s1(r)%d is a polynomial in r of degree 3n — 1 if n even,
and 3n if n odd

Knowing that

2m
/ cos' Osin? sin(p10)0d0 = My (i, p1,0) # 0, p1 odd,
0

2m
/ cos? sin” 0 sin(p10) sin(p260)df = 0, p1 odd, ps even,
0

2m
/ 521 9 sin? @sin(p10) sin(pe6)df = Ms3(2i, p1,p2) #0, p1 odd, py even,
0

for i =1,2,... we have that

27 b
/ 2h1(r)s1(r)s2(r)dd = Z Z C”kaza]akr
0 ;

i—1 j—‘rl k+1



3.4. The generalized polynomial differential Liénar equation 95

b 1 1
Lyt kel
+ E E E kaazajakrZ rl

k=0 j=1 =1l

k even j odd @ odd
k+2 Jj+2

where (%) = g E 24( z+1)ap1+1 Qa2 W Ma(is p1,p2), A =2,3.

p1=1 p2=0

p1 odd P2 even
2
Thus the degree of the polynomial Ha(r) = / 2h1(r)s1(r)s2(r)dl in r is 3n.
0

From

2m
/ cos' O(sin? 0)0%df = My (i,0,0) # 0,
0
27 )
/ cos? fsin? O sin(p16) sin(p26)dd = Ms(2i, p1,p2) #0,  p1, p2 even,
0

27 )

/ cos? 1 sin? @ sin(p,0) sin(p26)do = 0, p1, P2 even,
0

2
/ cos' 0sin? 0sin(p10)0d0 = Mg (i, p1,0) # 0, p1 even,
0

for i =1,2,... we have that

27 b b n
/ hl(r)sg(r)de = Z Z Z C;ljkaiajakri_lTj+lrk+1
O .

o
3

b b
6 =1Lk
+ E E Gjpaiajagr'™ 1’

k+2  j+2
where l]k— Z Z 5%‘” (i4+1) ap1+z oz wMa(is p1,p2), A =4,5,6 with
p1=0

p1 even pa even
2m

53k as above. Thus Hj(r) = / hyi(r)s3(r)df is a polynomial in 7 of degree

0
3n + 1 if n even, and 3n — 1 if n odd.
Knowing that

2m
/ cos’ @sin? @sin(p10)dd = 0, pp=12,...
0
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27
/ cos? f(sin” 0)0dO = M;(i,0,0) # 0,
0

27
/ cos? 1 9 (sin” 0)d = 0,
0

for i =1,2,... we have that

27 m b n
ha(r)(s1(r) + s2(r))g2(r)do = Z Z (Eraiajber’™ eIttt
0 k=0 j=0 i=1
j even

J

2m
where k+i is odd, and ¢, = i(i+1)a1;M7(i,0,0). Thus Hy(r) = / hi(r)(s1(r)

0
+ s2(r))g2(r)de is a polynomial in r of degree 2n +m — 1 if m even, 2n+m if n
even, m odd, and 2n +m — 2 if n, m odd.

The equalities
2
/ cos? fsin? 0df = My (i,0,0) # 0,
0

27
/ cos? 1 9sin? 0do = 0,
0

fori=1,2,... imply

m n

ha(r)g3 (r)d6 = 3 ¢S paibiber'™ ' rirk,
k=0

j=0 i=1

2m
0

1 ifj=k,

where ijk = 0,,i(i + 1)Ms(3,0,0) with d;, = {2 2k

27
Thus Hs(r) = / hi(r)g3(r)df is a polynomial in r of degree 2m +n — 1 if n or

m even, and 2m +n — 2 if n and m odd.

From
27 )
/ cos' 0 sin 0sin(p;0) sin(p20)do = 0, p1, p2 odd
0
for i =1,2,... we have that
2m
He(r) = / ha(r)s2(r)d0 = 0.

0

From the values of the integrals

2m
/ cos® O(sin 0)0 sin(p10)dd = Mq(i, p1,0) # 0, p1 odd,
0
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2m
/ cos?* 1 (sin 0)0 sin(p,0)do = 0, p1 odd,
0

27
/ cos' 0 sin 0 sin(p10) sin(p260)dd = 0, p1 even, ps odd |
0

for i =1,2,... we have that

l b m
ha(r)sy(r)sa(r)dd = Z Z Z C?jkbiajakrFZTjHTkH,

0 k=1 j=0 i=2
€

27

1+2
9 _ s .
where () = E (i — 1)a1jap12+1kM9(z,p1,0).
p1=1
p1 odd
2

Thus Hy(r) = / ha(r)s1(r)sa(r)df is a polynomial in r of degree 2n +m — 1 if
0
m even and 2m +n — 2 if m odd.

The formulas

27
/ cos’ A(sin 0)6%dh = My (i,0,0) # 0,
0

2T

/ cos?' f(sin 0)0 sin(p16)df = 0, p1 even,
0
27 )
/ cos? 1 9(sin 0)0 sin(p10)dO = M1 (i, p1,0) # 0, p1 even,
0

2m )

/ cos’ 0 sin 0 sin(p10) sin(p20)do = 0, p1, p2 odd,
0

fori=1,2,... imply

2 b b m
/ ha(r E E E ”kb ajapr’ " 2pItipk
0

k=0 7j=0 i=1
k even j even

b m
i—2 j+1 k+1
P3N Y Gl

k=0 j=0 =1
k even j even § odd

where
e = 05i(i — DonjoneMio(i, p1, 0),

b+2

”k E kpl 041304;)1+2 Mll(l pl,O),

p1=1
p1 even



98 Chapter 3. Three applications of Theorem 2.1.5
1 ifj= 1 ifj= =

with ot = {1 HI=k g 1=k o =0,

J 2 ifj#£k, JEPL 2 ifj#k, pp #0.

27
Thus Hg(r) = / ha(r)s2(r)df is a polynomial in r of degree m + 2n if n even,
0

and m + 2n — 2 if n odd.

From
2m )
/ cos?' @ sin sin(p10)dh = M5 (i, p1,0) # 0, p1 odd,
0
27 )
/ cos? ! 9 sin O sin(p10)dh = 0, p1 odd,
0
27 )
/ cos’ O(sin 0)0d6 = M;3(i,0,0) # 0,
0
27 )
/ cos? fsin 0 sin(p160)dd = My4(i, p1,0) # 0, p1 even,
0
2 )
/ cos?" 1 9 sin O sin(p10)df = 0, p1 even,
0

for i =1,2,... we have that

C-lfkbiajbkr’_Qr”lrk

,

I
NE
MN

M-

/O " har)(s1(r) + 52(r))ga(r)dB

m b m
1 i—2, j+1,k
DD D Chkbiagbert ity

j even
m l m
14 i—2, j+1, .k
+ E g g Cijpbiajbpr' =27 ek,
k=0 j=1 i=1
j even
where
i+2 ..
i(i—1) , ;
E ————pt1 . Mis(i,p1,0) for k + i even,
k+2 z J
¢l2 = p1=1
ijk — p1 odd

0 for k + 14 odd,
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i(i—1 _

Ciljsk = (k—i—l)alel?’(Z’O’O)’

2 ..

-1

> Z(;erQ)O‘%jMM(i,m,O) for k + i even,
14 — p1=0
ijk p1 even

0 for k + i odd.

2
Thus Hy(r) = / ha(r)(s1(r) + s2(r))g2(r)df is a polynomial in r of degree

0
2m +n — 1 if n even, and 2m +n — 2 if n odd.
From the value of the integral

21
/ cos' @sinfdh = 0,
0

for i =1,2,... we have that

27
Hyp(r) = /0 hg(r)gg(r)dG =0.

27 1 aQF 10
We conclude that /0 58721(8, ) (y1(s,7))%ds = ; H; whose degree is the
greatest of the degrees of H;. Hence the proof of the lemma follows. |

The proofs of the next three lemmas follow in a similar way to the previous
one. They will be omitted.

2m
10F
Lemma 3.4.4. The integral / ia—l(s,r)(yz(s,r))ds is the polynomial
0 r
™ 2 9
;(Eo + Eir + Eor® + ...+ Eyr?), (3.35)
n+2m if m>n+1 and n even,

n+2m—1 if m>n+1 and n odd,

where ¥ =
3n+2 if m<n4+1 and n even,
3n+1 if m<n4+1 and n odd,
and
Bupr= Y. Blpaiaan+ Y vpabibe+ Y Sbic

itjtk=21—1 i+j+k=21+1 i+j=21
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+ Z nfjaidj—&- Z U?jkaiajbkﬂ,

i+j=21 itjt+k=21
1 even
FEo = Z ﬁfjkaiajak + Z ’}/Z-ijaibjbk + Z (51-2]1)7;6]'
itj+h=21—2 it+j+k=21 itj=21—1
+ Z n?jaidj + Z v?jkaiajbkﬁ + Z gfjaicjw,
itj=21—1 i+j+k=2l—1 i+j=21-2
1 even 1 even
| = 1 v h 2 2 52 2 2 2 l
forl=0, g where 5ijk, Yijks Oij» Mijs Vijk» Sij are real constants.
. T1OR, . .
Lemma 3.4.5. The integral / 58—(5,7‘)(3/1 (s,7))ds is the polynomial
0 71
0
;(FO + Pir+ Fpr? +.. .+ F,r"), (3.36)
n+ 2m if m>n+1 and n even,

n+2m—1 if m>n+1 and n odd,

where v =
3n+2 if m<n4+1 and n even,
3n+1 if m<n4+1 and n odd,
and
F. = B3 aiaian + 3 aibiby + 83.bic;
2041 = ik @i0j Ok Yijk®i0;50k ij 1€
i+jt+k=21—1 i+jt+k=20+1 i+j=21
3
+ Z ;5 @idj,
i+j=21
Fy = B3 aiaian + 3 aibiby + 83.bic;
21 = ijk Qi Ak VijkQi05 0k 15 0iCj
i+jt+k=21—2 i+j+k=2l i+j=21—1
3 3 3
+ E n;;aid; + g U5 iabem + E SijQiC4T,
i+j=21—-1 i+jt+k=21—1 i+jt+=21—2
i even i even
v 3 3 3 .3 .3 .3
forl=0,1,..., > where ﬁijk, Vijks 0555 Miys Uik, S;; are real constants.

2w
Lemma 3.4.6. The integral / Fs(s,r)ds is the polynomial
0

g(Go + Gor? + ..+ Gyr), (3.37)
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n+2m if m>n+1 and n even,

n+2m—1 if m>n+1 and n odd,

where 1 =
3n+2 if m<n+1 and n even,
3n+1 if m<n4+1 and n odd,
and
Gy = Z ijkaiajak + Z ’Y;ijaibjbk + Z 5?jbicj
i+j+k=21—2 it+j+k=21 i+j=21—1
+ Y nhaid;+pas,
itj=21—1
forl=0,1,..., %, where ijk, 'yfjk, 5;1]-, 77%, vfjk are real constants.

By Lemmas 3.4.3, 3.4.4, 3.4.5 and 3.4.6 we obtain

«
F30(’I“) = ; (MO + M17” + ]\42’[“2 + ]\43’[“3 + M4’I“4 + ...+ Mg_lrg_l + MQT‘Q) 5

where
Moy q = E Bijraiaar + g Vijkaibjby + E 0ijbic;
it k=21—1 it k=241 itj=21
=+ E mjaz-dj + E l/ijaiajbkw,
itj=21 itj=21

7 even

My = > Byraibibe+ > vigraiajax+ Y Oijbic
i+j+h=21 i+ k=212 itj=2l—1

+ g Nijaid; + E Wijk@iQ5a) + TO21—2D21—2
i+j=21—1 i+j+k=21—2

+ Z Vijkaiajby + Z pijeaici | ™

i+j+k=20—1 i+j=21-2
i even i even
2
+ E TijkQiQ;AKET",
i+j+k=20-2

i even



forl:O,l,Z,...gand

n+2m if m>n+1 and n even,
n+2m—1 if m>n+1 and n odd,

3n+2 if m<n+1 and n even,

3n+1 if m<n+1 and n odd.

Applying the equalities a; = 0, for all ¢ even and (3.33), we obtain that My = 0
and M,, = 0 for k odd. Moreover from (3.33) we obtain ¢, = Z a;b; = 0 for

i+j=k+1
i odd
J even

k > b. Then My, = 0 for k greater than

n+m—2 if n, m odd,
n+m—1 if n odd, m even,

n+m—2 if n, m even,

n+m—1 if n even, m odd.

Thus
Fs0(r) = ar (MQ + Myr? + Mer* + ...+ My_y "2 + M)\_QT)\)
where
/ / /
M, = Z Bijkaibjbk + Z 6ijbicj + Z nijaidj + WyPw—2-
it jth=w itj—w—1 itj—w—1

i odd i even 7 odd

J even j odd J even

k odd

Consequently F3(z) is a polynomial of degree A in the variable r2. Then F3(z) has
-1

at most n—i—# positive roots, and from the third order averaging method

we conclude that this is the maximum number of limit cycles of the polynomial

Liénard differential systems (3.25) with k£ = 3 bifurcating from the periodic orbits

of the linear center & = y, y = —z. This completes the proof of statement (c) of

Theorem 3.4.1. O
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